Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin
Abstract
:1. Introduction
2. Staphylococcal Biofilm
3. Plant-Derived Antibiofilm Substances
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Otto, M. Staphylococcal biofilms. Microbiol Spectr. 2019, 6, 699–711. [Google Scholar] [CrossRef]
- El-Baky, R.M.A. Application of Scanning Electron Microscopy for the Morphological Study of Biofilm in Medical Devices. In Scanning Electron Microscopy; Kazmiruk, V., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 591–600. [Google Scholar]
- Wu, E.C.; Kowalski, R.P.; Romanowski, E.G.; Mah, F.S.; Gordon, Y.J.; Shanks, R.M.Q. AzaSite Inhibits Staphylococcus aureus and Coagulase-Negative Staphylococcus Biofilm Formation In Vitro. J. Ocul. Pharmacol. Ther. 2010, 26, 557–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reffuveille, F.; Josse, J.; Vallé, Q.; Mongaret, C.; Gangloff, S.C. Staphylococcus aureus Biofilms and their Impact on the Medical Field. In The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus; Enany, S., Crotty Alexander, L.E., Eds.; Intech Open: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Polewczyk, A.; Janion, M.; Podlaski, R.; Kutarski, A. Clinical manifestations of lead-dependent infective endocarditis: Analysis of 414 cases. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1601–1608. [Google Scholar] [CrossRef] [Green Version]
- Bryers, J.D. Medical Biofilms. Biotechnol. Bioeng. 2008, 100, 1–18. [Google Scholar] [CrossRef] [PubMed]
- França, A.; Gaio, V.; Lopes, N.; Melo, L.D.R. Virulence factors in coagulase-negative Staphylococci. Pathogens 2021, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prasad, R. Biofilms. JK Sci. 2006, 8, 14–17. [Google Scholar]
- Mora, M.; Mahnert, A.; Koskinen, K.; Pausan, M.R.; Oberauner-Wappis, L.; Krause, R.; Perras, A.K.; Gorkiewicz, G.; Berg, G.; Moissl-Eichinger, C. Microorganisms in confined habitats: Microbial monitoring and control of intensive care units, operating rooms, cleanrooms and the international space station. Front Microbiol. 2016, 7, 1573. [Google Scholar] [CrossRef] [Green Version]
- Dodds, D.R. Antibiotic resistance: A current epilogue. Biochem. Pharmacol. 2016, 134, 139–146. [Google Scholar] [CrossRef]
- Jang, Y.S.; Mosolygó, T. Inhibition of Bacterial Biofilm Formation by Phytotherapeutics with Focus on Overcoming Antimicrobial Resistance. Curr. Pharm. Des. 2020, 26, 2807. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal Biofilms. Curr. Top. Microbiol. Immunol. 2008, 322, 207–228. [Google Scholar]
- Archer, N.K.; Mazaitis, M.J.; Costerton, J.W.; Leid, J.G.; Powers, M.E.; Shirtliff, M.E. Staphylococcus aureus biofilms. Properties, regulation and roles in human disease. Virulence 2011, 2, 445–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranjec, C.; Morales Angeles, D.; Torrissen, M.M.; Fernández, L.; García, P.; Kjos, M.; Diep, D.B. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics 2021, 10, 131. [Google Scholar] [CrossRef]
- De Vor, L.; Rooijakkers, S.H.M.; van Strijp, J.A.G. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett. 2020, 594, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percival, S.L.; Emanuel, C.; Cutting, K.F.; Williams, D.W. Microbiology of the skin and the role of biofilms in infection. Int. Wound J. 2012, 9, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Liu, F.; Zhu, K.; Shen, J.-Z. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. J. Agric. Food Chem. 2019, 67, 13195–13211. [Google Scholar] [CrossRef]
- Dias, D.A.; Urban, S.; Roessner, U.A. Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [Green Version]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A., Jr.; Ikryannikova, L.N. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Sen, T.; Samanta, S.K. Medicinal plants, human health and biodiversity: A broad review. Adv. Biochem. Eng. Biotechnol. 2015, 147, 59–110. [Google Scholar]
- Porras, G.; Chassagne, F.; Lyles, J.T.; Marquez, L.; Dettweile, M.; Salam, M.R.; Samarakoon, T.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem. Rev. 2021, 121, 3495–3560. [Google Scholar] [CrossRef]
- Zacchino, S.A.; Butassi, E.; Liberto, M.D.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 2017, 15, 27–48. [Google Scholar] [CrossRef]
- Wang, Z.F.; Liu, J.; Yang, Y.A.; Zhu, H.L. A Review: The Anti-inflammatory, Anticancer and Antibacterial Properties of Four Kinds of Licorice Flavonoids Isolated from Licorice. Curr. Med. Chem. 2020, 27, 1997–2011. [Google Scholar] [CrossRef] [PubMed]
- Sayout, A.; Ouarhach, A.; Rabie, R.; Dilagui, I.; Soraa, N.; Romane, A. Evaluation of Antibacterial Activity of Lavandula pedunculata subsp. atlantica (Braun-Blanq.) Romo Essential Oil and Selected Terpenoids against Resistant Bacteria Strains-Structure-Activity Relationships. Chem. Biodivers. 2020, 17, e1900496. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; Zhang, A.; Yang, Y.; Yang, P. Coumarin-containing hybrids and their antibacterial activities. Arch. Pharm. 2020, 353, 1900380. [Google Scholar] [CrossRef]
- Krislee, A.; Fadly, C.; Nugrahaningsih, D.A.A.; Nuryastuti, T.; Nitbani, F.O.; Sholikhah, E.N. The 1-monolaurin inhibit growth and eradicate the biofilm formed by clinical isolates of Staphylococcus epidermidis. BMC Proc. 2019, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.K.; Chae, S.-W.; Im, G.J.; Chung, J.-W.; Song, J.-J. Eugenol: A Phyto-Compound Effective against Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Clinical Strain Biofilms. PLoS ONE 2015, 10, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Rubinia, D.; Banua, S.F.; Nishaa, P.; Muruganb, R.; Thamotharanc, S.; Percinod, M.J.; Subramania, P.; Nithyananda, P. Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus. Microb. Pathog. 2018, 122, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.G.L.; Moraes, T.D.S.; Silva, L.D.O.; Bianchi, T.C.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K.; Pires, R.H.; Martins, C.H.G. In vitro studies of the antibacterial activity of Copaifera spp. oleoresins, sodium hypochlorite, and peracetic acid against clinical and environmental isolates recovered from a hemodialysis unit. Antimicrob. Resist. Infect. Control 2018, 7, 1–13. [Google Scholar] [CrossRef]
- Chemsa, A.E.; Zellagui, A.; Öztürk, M.; Erol, E.; Ceylan, O.; Duru, M.E.; Lahouel, M. Chemical composition, antioxidant, anticholinesterase, antimicrobial and antibiofilm activities of essential oil and methanolic extract of Anthemis stiparum subsp. sabulicola (Pomel) Oberpr. Microb. Pathog. 2018, 119, 233–240. [Google Scholar] [CrossRef]
- Arora, D.S.; Mahajan, H. Major Phytoconstituents of Prunus cerasoides Responsible for Antimicrobial and Antibiofilm Potential against Some Reference Strains of Pathogenic Bacteria and Clinical Isolates of MRSA. Appl. Biochem. Biotechnol. 2019, 188, 1185–1204. [Google Scholar] [CrossRef]
- Banerjee, M.; Parai, D.; Chattopadhyay, S.; Mukherjee, S.K. Andrographolide: Antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiol. 2017, 62, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.-G.; Lee, S.-Y.; Lee, S.-M.; Lim, K.-H.; Ha, E.-J.; Eom, Y.-B. Activity of novel inhibitors of Staphylococcus aureus biofilms. Folia Microbiol. 2017, 62, 157–167. [Google Scholar] [CrossRef]
- Haapakorva, E.; Holmbom, T.; von Wright, A. Novel aqueous oil-in-water emulsions containing extracts of natural coniferous resins are strongly antimicrobial against enterobacteria, staphylococci and yeasts, as well as on bacterial biofilms. J. Appl. Microbiol. 2017, 124, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallarero, A.; Skogman, M.; Kujala, J.; Rajaratnam, M.; Moreira, V.M.; Yli-Kauhaluoma, J.; Vuorela, P. (+)-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro. Int. J. Mol. Sci. 2013, 14, 12054–12072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilova, T.A.; Danilina, G.A.; Adzhieva, A.A.; Minko, A.G.; Nikolaeva, T.N.; Zhukhovitskii, V.G.; Pronin, A.V. Effects of Miramistin and Phosprenil on Microbial Biofilms. Bull. Exp. Biol. Med. 2017, 163, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, S.E.C.B.; Melo, H.M.; Cavalcante, T.T.A.; Júnior, F.E.A.C.; de Carvalho, M.G.; Menezes, F.G.R.; de Sousa, O.V.; Costa, R.A. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin-and vancomycin-resistant Staphylococcus aureus. BMC Complementary Altern. Med. 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Burt, S.A.; Ojo-Fakunle, V.T.A.; Woertman, J.; Veldhuizen, E.J.A. The Natural Antimicrobial Carvacrol Inhibits Quorum Sensing in Chromobacterium violaceum and Reduces Bacterial Biofilm Formation at Sub-Lethal Concentrations. PLoS ONE 2014, 9, e93414. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, B.M.; Nelson, K.; Lyles, J.T.; Jariwala, P.B.; García-Rodriguez, J.M.; Quave, C.L.; Weinert, E.E. Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-biofilm Activity. Front. Microbiol. 2017, 8, 496. [Google Scholar] [CrossRef]
- Lemos, A.S.O.; Campos, L.M.; Melo, L.; Guedes, M.C.M.R.; Oliveira, L.G.; Silva, T.P.; Melo, R.C.N.; Rocha, V.N.; Aguiar, J.A.K.; Apolônio, A.C.M.; et al. Antibacterial and Antibiofilm Activities of Psychorubrin, a Pyranonaphthoquinone Isolated From Mitracarpus frigidus (Rubiaceae). Front. Microbiol. 2018, 9, 724. [Google Scholar] [CrossRef] [Green Version]
- Yuyama, K.T.; da Costa Neves, T.S.P.; Memória, M.T.; Tartuci, I.T.; Abraham, W.R. Aurantiogliocladin inhibits biofilm formation at subtoxic concentrations. AIMS Microbiol. 2017, 3, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Meah, M.S.; Lertcanawanichakul, M.; Pedpradab, P.; Lin, W.; Zhu, K.; Li, G.; Panichayupakaranant, P. Synergistic effect on anti-methicillin-resistant Staphylococcus aureus among combinations of α-mangostin-rich extract, lawsone methyl ether and ampicillin. Lett. Appl. Microbiol. 2020, 71, 510–519. [Google Scholar] [CrossRef]
- Bocquet, L.; Sahpaz, S.; Bonneau, N.; Beaufay, C.; Mahieux, S.; Samaillie, J.; Roumy, V.; Jacquin, J.; Bordage, S.; Hennebelle, T.; et al. Phenolic Compounds from Humulus lupulus as Natural Antimicrobial Products: New Weapons in the Fight against Methicillin Resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei Strains. Molecules 2019, 24, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, N.; Tan, X.; Jiao, Y.; Liu, L.; Zhao, W.; Yang, S.; Jia, A. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep. 2014, 4, 5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Hu, B.; Xu, J.; Ren, Q.; Wang, Z.; Wang, S.; Dong, Y.; Yang, G. Baicalin suppress growth and virulence-related factors of methicillin resistant Staphylococcus aureus in vitro and vivo. Microb. Pathog. 2020, 139, 103899. [Google Scholar] [CrossRef]
- Omokhua-Uyi, A.G.; Abdalla, M.A.; Leonard, C.M.; Aro, A.; Uyi, O.O.; Van Staden, J.; McGaw, L.J. Flavonoids isolated from the South African weed Chromolaena odorata (Asteraceae) have pharmacological activity against uropathogens. BMC Complement. Med. Ther. 2020, 20, 233. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Liu, M.; Fu, Y.; Zhang, J.; Liu, W.; Li, J.; Li, X.; Li, Y.; Wang, T. Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microb. Pathog. 2020, 142, 104056. [Google Scholar] [CrossRef] [PubMed]
- Abedini, A.; Colin, M.; Hubert, J.; Charpentier, E.; Angelis, A.; Bounasri, H.; Bertaux, B.; Kotland, A.; Reuveille, F.; Nuzillard, J.-M.; et al. Abundant Extractable Metabolites from Temperate Tree Barks: The Specific Antimicrobial Activity of Prunus avium Extracts. Antibiotics 2020, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Chemmugila, P.; Lakshmia, P.T.V.; Annamalaib, A. Exploring Morin as an anti-quorum sensing agent (anti-QSA) against resistant strains of Staphylococcus aureus. Microb. Pathog. 2019, 127, 304–315. [Google Scholar] [CrossRef]
- Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L.; et al. Chromatographic Analyses, In Vitro Biological Activities, and Cytotoxicity of Cannabis sativa L. Essential Oil: A Multidisciplinary Study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, M.A.; Arruda, F.V.S.; de Alencar, D.B.; Saker-Sampaio, S.; Ribeiro Albuquerque, M.R.J.; dos Santos, H.S.; Bandeira, P.N.; Pessoa, O.D.L.; Cavada, B.S.; Henriques, M.; et al. Antibacterial and Antioxidant Activities of Derriobtusone A Isolated from Lonchocarpus obtusus. Biomed. Res. Int. 2014, 2014, 248656. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.B.; de Bessa, M.E.; Santos Mayorga, O.A.; Andrade, V.T.; da Costa, Y.F.G.; de Freitas Mendes, R.; Pires Ferreira, A.L.; Scio, E.; Alves, M.S. A promising antibiotic, synergistic and antibiofilm effects of Vernonia condensata Baker (Asteraceae) on Staphylococcus aureus. Microb. Pathog. 2018, 123, 385–392. [Google Scholar] [CrossRef]
- Li, K.; Han, X.; Li, R.; Xu, Z.; Pan, T.; Liu, J.; Li, B.; Wang, S.; Diao, Y.; Liu, X. Composition, Antivirulence Activity, and Active Property Distribution of the Fruit of Terminalia chebula Retz. J. Food Sci. 2019, 84, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Chusri, S.; Na Phatthalung, P.; Voravuthikunchai, S.P. Anti-biofilm activity of Quercus infectoria G. Olivier against methicillin-resistant Staphylococcus aureus. Lett. Appl. Microbiol. 2012, 54, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Rasooly, R.; Molnar, A.; Choi, H.-Y.; Do, P.; Racicot, K.; Apostolidis, E. In-Vitro Inhibition of Staphylococcal Pathogenesis by Witch-Hazel and Green Tea Extracts. Antibiotics 2019, 8, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, C.-X.; Luo, J.-G.; Ren, X.-P.; Kong, L.-Y. Interconverting flavonostilbenes with antibacterial activity from Sophora alopecuroides. Phytochemistry 2015, 116, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, B.I.P.; Rosato, A.; Marilena, M.; Gibbons, S.; Bombardelli, E.; Verotta, L.; Franchini, C.; Corbo, F. Biological Evaluation of Hyperforin and Its Hydrogenated Analogue on Bacterial Growth and Biofilm Production. J. Nat. Prod. 2013, 76, 1819–1823. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, K.; LeBel, G.; Yi, L.; Grenier, D. In vitro antibacterial activity of plant essential oils against Staphylococcus hyicus and Staphylococcus aureus, the causative agents of exudative epidermitis in pigs. Arch. Microbiol. 2018, 200, 1001–1007. [Google Scholar] [CrossRef]
- Jardak, M.; Elloumi-Mseddi, J.; Aifa, S.; Mnif, S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis. 2017, 16, 190. [Google Scholar] [CrossRef] [Green Version]
- Manzur, A.G.B.; Junior, V.S.M.; Morais-Costa, F.; Mariano, E.G.A.; Careli, R.T.; da Silva, L.M.V.; Coelho, S.G.; de Almeida, A.C.; Duarte, E.R. Extract of Mangifera indica L. leaves may reduce biofilms of Staphylococcus spp. in stainless steel and teatcup rubbers. Food Sci. Technol. Int. 2019, 26, 11–20. [Google Scholar] [CrossRef]
- Ouyang, P.; He, X.; Yuan, Z.-W.; Yin, Z.-Q.; Fu, H.; Lin, J.; He, C.; Liang, X.; Lv, C.; Shu, G.; et al. Erianin against Staphylococcus aureus Infection via Inhibiting Sortase A. Toxins 2018, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- Viktorová, J.; Kumar, R.; Rehorová, K.; Hoang, L.; Ruml, T.; Figueroa, C.R.; Valdenegro, M.; Fuentes, L. Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan (Luma apiculata) and Peumo (Cryptocarya alba). Antibiotics 2020, 9, 444. [Google Scholar] [CrossRef] [PubMed]
- Blando, F.; Russo, R.; Negro, C.; De Bellis, L.; Frassinetti, S. Antimicrobial and Antibiofilm Activity against Staphylococcus aureus of Opuntia ficus-indica (L.) Mill. Cladode Polyphenolic Extracts. Antioxidants 2019, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Edziri, H.; Jaziri, R.; Chehab, H.; Verschaeve, L.; Flamini, G.; Boujnah, D.; Hammami, M.; Aouni, M.; Mastouri, M. A comparative study on chemical composition, antibiofilm and biological activities of leaves extracts of four Tunisian olive cultivars. Heliyon 2019, 5, e01604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artini, M.; Papa, R.; Barbato, G.; Scoarughi, G.L.; Cellini, A.; Morazzoni, P.; Bombardelli, E.; Selan, L. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Bioorg. Med. Chem. 2012, 20, 920–926. [Google Scholar] [CrossRef]
- Maisetta, G.; Batoni, G.; Caboni, P.; Esin, S.; Rinaldi, A.C.; Zucca, P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement. Altern. Med. 2019, 19, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manilal, A.; Sabu, K.R.; Shewangizaw, M.; Aklilu, A.; Seid, M.; Merdikios, B.; Tsegaye, B. In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: Efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon 2020, 6, e03303. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Liu, J.; Blažeković, B.; Sun, Y.; Ma, S.; Ren, C.; Vladimir-Knežević, S.; Li, C.; Xing, Y.; Tian, G.; et al. In vitro antibacterial effects of Tanreqing injection combined with vancomycin or linezolid against methicillin-resistant Staphylococcus aureus. BMC Complement. Altern. Med. 2018, 18, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.F.; Tang, H.; Lyles, J.T.; Pineau, R.; Mashwani, Z.; Quave, C.L. Antibacterial Properties of Medicinal Plants From Pakistan Against Multidrug-Resistant ESKAPE Pathogens. Front. Pharmacol. 2018, 9, 815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemsa, A.E.; Erol, E.; Öztürk, M.; Zellagui, A.; Özgür, C.; Gherraf, N.; Duru, M.E. Chemical constituents of essential oil of endemic Rhanterium suaveolens Desf. growing in Algerian Sahara with antibiofilm, antioxidant and anticholinesterase activities. Nat. Prod. Res. 2016, 30, 2120–2124. [Google Scholar] [CrossRef]
- Trentin, D.D.S.; Giordani, R.B.; Zimmer, K.R.; da Silva, A.G.; da Silva, M.V.; Correia, M.T.D.S.; Baumvol, I.J.R.; Macedo, A.J. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J. Ethnopharmacol. 2011, 137, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Saising, J.; Ongsakul, M.; Voravuthikunchai, S.P. Rhodomyrtus tomentosa (Aiton) Hassk. Ethanol extract and rhodomyrtone: A potential strategy for the treatment of biofilm-forming staphylococci. J. Med. Microbiol. 2011, 60, 1793–1800. [Google Scholar] [CrossRef] [Green Version]
- Chepkirui, C.; Cheng, T.; Sum, W.C.; Matasyoh, J.C.; Decock, C.; Praditya, D.F.; Wittstein, K.; Steinmann, E.; Stadler, M. Skeletocutins A-L: Antibacterial Agents from the Kenyan Wood-Inhabiting Basidiomycete, Skeletocutis sp. J. Agric. Food Chem. 2019, 67, 8468–8475. [Google Scholar] [CrossRef] [PubMed]
- Gondil, V.S.; Kalaiyarasan, T.; Bharti, V.K.; Chhibber, S. Antibiofilm potential of Seabuckthorn silver nanoparticles (SBT@AgNPs) against Pseudomonas aeruginosa. 3 Biotech. 2019, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Kabała-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Wojtyczka, R.D.; Buszman, E.; Stojko, J. Caffeic acid versus caffeic acid phenethyl ester in the treatment of breast cancer MCF-7 cells: Migration rate inhibition. Integr. Cancer Ther. 2018, 17, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Publ. Health 2018, 15, 2321. [Google Scholar] [CrossRef] [Green Version]
- Kabała-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Iriti, M.; Wojtyczka, R.D.; Buszman, E.; Stojko, J. Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7—a comparative study. Cell. Mol. Biol. 2018, 64, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. Biomed. Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Iriti, M.; Kubina, R.; Cochis, A.; Sorrentino, R.; Varoni, E.M.; Kabała-Dzik, A.; Azzimonti, B.; Dziedzic, A.; Rimondini, L.; Wojtyczka, R.D. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells. Phytother. Res. 2017, 31, 1529–1538. [Google Scholar] [CrossRef]
- Kabała-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Jastrzębska-Stojko, Ż.; Stojko, R.; Wojtyczka, R.D.; Stojko, J. Comparison of two components of propolis: Caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) induce apoptosis and cell cycle arrest of breast cancer cells MDA-MB-231. Molecules 2017, 22, 1554. [Google Scholar] [CrossRef] [Green Version]
- Dziedzic, A.; Wojtyczka, R.D.; Kubina, R. Antimicrobial activity of berberine against cariogenic and opportunistic oral microorganisms. Int. J. Paediatr. Dent. 2017, 27, 20. [Google Scholar]
- Miklasińska, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Dziedzic, A.; Wąsik, T.J. Catechin hydrate augments the antibacterial action of selected antibiotics against Staphylococcus aureus clinical strains. Molecules 2016, 21, 244. [Google Scholar] [CrossRef] [PubMed]
No | Substance | Source | Systematic Group | Scope of Activity | Ref. |
---|---|---|---|---|---|
1. | 1-monolaurin | coconut oil | glycerides | Inhibition of biofilm formation at 500 µg/mL at 96.78%, biofilm eradication at 500 µg/mL among clinical isolates of S. epidermidis (the collection of Microbiology Laboratory Faculty of Medicine, Public Health, and Nursing UGM) at 68.16% | [26] |
2. | Cinnamaldehyde | essential oil of Cinnamomum Scheffer | aldehydes | Inhibition of S. aureus ATCC 25923 biofilm formation at a concentration of 0.5 mg/mL with a decrease of 4 logarithmic values and the ability to eliminate mature biofilm approximately 100-fold at a concentration of 0.5 mg/mL | [27] |
3. | Eugenol | Dianthus caryophyllus L. | terpenes | MIC = 0.04%; reduction by more than 50% of MRSA (Culture Collection of Antimicrobial Resistant Microbes, Seoul, Korea) and MSSA ATCC 29213 biofilm growth in vitro at 1/2 MIC concentration | [28] |
4. | Nerolidol | Pogostemon heyneanus | terpenes | MIC = 0.025%; growth reduction of immature MRSA (clinical strains) biofilms at 1/2 MIC and 1/4 MIC at 88%, while inhibition of mature MRSA (clinical strains) biofilms at 1/2 MIC and 1/4 MIC at 85% | [29] |
5. | Sesquiterpenes and diterpenes | oleoresin of Copaifera duckei | terpenes | IC50 value for mature S. aureus (clinical isolate) biofilms exposed to oleoresin = 21.85 µg/mL; MBIC for S. epidermidis (water isolate) = 12.50 µg/mL, MBIC for S. aureus (clinical isolate) between 0.78 and 100.00 µg/mL | [30] |
6. | Methanol extract from aerial parts of Anthemis stiparum subsp. Sabulicola | aerial parts of Anthemis stiparum subsp. sabulicola | terpenes | MIC = 1.56 mg/mL for S. aureus subsp. aureus ATCC 25923; 59.06% inhibition on biofilm growth at the MIC concentration; MIC = 25 mg/mL for S. epidermidis MU 30, 30.43% inhibition on biofilm growth at the MIC concentration | [31] |
7. | Organic extract of Prunus cerasoides | Prunus cerasoides | diterpenes | MIC = 5 mg/mL; inhibition of approximately 50% of mature S. aureus MTCC 740 biofilm growth;
MIC = 10 mg/mL for S. epidermidis MTCC 435; MIC = 1 mg/mL for MRSA (clinical strain) | [32] |
8. | Andrographolide | Andrographis paniculata | terpenoids | Inhibition of S. aureus MTCC 96 biofilm growth by about 45% on the polystyrene surface after 24 h of exposure to the compound at a concentration of 50 μg/mL | [33] |
9. | Celastrol | Extract of Tripterygium wilfordii and Celastrus regelii | terpenoids | Inhibition of biofilm formation by 25.5–85.07%, eradication of mature biofilm by 40.5–80.2% for S. aureus (MSSA) ATCC 29213; inhibition of biofilm formation by 27–89.3%, eradication of mature biofilm by 49.5–82.8% for S. aureus (MRSA) clinical strains | [34] |
10. | Emulsion containing resin acids | Norway spruce—Picea abies | terpenoids | 90.8% ± 8.4% growth inhibition of S. aureus MRSA (ATCC BAA-44); significant increase in eradication and reduction in biofilm formation for S. aureus Mu50 and S. epidermidis ET013 | [35] |
11. | (+)-dehydroabietic acid | oleoresin from a tree of the genus Picea | terpenoids | MIC = 21 mg/L for S. aureus ATCC 25923; significant inhibition of biofilm formation (IC50 = 8.35 mg/L) and action on biofilm-forming S. aureus (IC50 = 33.9 mg/mL) | [36] |
12. | Phosprenil | conifer needles of fir (Abiessibirica) or pine (Pinussylvestris) | prenoles | Approximately 2-fold inhibition of S. aureus ATCC 6538 and a clinical strain 010Ng, biofilm growth at concentrations of 7.5–30 mg/mL | [37] |
13. | Carvacrol | Plectranthus amboinicus | phenols | MIC = 0.25 mg/mL for S. aureus OVRSA and ATCC 6538; antibiofilm activity against S. aureus ATCC 6538 at 0.25 mg/mL; biofilm reduction ability at all carvacrol concentrations tested (0.062 to 4 mg/mL) | [38] |
14. | Carvacrol | oregano oil | phenols | Reduction in S. aureus BMA/FR/032/0074 biofilm production at a concentration of 0.50–1.00 mM | [39] |
15. | Carvacrol | essential oils of oregano, thyme | phenols | Ability to approximately 1000-fold eliminate mature S. aureus ATCC 25923 biofilm at 0.5 mg/mL and inhibit its formation at the same concentration, with a decrease in CFU of 1,000,000/mL | [27] |
16. | Thymol | essential oils of Thymus and savory | phenols | Ability to approximately 1000-fold eliminate mature S. aureus ATCC 25923 biofilm at a concentration of 0.5 mg/mL and inhibit its formation at a concentration of 0.5 mg/mL with a decrease of 5 logarithmic values | [27] |
17. | Ellagic acid xyloside | Rubus ulmifolius | polyphenols | 50% inhibition of S. aureus (MSSA) osteomyelitis isolate (UAMS-1) biofilm formation at a concentration of 64 µg/mL | [40] |
18. | Ellagic acid rhamnoside | Rubus ulmifolius | polyphenols | 50% inhibition of S. aureus (MSSA) osteomyelitis isolate (UAMS-1) biofilm formation at a concentration of 64 µg/mL; capable of 90% inhibition of biofilm formation at a concentration of 128 µg/mL | [40] |
19. | Psychorubrine | Mitracarpus frigidus | quinones | Inhibition of mature biofilms in approximately 56% (MIC) and 46% (1/2 MIC) for S. aureus (MRSA) ATCC 33591 and in 84% (MIC) and 85% (1/2 MIC) for S. aureus (MRSA) ATCC 33592 | [41] |
20. | Aurantioglycoladine | Clonostachys candelabrum | quinones | MIC = 64 µg/mL for S. epidermidis ATCC 35984; inhibition of biofilm production in 55% at a concentration of 256 μg/mL, in 51% at 64 μg/mL, in 19% at 32 μg/mL and in 10% at 16 μg/mL; MIC = 300 µg/mL for Staphylococcus aureus DSM 1104 | [42] |
21. | Alpha-mangostin | pericarp of Garcinia mangostana L. (family Clusiaceae) | xanthones | Significant inhibition of S. aureus (MRSA) standard isolate DMST 20654 biofilm formation in a dose-dependent manner from 1/16 MIC to MIC; at 1/2 MIC, inhibition of biofilm formation by approximately 70% | [43] |
22. | Xanthohumol | Humulus lupulus | chalcones | Inhibition of S. aureus (clinical isolate T28.1) biofilm-forming ability and ability to reduce existing biofilm at a concentration of 39 µg/mL (MIC) | [44] |
23. | Desmethylxanthohumol | Humulus lupulus | chalcones | Inhibition of the biofilm-producing ability of S. aureus (clinical isolate T28.1) at a concentration of 4.9 µg/mL (1/2 MIC) and the ability to destroy an existing biofilm at a concentration of 2.45 µg/mL (1/4 MIC) | [44] |
24. | Resveratrol | Peanuts (Arachis hypogea), blueberries and cranberries (Vacciniumspp.), Japanese knotweed (Polygonum cuspidatum), grapevine (Vitis vinifera) | stilbenes | MIC = 350 µg/mL; inhibition of S. aureus (clinical MRSA isolate) biofilm formation by approximately 39.85% at a concentration of 100 µg/mL | [45] |
25. | Baicalin | Astragalusmembranaceus root | flavones | Inhibition of S. aureus (SA002, isolated from the nose swab of a pig with pneumonia) biofilm formation in a dose-dependent manner, statistically significant reduction in increase in MIC and 5 MIC | [46] |
26. | 5-hydroxy-3,7,4′-trimethoxyflavone | Chromolaena odorata (Asteraceae) | flavones | Inhibition of S. aureus ATCC 29213 (MSSA,) biofilm production at a concentration of 1 mg/mL, with activity greater than 50% after 24 h | [47] |
27. | Luteolin | broccoli, peppers, thyme and celery | flavones | MIC = 16 µg/mL for S. aureus ATCC 25923; MIC = 64 µg/mL for two S. aureus clinical strains from derived from raw goat milk; concentration-dependent anti-biofilm activity against S. aureus ATCC 25923 biofilm at concentrations of 1/8 MIC and above; antibiofilm activity of luteolin against dual-species biofilm of S. aureus ATCC 25923 and L. monocytogenes ATCC 19115 (MIC 32 µg/mL) at concentrations of 1/4 MIC and above | [48] |
28. | Dihydrovogonin | bird cherry extract Prunus avium | flavones | Inhibition of growth of planktonic form at concentrations of 125–500 µg/mL; reduction in S. aureus (CIP 53.154) biofilm mass correlated with a decrease in the number of bacteria in the forming biofilm in the concentration range of 125–500 µg/mL | [49] |
29. | Moryna | figi, migdały | flavones | Inhibition of biofilm formation and elimination of the formed structure for clinical isolated cultures of MRSA (MBIC = 281.83 μg/mL) and VRSA (MBIC = 398.10 μg/mL) | [50] |
30. | Organic extract of Prunus cerasoides | Prunus cerasoides | flavonoids | MIC = 1 mg/mL for S. aureus MTCC 740; MIC = 10 mg/mL for S. epidermidis MTCC 435; inhibition of mature S. aureus MTCC 740 biofilm at 86.5 mg/mL by approximately 45% | [32] |
31. | Naringenin | hemp (Cannabis sativa L.) | flavonoids | MIC = 512 µg/mL for S. aureus clinical strain; minimum biofilm eradication concentration MBEC = 2048 µg/mL | [51] |
32. | Derriobtusone A | root bark of Lonchocarpus obtusus | flavonoids | Rapid decrease in biomass and CFU of S. aureus JKD 6008 biofilm at concentrations of 250 and 500 µg/mL | [52] |
33. | Ethyl acetate fraction of Vernonia condensata leaf extract | leaves of Vernonia condensata | flavonoids | Inhibitory effect of MIC, 2 MIC and 4 MIC concentrations on adhesion of S. aureus (MSSA) ATCC 25923 and S. aureus (MRSA) ATCC 1485279—inhibition in the range from 60% to 100% | [53] |
34. | Corilagin | fruit of Terminalia chebula Retz | tannins | Decrease in cell adhesion for S. aureus ATCC 11632: IC50 = 3.18 μg/mL | [54] |
35. | Tannic acid | Quercus infectoria G. Olivier extract | tannins | Inhibition of MRSA (NPRC R001-R047, clinical strain) biofilm formation at MIC (0.13–0.50 µg/mL) and sub-MIC concentrations; inhibition of MSSA (NPRC S001-S050, were isolated from nasal specimens of healthy volunteers) biofilm formation at MIC (0.13–0.50 µg/mL) | [55] |
36. | Hamamelitanin | whISOBAX, witch hazel extract (Hamamelis virginiana) | tannins | Reduction in S. epidermidis ATCC 35984 biofilm formation by nearly 50% at a 1:26 dilution | [56] |
37. | Alopecuron H, I, J, K, L, A, B, D, soforaflavone G | root of Sophora alopecuroides | flavonostilbenes | MIC 6.25–3.125 µg/mL; inhibition of S. epidermidis ATCC 35984 biofilm formation; preventing biofilm formation at lower concentrations without bactericidal activity | [57] |
38. | Hyperforin in the form of dicyclohexylammonium salt | Hypericum perforatum | phloroglucinols | MBIC = 25 µg/mL for S. aureus (ATCC 29213; ATCC 43300 and Ig5—clinical isolate); inhibition of biofilm development by 21–45% | [58] |
39. | Thyme oil | Thymus vulgaris | essential oils | MIC = 0.078% for S. aureus ATCC 25923; 71% reduction in S. aureus ATCC 25923 biofilm viability at a concentration corresponding to the MIC | [59] |
40. | Essential oil | hemp (Cannabis sativa L.) | essential oils | MBEC = 24 mg/mL for S. aureus (MSSA) ATCC 29213 | [51] |
41. | Essential oil from the leaves and stem of Plectranthus amboinicus | Plectranthus amboinicus | essential oils | Antibiofilm activity against S. aureus OVRSA and ATCC 6538 at 0.5 mg/mL; inhibition potential against S. aureus ATCC 6538 at all essential oil concentrations tested (0.062–4 mg/mL) | [38] |
42. | Essential oil | Rosmarinus officinalis L. | essential oils | MIC 1.25–2.5 µL/mL for S. aureus ATCC 9144; MIC 0.312–0.625 µL/mL for S. epidermidis S61; inhibition of S. epidermidis S61 biofilm production above 57% at a concentration of 25 μL/mL; biofilm eradication at a concentration of 50 μL/mL | [60] |
43. | Essential oil from the aerial parts of Anthemis stiparum subsp. Sabulicola | aerial parts of Anthemis stiparum subsp. sabulicola | essential oils | Inhibition of biofilm formation of S. epidermidis MU 30 and S. aureus ATCC 25923 to 29.17% and 8.25%, respectively, at a concentration of 25 μL/mL | [31] |
44. | Essential oils | Pogostemon heyneanus and Cinnamomum tamala | essential oils | MIC = 2–6%; inhibition of immature biofilms of MRSA (clinical strains) at concentrations of 3–0.5% with efficacy of 55–80%; for biofilms of mature MRSA, inhibition of 60–80% | [29] |
45. | Ethanolic leaf extract of Mangifera indica L. | leaves of Mangifera indica L. | tannins | Reduction of mature biofilm of eight Staphylococcus spp. strains from cows with mastitis by ethanol extract at a concentration of 45.3 mg/mL | [61] |
46. | Erianin | Dendrobium chrysotoxum | natural bibenzyl compound | Significant decrease in S. aureus (strain Newman D2C—ATCC 25904) biofilm formation at a concentration of 64 µg/mL | [62] |
47. | Chilean tree fruit extract of Arrayan and Peumo | Arrayan [Luma apiculata (DC.) Burret.] and Peumo [Cryptocarya alba (Molina) Looser] | flavonols, anthocyanins | Higher activity of Arrayan extract (IC50 = 0.229 ± 0.017 mg/mL) compared to Peumo extract (IC50 = 0.473 ± 0.028) against biofilm of S. aureus ATCC 25923 | [63] |
48. | Polyphenolic extracts from cladodes | Opuntia ficus-indica (L.)Mill. | phenolic acids and flavonols | Significant inhibition of S. aureus ATCC 35556 biofilm formation by extracts from mature and immature clades at a concentration of 1500 µg/mL | [64] |
49. | Extracts of Tunisian varieties of Olea europaea L., i.e., „Chetoui”, „Meski”, „Oueslati” and „Jarboui” | Olea europaea L. | phenols and flavonoids | Best antibiofilm activity of Chetoui and Meski extracts against S. aureus strains (MRSA and S. aureus ATCC 25923) with inhibition values >50% at MIC doses and 72–89.8% at doses of 2 MIC; good antibiofilm activity of Jarboui and Oueslati extracts against tested bacterial S. aureus strains (MRSA and S. aureus ATCC 25923) in the range from 54.5 to 83.8% at the concentration of 2 MIC | [65] |
50. | Cheleritrin, sanguinarine | Krameria lappacea, Aesculus hippocastanum and Chelidonium majus | flavonoids, alkaloids | 1.3 to 5.5 times inhibition of mature S. aureus ATCC 6538P and S. epidermidis ATCC 35984 biofilm formation and eradication; EC50 of cheleritrin for S. aureus (ATCC 6538P reference strain)—15.2 ± 2.3 µM, for S. epidermidis ATCC 35984—8.6 ± 0.4 µM; EC50 of sanguinarine for S. aureus ATCC 6538P—24.5 ± 3.6 µM, for S. epidermidis ATCC 35984—4.4 ± 1.3 µM | [66] |
51. | Alcoholic extract | Cytinus hypocistis and Cytinus ruber | flavanoids, phenols | Inhibition of biofilm formation in 60–80% at 1/2 MIC for S. epidermidis ATCC 35984 | [67] |
52. | Ethanol extract | leaves of Moringa stenopetala | esters, alcohols, fatty acids and others | Antibiofilm activity and inhibition of MRSA (three clinical strains isolated from HIV infected patients) biofilm production at a concentration of 1000 μg/mL | [68] |
53. | Tanreqing injection | Scutellariae radix, Lonicerae flos, Forsythiae fructus, Ursi fel, Naemorhedi cornu | flavonoids, phenols and others | MIC = 4125 μg/mL for MRSA ATCC 43300; strong reduction in bacterial viability in mature MRSA biofilms at 1/2 MIC and 1/4 MIC | [69] |
54. | Alcoholic extract | Zanthoxylum armatum DC. | alkaloids and others | > 50% inhibition of S. aureus UAMS-1 biofilm formation at 256 μg/mL, resulting from overall growth inhibition at this dose (IC50 = 32–256 μg/mL) | [70] |
55. | Essential oil | Rhanterium suaveolens | alcohols, aldehydes and others | Highest antibiofilm activity of 50.3% against S. epidermidis MU30 at 20 μg/mL essential oil | [71] |
56. | Aqueous plant extracts | branches of Bauhinia acuruana, fruits of Bauhinia acuruana, leaves of Pityrocarpa moniliformis, stem bark of Commiphora leptophloeos | polyphenols coumarins, terpenes | Inhibition of biofilm production of S. epidermidis ATCC 35984 at a concentration of 4 mg/mL, in a range of approximately 77–85% | [72] |
57. | Rhodomyrtone | Rhodomyrtus tomentosa | - | MIC = 0.25–1 µg/mL for S. aureus and S. epidermidis clinical isolates; at 0.5 MIC and 0.25 MIC was found to be effective in reducing biofilm formation in most of the S. aureus isolates, At 0.5 MIC rhodomyrtone reduced biofilm formation in all six S. epidermidis isolates, bactericidal effect in mature biofilm at 64 MIC for S. epidermidis; rhodomyrtone demonstrated better activity in killing the organisms in 24 h biofilms than those in 5-day biofilms | [73] |
58. | Skeletocutins A-L | Skeletocutis sp. (MUCL56074) | - | Inhibition of S. aureus DSM1104 biofilm formation by skeletocutin I: up to 86% at a concentration of 256 μg/mL and up to 28% at a concentration of 150 μg/mL | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swolana, D.; Kępa, M.; Kabała-Dzik, A.; Dzik, R.; Wojtyczka, R.D. Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics 2021, 10, 607. https://doi.org/10.3390/antibiotics10050607
Swolana D, Kępa M, Kabała-Dzik A, Dzik R, Wojtyczka RD. Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics. 2021; 10(5):607. https://doi.org/10.3390/antibiotics10050607
Chicago/Turabian StyleSwolana, Denis, Małgorzata Kępa, Agata Kabała-Dzik, Radosław Dzik, and Robert D. Wojtyczka. 2021. "Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin" Antibiotics 10, no. 5: 607. https://doi.org/10.3390/antibiotics10050607
APA StyleSwolana, D., Kępa, M., Kabała-Dzik, A., Dzik, R., & Wojtyczka, R. D. (2021). Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics, 10(5), 607. https://doi.org/10.3390/antibiotics10050607