Back Propagation Artificial Neural Network Enhanced Accuracy of Multi-Mode Sensors
<p>(<b>A</b>–<b>C</b>) SEM images, (<b>D</b>–<b>F</b>) TEM images, and (<b>G</b>–<b>I</b>) electron diffraction patterns of PB, Ni-PB, and Co-Ni-PB.</p> "> Figure 2
<p>(<b>A</b>) XRD pattern. (<b>B</b>) Full spectrum of XPS measurements. (<b>C</b>) Raman spectrum. The peak corresponding to the dotted blue line belongs to Fe<sup>2+</sup>–CN–M<sup>2+</sup>, and the peak corresponding to the dotted red line belongs to Fe<sup>2+</sup>–CN–M<sup>3+</sup>. (<b>D</b>) FTIR spectrum.</p> "> Figure 3
<p>OCV, CA, and UV absorption of (<b>A</b>–<b>C</b>) PB, (<b>D</b>–<b>F</b>) Ni-PB, and (<b>G</b>–<b>I</b>) Co-Ni-PB at different concentrations of AA.</p> "> Figure 4
<p>Repeatability testing of OCV (Green bar chart), CA (Orange bar chart), and UV absorption (Yellow bar chart) from sensors prepared by (<b>A</b>–<b>C</b>) PB, (<b>D</b>–<b>F</b>) Ni-PB, and (<b>G</b>–<b>I</b>) Co-Ni-PB, respectively.</p> "> Figure 5
<p>Selective testing of OCV (Green bar chart), CA (Orange bar chart), and UV (Yellow bar chart) absorption from sensors prepared by (<b>A</b>–<b>C</b>) PB, (<b>D</b>–<b>F</b>) Ni-PB, and (<b>G</b>–<b>I</b>) Co-Ni-PB, respectively. The concentration of AA in each group was 0.05 mM, and the concentration of each interference was 0.005 mM.</p> "> Figure 6
<p>(<b>A</b>) The prediction results, and (<b>B</b>) the errors of OCV, CA, and UV and the BP ANN at different concentrations.</p> "> Figure 7
<p>(<b>A</b>) The prediction results and (<b>B</b>) the errors of OCV, CA, and UV, and the BP ANN under different interferences. The concentration of AA in each group was 0.05 mM, and the concentration of each interference was 0.005 mM.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PB, Ni-PB, and Co-Ni-PB
2.2. Construction and Detection of Electrochemical/Ultraviolet Multi-Mode Sensors
2.3. Construction of BP ANN
2.4. Instruments
3. Results and Discussion
3.1. Characterization of PB
3.2. Performance Analysis of Single Signal Based on Electrochemical/Ultraviolet Multi-Mode Sensor
3.3. Comprehensive Analysis of Data Based on BP ANN
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Ajjan, R.A.; Battelino, T.; Cos, X.; Del Prato, S.; Philips, J.-C.; Meyer, L.; Seufert, J.; Seidu, S. Continuous glucose monitoring for the routine care of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2024, 20, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Narasaki, Y.; Kalantar-Zadeh, K.; Daza, A.C.; You, A.S.; Novoa, A.; Peralta, R.A.; Siu, M.K.M.; Nguyen, D.V.; Rhee, C.M. Accuracy of Continuous Glucose Monitoring in Hemodialysis Patients With Diabetes. Diabetes Care 2024, 47, 1922–1929. [Google Scholar] [CrossRef]
- Gómez-Peralta, F.; Luque Romero, L.G.; Puppo-Moreno, A.; Riesgo, J. Performance of a Non-Invasive System for Monitoring Blood Glucose Levels Based on Near-Infrared Spectroscopy Technology (Glucube®). Sensors 2024, 24, 7811. [Google Scholar] [CrossRef]
- King, R.J.; Singh, P.K.; Mehla, K. The cholesterol pathway: Impact on immunity and cancer. Trends Immunol. 2022, 43, 78–92. [Google Scholar] [CrossRef]
- Mortensen, M.B.; Dzaye, O.; Bøtker, H.E.; Jensen, J.M.; Maeng, M.; Bentzon, J.F.; Kanstrup, H.; Sørensen, H.T.; Leipsic, J.; Blankstein, R.; et al. Low-Density Lipoprotein Cholesterol Is Predominantly Associated With Atherosclerotic Cardiovascular Disease Events in Patients With Evidence of Coronary Atherosclerosis: The Western Denmark Heart Registry. Circulation 2023, 147, 1053–1063. [Google Scholar] [CrossRef]
- Wang, M.; He, J.; Li, S.; Cai, Q.; Zhang, K.; She, J. Structural basis of vitamin C recognition and transport by mammalian SVCT1 transporter. Nat. Commun. 2023, 14, 1361. [Google Scholar] [CrossRef]
- Thiemann, S.; Cimorelli, V.; Bajwa, N.M. Case Report: Uncommon cause of limp in the 21st century. Front. Endocrinol. 2022, 13, 968015. [Google Scholar] [CrossRef]
- Lu, R.-L.; Guo, J.-W.; Sun, B.-d.; Chen, Y.-L.; Liu, D.-Z. Scurvy in a young man: A rare case report. Front. Nutr. 2023, 10, 1265334. [Google Scholar] [CrossRef]
- Skerniskyte, J.; Mulet, C.; André, A.C.; Anderson, M.C.; Injarabian, L.; Buck, A.; Prade, V.M.; Sansonetti, P.J.; Reibel-Foisset, S.; Walch, A.K.; et al. Ascorbate deficiency increases progression of shigellosis in guinea pigs and mice infection models. Gut Microbes 2023, 15, 2271597. [Google Scholar] [CrossRef]
- de Jong, T.M.H.; Stamatelou, E.; Rosema, N.A.M.; Jansen, I.D.C.; Brandt, B.W.; Angelakis, A.; Loos, B.G.; van der Velden, U.; Danser, M.M. Effect of Daily Vitamin C Supplementation with or Without Flavonoids on Periodontal, Microbial, and Systemic Conditions Before and After Periodontal Therapy: A Case Series from an RCT. J. Clin. Med. 2024, 13, 7571. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.; Singh, B.K.; Zhou, J.; Tikno, K.; Widjaja, A.; Sandireddy, R.; Arul, K.; Abdul Ghani, S.A.B.; Bee, G.G.B.; Wong, K.A.; et al. Vitamin B12 and folate decrease inflammation and fibrosis in NASH by preventing syntaxin 17 homocysteinylation. J. Hepatol. 2022, 77, 1246–1255. [Google Scholar] [CrossRef]
- Fan, F.; David Spence, J.; Huo, Y. Beyond hypertension: Hypertension with hyperhomocysteinemia. Sci. Bull. 2023, 68, 1975–1977. [Google Scholar] [CrossRef]
- Ojaroodi, A.F.; Jafarnezhad, F.; Eskandari, Z.; Keramat, S.; Stanek, A. Recent Updates and Advances in the Association Between Vitamin D Deficiency and Risk of Thrombotic Disease. Nutrients 2025, 17, 90. [Google Scholar] [CrossRef]
- Machoń, N.J.; Zdanowska, N.; Klimek-Trojan, P.; Owczarczyk-Saczonek, A. Vascular Cell Adhesion Molecule 1 and E-Selectin as Potential Cardiovascular Risk Biomarkers in Psoriasis. Int. J. Mol. Sci. 2025, 26, 792. [Google Scholar] [CrossRef]
- Ma, X.; Gao, W.; Du, F.; Yuan, F.; Yu, J.; Guan, Y.; Sojic, N.; Xu, G. Rational Design of Electrochemiluminescent Devices. Acc. Chem. Res. 2021, 54, 2936–2945. [Google Scholar] [CrossRef]
- Jothi, L.; Neogi, S.; Jaganathan, S.k.; Nageswaran, G. Simultaneous determination of ascorbic acid, dopamine and uric acid by a novel electrochemical sensor based on N2/Ar RF plasma assisted graphene nanosheets/graphene nanoribbons. Biosens. Bioelectron. 2018, 105, 236–242. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, L.; Mei, X.; Liu, J.; Yao, Z.; Li, Y. Dual-Mode Sensing Platform for Electrochemiluminescence and Colorimetry Detection Based on a Closed Bipolar Electrode. Anal. Chem. 2021, 93, 12367–12373. [Google Scholar] [CrossRef]
- Liu, A.; Song, W.; Zhang, C.; Shang, H. Colorimetry/Smartphone Dual-Mode Sensing Platform Based on Nanorod-Shaped Ni–Fe MOFs for Ascorbic Acid Detection. ACS Appl. Nano Mater. 2024, 7, 13400–13406. [Google Scholar] [CrossRef]
- Lei, P.; Wu, N.; Zhou, Y.; Dong, C.; Liu, Y.; Shuang, S. Cu/Zr Metal–Organic Frameworks with High Peroxidase-Like Activity for Sensitive Electrochemical and Colorimetric Dual-Mode Detection of Hydrogen Peroxide Released from Living Cells. ACS Appl. Nano Mater. 2024, 7, 6556–6563. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, Y.; Hu, J.; Sun, Z.; Zhang, T.; Wang, M. Exploration for a BP-ANN model for gas identification and concentration measurement with an ultrasonically radiated catalytic combustion gas sensor. Sens. Actuators B Chem. 2022, 362, 131733. [Google Scholar] [CrossRef]
- Tong, A.; Tang, X.; Liu, H.; Gao, H.; Kou, X.; Zhang, Q. Differentiation of NaCl, NaOH, and β-Phenylethylamine Using Ultraviolet Spectroscopy and Improved Adaptive Artificial Bee Colony Combined with BP-ANN Algorithm. ACS Omega 2023, 8, 12418–12429. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhang, D.; Liu, S.; Jin, Z.; Chowwanonthapunya, T.; Gao, J.; Li, X. Prediction of polycarbonate degradation in natural atmospheric environment of China based on BP-ANN model with screened environmental factors. Chem. Eng. J. 2020, 399, 125878. [Google Scholar] [CrossRef]
- Uemura, T.; Kitagawa, S. Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone). J. Am. Chem. Soc. 2003, 125, 7814–7815. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Huang, S.; Fang, R.; Zhang, L.; Jin, Y.; Guo, K. Co-doped Ni-PBA anchored on optimized ZIF-67-derived Co/N-doped hollow carbon framework for high-performance hybrid capacitive deionization. Sep. Purif. Technol. 2025, 358, 130257. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Wang, L.; Feng, J.; Wang, L.; Dong, L.; Long, C.; Li, D.; Hou, F.; Liang, J. Ternary transition metal of Fe/Co/Ni doping on MoSx nanowires for highly efficient electrochemical oxygen evolution. Sustain. Mater. Technol. 2023, 36, e00645. [Google Scholar] [CrossRef]
- Ali, S.K.; Asghar, A.; Rashid, M.S.; Karmouch, R.; Alathlawi, H.J.; Syed, I.S.; Awaji, M.Y.; Almashnowi, M.Y.A.; Gulfam, Q.-u.-A.; Sultana, H.; et al. Effects of Co-doping on the microstructure and electrochemical performance of nickel vanadate (Ni3V2O8) electrode material for aqueous symmetric supercapacitor. Inorg. Chem. Commun. 2024, 170, 113209. [Google Scholar] [CrossRef]
- Mosad, W.; Sherif, H.H.A.; Hemdan, B.; Khalil Ibrahim, W.; Khalil, S. Assessment of in situ-Prepared Polyvinylpyrrolidone-Silver Nanocomposite for Antimicrobial Applications. Acta Phys. Pol. A 2017, 131, 1554–1560. [Google Scholar]
- Du, M.; Geng, P.; Pei, C.; Jiang, X.; Shan, Y.; Hu, W.; Ni, L.; Pang, H. High-Entropy Prussian Blue Analogues and Their Oxide Family as Sulfur Hosts for Lithium-Sulfur Batteries. Angew. Chem. 2022, 134, e202209350. [Google Scholar] [CrossRef]
- Hu, H.; Lin, H.; Chen, X.; Pan, Y.; Li, X.; Zhuang, Z.; Chen, H.; Wang, X.; Luo, M.; Zheng, K.; et al. Fe, Mn-Prussian blue analogue@MXene composites for efficient photocatalytic peroxydisulfate-activated degradation of tetracycline hydrochloride and photoelectrochemical desalination. Chem. Eng. J. 2023, 476, 146682. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.; Goodenough, J.B. A Superior Low-Cost Cathode for a Na-Ion Battery. Angew. Chem. Int. Ed. 2013, 52, 1964–1967. [Google Scholar] [CrossRef]
- Dai, J.; Tan, S.; Wang, L.; Ling, F.; Duan, F.; Ma, M.; Shao, Y.; Rui, X.; Yao, Y.; Hu, E.; et al. High-Voltage Potassium Hexacyanoferrate Cathode via High-Entropy and Potassium Incorporation for Stable Sodium-Ion Batteries. ACS Nano 2023, 17, 20949–20961. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Liang, Z.; Lv, W.; Chen, M.; Zhao, Y. Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J. Control. Release 2022, 351, 752–778. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dai, Y.; Shi, C.; Guo, X.; Chen, Y.; Zeng, W. Flexible molecularly imprinted glucose sensor based on graphene sponge and Prussian blue. Bioelectrochemistry 2024, 156, 108628. [Google Scholar] [CrossRef]
- Xu, J.; Gui, M.; Li, Z.; Fang, Y.; Wang, S.; Li, H.; Yu, R. Enhanced colorimetric analysis substrate based on graphene oxide open-close actuator. Sens. Actuators B Chem. 2025, 423, 136748. [Google Scholar] [CrossRef]
- Ricci, F.; Palleschi, G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens. Bioelectron. 2005, 21, 389–407. [Google Scholar] [CrossRef] [PubMed]
- Teepoo, S.; Chumsaeng, P.; Jongjinakool, S.; Chantu, K.; Nolykad, W. A New Simple and Rapid Colorimetric Screening Test for Semi-qualitative Analysis of Vitamin C in Fruit Juices Based on Prussian Blue. J. Appl. Sci. 2012, 12, 568–574. [Google Scholar] [CrossRef]
- Castro, S.S.L.; Balbo, V.R.; Barbeira, P.J.S.; Stradiotto, N.R. Flow injection amperometric detection of ascorbic acid using a Prussian Blue film-modified electrode. Talanta 2001, 55, 249–254. [Google Scholar] [CrossRef]
- El Mously, D.A.; Mahmoud, A.M.; Abdel-Raoof, A.M.; Elgazzar, E. Synthesis of Prussian Blue Analogue and Its Catalytic Activity toward Reduction of Environmentally Toxic Nitroaromatic Pollutants. ACS Omega 2022, 7, 43139–43146. [Google Scholar] [CrossRef]
- Witmer, J.R.; Wetherell, B.J.; Wagner, B.A.; Du, J.; Cullen, J.J.; Buettner, G.R. Direct spectrophotometric measurement of supra-physiological levels of ascorbate in plasma. Redox Biol. 2016, 8, 298–304. [Google Scholar] [CrossRef]
Concentration (mM) | OCV (%) | CA (%) | UV (%) |
---|---|---|---|
0.005 | 20.32 | 57.48 | 34.64 |
0.0075 | 26.90 | 17.44 | 13.29 |
0.01 | 20.67 | 9.25 | 6.53 |
0.02 | 19.16 | 8.58 | 3.61 |
0.03 | 8.31 | 9.69 | 11.56 |
0.04 | 5.76 | 0.91 | 10.63 |
0.05 | 4.07 | 3.64 | 7.33 |
0.06 | 7.00 | 8.80 | 3.83 |
0.07 | 1.45 | 4.67 | 2.72 |
0.08 | 3.48 | 0.26 | 0.56 |
0.09 | 1.00 | 1.69 | 3.76 |
0.1 | 3.78 | 2.10 | 2.21 |
0.11 | 4.56 | 1.55 | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Wang, X.; Tu, J.; Chen, D.; Cao, Y. Back Propagation Artificial Neural Network Enhanced Accuracy of Multi-Mode Sensors. Biosensors 2025, 15, 148. https://doi.org/10.3390/bios15030148
Zou X, Wang X, Tu J, Chen D, Cao Y. Back Propagation Artificial Neural Network Enhanced Accuracy of Multi-Mode Sensors. Biosensors. 2025; 15(3):148. https://doi.org/10.3390/bios15030148
Chicago/Turabian StyleZou, Xue, Xiaohong Wang, Jinchun Tu, Delun Chen, and Yang Cao. 2025. "Back Propagation Artificial Neural Network Enhanced Accuracy of Multi-Mode Sensors" Biosensors 15, no. 3: 148. https://doi.org/10.3390/bios15030148
APA StyleZou, X., Wang, X., Tu, J., Chen, D., & Cao, Y. (2025). Back Propagation Artificial Neural Network Enhanced Accuracy of Multi-Mode Sensors. Biosensors, 15(3), 148. https://doi.org/10.3390/bios15030148