Exploring the Potential Applications of Engineered Borophene in Nanobiosensing and Theranostics
<p>The primary approach to the fabrication of 2D nanosheets. (<b>a</b>) The bottom-up strategy via wet chemical, CVD, and PVD methods. (<b>b</b>) The top-down method includes ion intercalation exfoliation, mechanical cleavage, ultrasonication, selective etching, and thermal oxidation etching. Reproduced with permission from the authors of [<a href="#B12-biosensors-13-00740" class="html-bibr">12</a>].</p> "> Figure 2
<p>(<b>a</b>) A simplified diagram depicting the liquid-phase exfoliation process aided by sonication. It was started by sonicating bulk B powder at 350 W for 4 h in DMF/IPA (1 mg mL<sup>−1</sup>), where the average lateral particle size was 2 µm. Following 30 min of centrifugation at 5000 rpm, the supernatant was discarded due to the absence of unexfoliated B particles. Ultimately, this was followed by dispersions that were stable in DMF and IPA, and they were observed to have a light brown color. Exfoliation of bulk B is evident in the SEM images of (<b>b</b>) bulk B, (<b>c</b>) B sheets acquired via tip sonication in DMF, and (<b>d</b>) B sheets obtained via centrifugation at 5000 rpm for 30 min. Images of a B sheet dispersion in DMF and IPA are included as insets in figures (<b>c</b>,<b>d</b>), respectively. Reproduced with permission from the authors of [<a href="#B49-biosensors-13-00740" class="html-bibr">49</a>].</p> "> Figure 3
<p>Schematics of (<b>a</b>) the fabrication of NiPc-borophene nanocomposite and (<b>b</b>) the fabrication of a non-enzymatic electrochemical sensor. Reproduced with permission from the authors of [<a href="#B66-biosensors-13-00740" class="html-bibr">66</a>].</p> "> Figure 4
<p>Schematic illustration of borophene-based gas sensors. (<b>a</b>) DFT analysis of the absorption sites of gases on B/BN interface followed by adsorption of the gases (a–e: top view; f–j: side view) showing density and transmission properties. Reproduced with permission from the authors of [<a href="#B69-biosensors-13-00740" class="html-bibr">69</a>]. (<b>b</b>) Use of DFT and NEGF methods to determine the electrical behavior of a borophene monolayer by measuring its I-V characteristics when exposed to different gas molecules. By studying the changes in the electrical conductivity of the borophene monolayer, the presence and concentration of the adsorbed gas molecules was determined (acting as on and off states). Reproduced with permission from the authors of [<a href="#B70-biosensors-13-00740" class="html-bibr">70</a>].</p> "> Figure 5
<p>Schematic illustration of the two steps involved in creating 2D B-PEG/DOX NSs for use in multimodal imaging-guided cancer therapy: (<b>a</b>) synthesis and (<b>b</b>) systemic delivery as a photonic nanomedicine. Reproduced with permission from the authors of [<a href="#B50-biosensors-13-00740" class="html-bibr">50</a>].</p> "> Figure 6
<p>Schematic illustration showing (<b>a</b>) simplified diagram of B@TA-R848 for more precise photothermal immunotherapy. (<b>b</b>) Assembling B@TA-R848 for photo nano-vaccine B@TA-R848 administered systemically for use in multimodal imaging-guided cancer therapy (BNSs: two-dimensional boron nanosheets; TA: tumor autoantigens; DCs: dendritic cells; and CTL: cytotoxic T lymphocytes). This reprint from [<a href="#B76-biosensors-13-00740" class="html-bibr">76</a>] is authorized.</p> "> Figure 7
<p>Schematic representation of the production process for BOP NSs and the mechanism underlying SDT and POD-like activity’s synergistic anti-tumor therapy. Diagram illustration is included, reproduced with permission from the authors of [<a href="#B77-biosensors-13-00740" class="html-bibr">77</a>].</p> "> Figure 8
<p>Schematic illustration of the synthesis of borophene which was prepared by etching its precursor, in the same way in which MXene was made. The surface-modified borophene was then used in multi-imaging directed photothermal therapy. Reproduced with permission from the authors of [<a href="#B78-biosensors-13-00740" class="html-bibr">78</a>].</p> "> Figure 9
<p>Diagrams showing (<b>a</b>) the production of Co@BQDs and (<b>b</b>) the use of an enzymatic bio-probe for FL based on Co@BQDs. Reproduced with permission from the authors of [<a href="#B79-biosensors-13-00740" class="html-bibr">79</a>].</p> ">
Abstract
:1. Introduction
2. Synthesis of Borophene
3. Properties of Borophene
Physical Properties of Borophene
4. Chemical Properties of Borophene
5. Borophene-Based Nanosensor for Biological Molecules
6. Borophene-Based Gas Nanosensor
7. Therapeutic and Bioimaging Applications of Borophene
8. Conclusions and Future Prospectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahato, K.; Prasad, A.; Maurya, P.; Chandra, P. Nanobiosensors: Next generation point-of-care biomedical devices for personalized diagnosis. J. Anal. Bioanal. Tech. 2016, 7, e125. [Google Scholar]
- Chandra, P.; Prakash, R. Nanobiomaterial Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1, p. 294. [Google Scholar]
- Zhou, W.; Qiao, Z.; Zare, E.N.; Huang, J.; Zheng, X.; Sun, X.; Shao, M.; Wang, H.; Wang, X.; Chen, D.; et al. 4D-Printed dynamic materials in biomedical applications: Chemistry, challenges, and their future perspectives in the clinical sector. J. Med. Chem. 2020, 63, 8003–8024. [Google Scholar] [PubMed]
- Ramos, A.P.; Cruz, M.A.E.; Tovani, C.B.; Ciancaglini, P. Biomedical applications of nanotechnology. Biophys. Rev. 2017, 9, 79–89. [Google Scholar] [PubMed] [Green Version]
- Shao, Y.; Ying, Y.; Ping, J. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar]
- Cao, X.; Halder, A.; Tang, Y.; Hou, C.; Wang, H.; Duus, J.Ø.; Chi, Q. Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Mater. Chem. Front. 2018, 2, 1944–1986. [Google Scholar]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2019, 119, 120–194. [Google Scholar]
- Altug, H.; Oh, S.-H.; Maier, S.A.; Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 2022, 17, 5–19. [Google Scholar]
- Ali, M.A.; Hu, C.; Jahan, S.; Yuan, B.; Saleh, M.S.; Ju, E.; Gao, S.-J.; Panat, R. Sensing of COVID-19 antibodies in seconds via Aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Adv. Mater. 2021, 33, 2006647. [Google Scholar] [CrossRef]
- Ranjan, P.; Lee, J.M.; Kumar, P.; Vinu, A. Borophene: New sensation in flatland. Adv. Mater. 2020, 32, 2000531. [Google Scholar] [CrossRef]
- Chandra, P. Personalized biosensors for point-of-care diagnostics: From bench to bedside applications. Nanotheranostics 2023, 7, 210–215. [Google Scholar] [CrossRef]
- Ou, M.; Wang, X.; Yu, L.; Liu, C.; Tao, W.; Ji, X.; Mei, L. The emergence and evolution of borophene. Adv. Sci. 2021, 8, 2001801. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Sergeeva, A.P.; Zhai, H.J.; Averkiev, B.B.; Wang, L.S.; Boldyrev, A.I. A concentric planar doubly-aromatic B19− cluster. Nat. Chem. 2010, 2, 202. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.J.; Kiran, B.; Li, J.; Wang, L.S. Hydrocarbon analogues of boron clusters-planarity, aromaticity and antiaromaticity. Nat. Mater. 2003, 2, 827. [Google Scholar] [CrossRef]
- Piazza, Z.A.; Hu, H.S.; Li, W.L.; Zhao, Y.F.; Li, J.; Wang, L.S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113. [Google Scholar] [PubMed] [Green Version]
- Sergeeva, A.P.; Popov, I.A.; Piazza, Z.A.; Li, W.L.; Romanescu, C.; Wang, L.S.; Boldyrev, A.I. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349–1358. [Google Scholar] [PubMed]
- Li, W.L.; Chen, Q.; Tian, W.J.; Bai, H.; Zhao, Y.F.; Hu, H.S.; Li, J.; Zhai, H.J.; Li, S.D.; Wang, L.S. The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene. J. Am. Chem. Soc. 2014, 136, 12257. [Google Scholar]
- Zhai, H.J.; Zhao, Y.F.; Li, W.L.; Chen, Q.; Bai, H.; Hu, H.S.; Piazza, Z.A.; Tian, W.J.; Lu, H.G.; Wu, Y.B.; et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Y.; Zhu, L.; Ma, Y. B38: An all-boron fullerene analogue. Nanoscale 2014, 6, 11692–11696. [Google Scholar] [CrossRef]
- Li, H.; Shao, N.; Shang, B.; Yuan, L.F.; Yang, J.; Zeng, X.C. Icosahedral B12-containing core–shell structures of B80. Chem. Commun. 2010, 46, 3878. [Google Scholar]
- Tian, J.; Xu, Z.; Shen, C.; Liu, F.; Xu, N.; Gao, H.J. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale 2010, 2, 1375–1389. [Google Scholar] [CrossRef]
- Singh, A.K.; Sadrzadeh, A.; Yakobson, B.I. Probing properties of boron α-tubes by ab initio calculations. Nano Lett. 2008, 8, 1314–1317. [Google Scholar] [CrossRef]
- Ciuparu, D.; Klie, R.F.; Zhu, Y.; Pfefferle, L. Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 2004, 108, 3967–3969. [Google Scholar]
- Mannix, A.J.; Zhou, X.-F.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.; Fisher, B.L.; Santiago, U.; Guest, J.R.; et al. Synthesis of borophene: Anisotropic, two dimensional boron polymorphs. Science 2015, 350, 1513–1516. [Google Scholar] [PubMed] [Green Version]
- Wang, Z.-Q.; Lü, T.-Y.; Wang, H.-Q.; Feng, Y.P.; Zheng, J.-C. Review of borophene and its potential applications. Front. Phys. 2019, 14, 33403. [Google Scholar]
- Peköz, R.; Konuk, M.; Kilic, M.E.; Durgun, E. Two dimensional fluorinated boron sheets: Mechanical, electronic, and thermal properties. ACS Omega 2018, 3, 1815–1822. [Google Scholar] [PubMed] [Green Version]
- Kulish, V.V. Surface reactivity and vacancy defects in single-layer borophene polymorphs. Phys. Chem. Chem. Phys. 2017, 19, 11273–11281. [Google Scholar] [PubMed]
- Mir, S.H.; Chakraborty, S.; Jha, P.C.; Wärnå, J.; Soni, H.; Jha, P.K.; Ahuja, R. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction. Appl. Phys. Lett. 2016, 109, 053903. [Google Scholar]
- Zhang, L.; Gong, T.; Yu, Z.; Dai, H.; Yang, Z.; Chen, G.; Li, J.; Pan, R.; Wang, H.; Guo, Z.; et al. Recent Advances in Hybridization, Doping, and Functionalization of 2D Xenes. Adv. Funct. Mater. 2021, 31, 2005471. [Google Scholar]
- Tatullo, M.; Zavan, B.; Genovese, F.; Codispoti, B.; Makeeva, I.; Rengo, S.; Fortunato, L.; Spagnuolo, G. Borophene is a promising 2D allotropic material for biomedical devices. Appl. Sci. 2019, 9, 3446. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.K.; Ruotolo, A.; Khan, R.; Mishra, Y.K.; Kaushik, N.K.; Kim, N.-Y.; Kaushik, A.K. Perspectives on 2D-borophene flatland for smart bio-sensing. Mater. Lett. 2022, 308, 131089. [Google Scholar]
- Nangare, S.N.; Khan, Z.G.; Patil, A.G.; Patil, P.O. Design of monoelemental based two dimensional nanoarchitectures for therapeutic, chemical sensing and in vitro diagnosis applications: A case of borophene. J. Mol. Struct. 2022, 1265, 133387. [Google Scholar]
- Mannix, A.J.; Kiraly, B.; Hersam, M.C.; Guisinger, N.P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014. [Google Scholar]
- Rahman, A.; Rahman, M.T.; Chowdhury, M.A.; Ekram, S.B.; Uddin, M.M.K.; Islam, M.R.; Dong, L. Emerging 2D borophene: Synthesis, characterization, and sensing applications. Sens. Sens. Actuator A Phys. 2023, 359, 114468. [Google Scholar] [CrossRef]
- Tai, G.; Hu, T.; Zhou, Y.; Wang, X.; Kong, J.; Zeng, T.; You, Y.; Wang, Q. Synthesis of Atomically Thin boron films on copper foils. Angew. Chem. Int. Ed. Engl. 2015, 54, 15473–15477. [Google Scholar] [CrossRef]
- Wu, R.; Drozdov, I.K.; Eltinge, S.; Zahl, P.; SIsmail-Beigi, E.; Bozovic, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49. [Google Scholar] [CrossRef]
- Li, W.; Kong, L.; Chen, C.; Gou, J.; Sheng, S.; Zhang, W.; Li, H.; Chen, L.; Cheng, P.; Wu, K. Experimental realization of honeycomb borophene. Sci. Bull. 2018, 63, 282–286. [Google Scholar] [CrossRef]
- Kiraly, B.; Liu, X.; Wang, L.; Zhang, Z.; Mannix, A.J.; Fisher, B.L.; Yakobson, B.I.; Hersam, M.C.; Guisinger, N.P. Borophene Synthesis on Au(111). ACS Nano 2019, 13, 3816–3822. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar]
- Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075. [Google Scholar] [CrossRef]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Sun, T.; Zhu, J.; Huang, X.; Yin, Z.; Lu, G.; Fan, Z.; Yan, Q.; Hng, H.H.; Zhang, H. An Effective Method for the fabrication of Few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 2012, 51, 9052. [Google Scholar]
- Zheng, J.; Zhang, H.; Dong, S.; Liu, Y.; Nai, C.T.; Shin, H.S.; Jeong, H.Y.; Liu, B.; Loh, K.P. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 2014, 5, 2995. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097. [Google Scholar] [CrossRef]
- Yuwen, L.; Yu, H.; Yang, X.; Zhou, J.; Zhang, Q.; Zhang, Y.; Luo, Z.; Su, S.; Wang, L. Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. Chem. Commun. 2016, 52, 529–532. [Google Scholar]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar]
- Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R.Y.; Tsang, S.H.; Teo, E.H.T. Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 2018, 12, 1262–1272. [Google Scholar]
- Ji, X.; Kong, N.; Wang, J.; Li, W.; Xiao, Y.; Gan, S.T.; Zhang, Y.; Li, Y.; Song, X.; Xiong, Q.; et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 1803031. [Google Scholar]
- Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501. [Google Scholar] [CrossRef] [Green Version]
- Eivari, H.A.; Sohbatzadeh, Z.; Mele, P.; Assadi, M.H.N. Low thermal conductivity: Fundamentals and theoretical aspects in thermoelectric applications. Mater. Today Energy 2021, 21, 100744. [Google Scholar]
- Kochaev, A.; Katin, K.; Maslov, M.; Meftakhutdinov, R. AAStacked borophene-graphene bilayer with covalent bonding: Ab Initio investigation of structural, electronic and elastic properties. J. Phys. Chem. Lett. 2020, 11, 5668–5673. [Google Scholar] [CrossRef] [PubMed]
- Kaneti, Y.V.; Benu, D.P.; Xu, X.; Yuliarto, B.; Yamauchi, Y.; Golberg, D. Borophene: Two-dimensional boron monolayer: Synthesis, properties, and potential applications. Chem. Rev. 2022, 122, 1000–1051. [Google Scholar] [PubMed]
- Ma, J.; Marignier, J.-L.; Pernot, P.; Levin, C.H.; Kumar, A.; Sevilla, M.D.; Adhikary, A.; Mostafavi, M. Direct observation of the oxidation of DNA bases by phosphate radicals formed under radiation: A model of the backbone-to-base hole transfer. Phys. Chem. Chem. Phys. 2018, 20, 14927–14937. [Google Scholar] [CrossRef] [PubMed]
- Duo, Y.; Xie, Z.; Wang, L.; Abbasi, N.M.; Yang, T.; Li, Z.; Hu, G.; Zhang, H. Borophene-based biomedical applications: Status and future challenges. Coord. Chem. Rev. 2021, 427, 213549. [Google Scholar]
- Ghidiu, M.; Halim, J.; Kota, S.; Bish, D.; Gogotsi, Y.; Barsoum, M.W. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 2016, 28, 3507–3514. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915. [Google Scholar] [CrossRef]
- Kou, L.; Ma, Y.; Zhou, L.; Sun, Z.; Gu, Y.; Du, A.; Smith, S.; Chen, C. High-mobility anisotropic transport in few-layer γ-B28 films. Nanoscale 2016, 8, 20111–20117. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563. [Google Scholar]
- Yao, Y.; Lan, L.; Liu, X.; Ying, Y.; Ping, J. Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 2000, 148, 111799. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kaushik, A.; Furukawa, H.; Khosla, A. Review-Towards 5th Generation AI and IoT Driven Sustainable Intelligent Sensors Based on 2D MXenes and Borophene. ECS Sens. Plus 2022, 1, 013601. [Google Scholar] [CrossRef]
- Bhavyashree, M.; Rondiya, S.R.; Hareesh, K. Exploring the emerging applications of the advanced 2-dimensional material borophene with its unique properties. RSC Adv. 2022, 12, 12166–12192. [Google Scholar] [CrossRef] [PubMed]
- Baytemir, G.; Gürol, İ.; Karakuş, S.; Taşaltın, C.; Taşaltın, N. Nickel phthalocyanine-borophene nanocomposite-based electrodes for non-enzymatic electrochemical detection of glucose. J. Mater. Sci. Mater. Electron. 2022, 33, 16586–16596. [Google Scholar] [CrossRef]
- Taşaltın, C.; Türkmen, T.A.; Taşaltın, N.; Karakuş, S. Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: β12 Borophene. J. Mater. Sci. Mater. Electron. 2021, 32, 10750–10760. [Google Scholar] [CrossRef]
- Baytemir, G. A non-enzymatic electrochemical sensor based on polyaniline/borophene nanocomposites for dopamine detection. Appl. Phys. A 2023, 129, 85. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, A.K.; Prajapati, Y.K. On the sensing performance enhancement in SPR-based Biosensor using specific two-dimensional materials (Borophene and Antimonene). Opt. Mater. 2021, 119, 111355. [Google Scholar] [CrossRef]
- Hou, C.; Tai, G.; Liu, Y.; Liu, X. Borophene gas sensor. Nano Res. 2022, 15, 2537–2544. [Google Scholar] [CrossRef]
- Khan, M.I.; Aziz, S.H.; Majid, A.; Rizwan, M. Computational study of borophene/boron nitride (B/BN) interface as a promising gas sensor for industrial affiliated gasses. Phys. E Low Dimens. Syst. Nanostruct. 2021, 130, 114692. [Google Scholar] [CrossRef]
- Shukla, V.; Wärnå, J.; Jena, N.K.; Grigoriev, A.; Ahuja, R. Toward the realization of 2D borophene based gas sensor. J. Phys. Chem. C 2017, 121, 26869–26876. [Google Scholar] [CrossRef]
- Sun, Q.; Yang, Z.; Huo, Y.; Liu, R.; Xu, L.-C.; Xue, L.; Liu, X. Designing and optimizing β1-borophene organic gas sensor: A theoretical study. Surf. Sci. 2022, 719, 122030. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, H.; Li, J.; Hu, S.; Cao, S.; Ren, W.; Wang, Y. A comprehensive first-principle study of borophene-based nano gas sensor with gold electrodes. Front. Phys. 2022, 17, 13501. [Google Scholar] [CrossRef]
- Wang, C.; Gao, C.; Hou, J.; Duan, Q. First-principle investigation of CO, CH4 and CO2 adsorption on Cr-doped graphene-like hexagonal borophene. J. Mol. Model. 2022, 28, 196. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Horiguchi, Y.; Nakai, K.; Matsumura, A.; Suzuki, M.; Ono, K.; Nagasaki, Y. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials 2016, 104, 201–212. [Google Scholar] [CrossRef]
- Qi, P.; Chen, Q.; Tu, D.; Yao, S.; Zhang, Y.; Wang, J.; Xie, C.; Pan, C.; Peng, H. The potential role of borophene as a radiosensitizer in boron neutron capture therapy (BNCT) and particle therapy (PT). Biomater. Sci. 2020, 8, 2778–2785. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, T.; Liu, Q.; Huang, L.; Hu, W.; Shi, L.; Wu, Z.; Yang, Q.; Liu, L.; Zhang, H. Autologous tumor antigens and boron nanosheet-based nanovaccines for enhanced photo-immunotherapy against immune desert tumors. Nanophotonics 2021, 10, 2519–2535. [Google Scholar] [CrossRef]
- Xiao, X.; Zhao, Y.; Ma, P.; Cheng, Z.; Lin, J. Boron-based nanosheets for ultrasound-mediated synergistic cancer therapy. Chem. Eng. J. 2022, 440, 135812. [Google Scholar] [CrossRef]
- Xie, Z.; Duo, Y.; Fan, T.; Zhu, Y.; Feng, S.; Li, C.; Guo, H.; Ge, Y.; Ahmed, S.; Huang, W.; et al. Light-induced tumor theranostics based on chemical-exfoliated borophene. Light. Sci. Appl. 2022, 11, 324. [Google Scholar] [CrossRef]
- Yang, M.; Jin, H.; Gui, R. Metal-doped boron quantum dots for versatile detection of lactate and fluorescence bioimaging. ACS Appl. Mater. Interfaces 2022, 14, 56986–56997. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, A.; Dkhar, D.S.; Singh, N.; Azad, U.P.; Chandra, P. Exploring the Potential Applications of Engineered Borophene in Nanobiosensing and Theranostics. Biosensors 2023, 13, 740. https://doi.org/10.3390/bios13070740
Srivastava A, Dkhar DS, Singh N, Azad UP, Chandra P. Exploring the Potential Applications of Engineered Borophene in Nanobiosensing and Theranostics. Biosensors. 2023; 13(7):740. https://doi.org/10.3390/bios13070740
Chicago/Turabian StyleSrivastava, Ananya, Daphika S. Dkhar, Nandita Singh, Uday Pratap Azad, and Pranjal Chandra. 2023. "Exploring the Potential Applications of Engineered Borophene in Nanobiosensing and Theranostics" Biosensors 13, no. 7: 740. https://doi.org/10.3390/bios13070740
APA StyleSrivastava, A., Dkhar, D. S., Singh, N., Azad, U. P., & Chandra, P. (2023). Exploring the Potential Applications of Engineered Borophene in Nanobiosensing and Theranostics. Biosensors, 13(7), 740. https://doi.org/10.3390/bios13070740