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Abstract: The detection of small molecules is critical in many fields, but traditional electro-
chemical detection methods often exhibit limited accuracy. The construction of multi-mode
sensors is a common strategy to improve detection accuracy. However, most existing
multi-mode sensors rely on the separate analysis of each mode signal, which can easily
lead to sensor failure when the deviation between different mode results is too large. In
this study, we propose a multi-mode sensor based on Prussian Blue (PB) for ascorbic acid
(AA) detection. We innovatively integrate back-propagation artificial neural networks (BP
ANNs) to comprehensively process the three collected signal data sets, which successfully
solves the problem of sensor failure caused by the large deviation of signal detection results,
and greatly improves the prediction accuracy, detection range, and anti-interference of the
sensor. Our findings provide an effective solution for optimizing the data analysis of multi-
modal sensors, and show broad application prospects in bioanalysis, clinical diagnosis, and
related fields.

Keywords: BP ANN; multi-mode sensor; PB

1. Introduction
Accurate determination of small molecule concentrations in body fluids is critical for

individual health assessment, early disease screening, and optimization of treatment op-
tions. For example, high blood glucose concentration is often a precursor to diabetes [1–4],
while excessive cholesterol levels can significantly increase the risk of atherosclerosis [5,6].
Additionally, lack of ascorbic acid (AA) predisposes to scurvy [7–11], and elevated blood
levels of homocysteine are associated with a heightened risk of cardiovascular and cere-
brovascular diseases [12–15]. Electrochemical detection has emerged as one of the most
commonly used methods for measuring small molecule concentrations due to its high
sensitivity, wide detection range, fast response, and low cost [16]. However, many small
molecules exhibit structural and chemical similarities; for example, the redox potentials of
dopamine, uric acid, and ascorbic acid are very close to each other [17], which often leads
to poor detection accuracy.

Most studies focus on the development of multi-mode sensors to improve the sensing
performance. For example, Yue Hu et al. constructed a dual-mode sensing platform for elec-
trochemiluminescence and colorimetry detection, which improves selectivity by carefully
designing the cathode and anode to achieve an accurate prediction of glucose concentra-
tion [18]. Aixiang Liu et al. designed a high-efficiency peroxidase simulated nanozyme
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for dual-mode sensors, enabling high-precision detection of AA [19]. Lei Peng et al. de-
veloped an electrochemical and colorimetric dual-mode sensing platform based on cop-
per/zirconium metal–organic framework (Cu/Zr-MOF) nanozymes with high peroxidase-
like activity to achieve highly sensitive detection of H2O2 [20]. While multi-mode sensors
can effectively improve detection accuracy, many of them still rely on the individual analy-
sis of each signal, and the data utilization is insufficient, which can lead to potential sensor
failure when results from different modes are biased greatly.

Back-propagation artificial neural networks (BP ANNs), are a powerful data process-
ing tool capable of processing both quantitative and qualitative information; they are good
at coordinating the relationship between different input data, and have been widely used
in a variety of fields such as performance prediction, target detection, medical diagnosis,
autonomous driving, and mechanical fault diagnosis [21]. In addition, the BP ANN is
particularly effective in dealing with complex, uncertain, or unknown systems, as they
can automatically extract features from the input data through learning and training, with-
out manually specifying rules. Its strong approximation ability to nonlinear functions,
combined with robustness to minor variations in the input data, and tolerance for a cer-
tain degree of noise and errors in input, thus improves the anti-interference ability and
prediction accuracy [22,23].

Therefore, in order to improve the accuracy of small molecule concentration detection,
this study constructs a high-performance multi-modal sensor by selecting appropriate ma-
terials, and focusing on the comprehensive analysis of multi-mode signals. This approach
distinguishes our work from the conventional multi-modal sensors, which typically analyze
each mode independently. In our method, the BP ANN is applied to multi-mode sensors
to achieve accurate concentration measurement under strong interference conditions. We
constructed an electrochemical/ultraviolet multi-mode sensor based on PB for AA de-
tection. The sensor simultaneously processes signals from open-circuit voltage (OCV),
chronoamperometry (CA) obtained by electrochemical measurements, and the intensity
signal of ultraviolet (UV) absorption peak obtained from a UV spectrophotometer. The
results showed that the analysis results of the BP ANN are more accurate than those of each
modality independently, significantly improving the prediction accuracy and broadening
the detection range of the sensor. Therefore, using the BP ANN (implementing using
Python 3.12.0).

For data analysis of multi-modal sensors can effectively improve the prediction accu-
racy and detection range of small molecule detection. These findings provide an effective
solution for enhancing the data analysis of multi-modal sensors, and have broad application
prospects in biological analysis and clinical diagnosis.

2. Materials and Methods
2.1. Synthesis of PB, Ni-PB, and Co-Ni-PB

PB was prepared following the method proposed by Uemura Takashi [24]. First, 20 mg
FeCl2·4H2O (0.10 mmol) and 1.11 g PVP (K-30; average molecular weight = 50,000) were
added to 8 mL of aqueous solution as solution 1⃝, then 33 mg of K3Fe(CN)6 (0.10 mmol) was
weighed and added to 2 mL of aqueous solution as solution 2⃝. After complete dissolution,
solution 2⃝ was slowly added to solution 1⃝ at room temperature and stirred vigorously.
The mixture immediately turned blue after the addition, forming a PB with good water
solubility. After 20 min of reaction, 25 mL of acetone was added to precipitate PB, and then
the resulting precipitate was centrifuged and washed several times with acetone.

Considering that Fe-based materials often incorporate doped Co and Ni elements to
enhance the electron transfer and improve the electron conductivity of the material [25,26],
Ni-doped and Co- and Ni co-doped PB were also prepared to improve the performance
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of the sensor. The preparation method of Ni-PB and Co-Ni-PB was similar to that of the
above method, except that 0.01 mM Ni(NO3)2 was added to solution 1⃝ for the synthesis of
Ni-PB, and 0.005 mM Ni(NO3)2 and 0.005 mM Co(NO3)2 were added to solution 1⃝ for the
synthesis of Co-NiPB.

2.2. Construction and Detection of Electrochemical/Ultraviolet Multi-Mode Sensors

Fluorine-doped tin dioxide (FTO) glass (2 × 1 × 0.22 cm) was successively sonicated
in glass cleaning agent and ultrapure water for 20 min. Subsequently, the obtained PB was
prepared into an aqueous solution of a certain concentration, 100 µL was evenly dropped
on the surface of the FTO electrode, and dried in an oven at 60 ◦C for 24 h, and then evenly
covered with 100 µL of 1% Nafion solution on the surface for another 24 h to ensure that
the PB on the electrode would not dissolve during the electrochemical test.

The OCV and CA signals of different concentrations of AA were obtained by electro-
chemical measurement in a 0.1 M KCl solution using the above electrodes. And the UV
signals of different concentrations of AA were obtained by testing the mixed solution of
PB and AA in a cuvette with a UV spectrophotometer, where the PB concentration in each
mixed solution was the same, but the AA concentration was different.

2.3. Construction of BP ANN

The BP ANN model consists of three major components: the input layer, the hidden
layer, and the output layer. In this study, the input layer of the BP ANN includes three nodes,
corresponding to three detection signals: OCV, CA, and UV. Among them, OCV takes the
stable voltage value, CA takes the stable current value, and UV takes the absorbance peak
value. And the BP ANN has two hidden layers, each of which is designed with three nodes.
Because there is no linear correlation between the sensor signals of each mode within
all concentration ranges, it is appropriate to select three nodes in the BP neural network,
sufficient to prevent overfitting from affecting the reliability of the BP neural network. The
Sigmoid function is used as the activation function in both the hidden layer and the output
layer. The result obtained by the output layer is the predicted concentration of AA.

In addition, the learning rate and the number of epochs are also two important
parameters of the BP ANN model. A learning rate that is too high may prevent the model
from converging and hinder the discovery of an optimal solution, while a rate that is too
small can lead to too slow training or fall into the local optimum. Similarly, an excessively
high number of epochs can easily lead to overfitting and increased cost, while too few
epochs may result in underfitting and inaccurate predictions. After debugging, a learning
rate of 0.9 and epochs of 5 × 104 were selected for this study. Under this condition, the
mean square error is used as the loss function, and the parameters of the neural network
are continuously adjusted to reduce the value of the loss function, thereby improving the
prediction effect of the model.

Finally, a total of 17 groups of valid data were obtained, and 14 of them were selected
as the training set, while all 17 sets were used for the validation and test sets.

2.4. Instruments

Scanning electron microscopy (SEM) was performed with a Sigma 300 field emission
scanning electron microscope from Zeiss, Oberkochen, Germany. Transmission electron
microscopy (TEM) was performed with a JEOL JEM2100 instrument in Tokyo, Japan. X-ray
diffraction (XRD) patterns were obtained on the Smart Lab SE X-ray diffractometer in
Rigaku, Tokyo, Japan. X-ray photoelectron spectroscopy (XPS) was tested with a k-alpha
from Thermo Fisher, Waltham, MA, USA, and calibrated by C 1s (284.8 eV). The Raman
instrument was a Thermo Fisher DXR2xi (Waltham, MA, USA), and the Fourier Transform
Infrared Spectroscopy (FTIR) instrument was a BRUKER T27 (Karlsruhe, Germany). The
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electrochemical tests were performed on the Biologic VMP-300 electrochemical workstation
from Bio-Logic, France, using a three-electrode system, i.e., a saturated calomel electrode
as the reference electrode, platinum wire as the counter electrode, and an FTO glass loaded
with the material as the working electrode. UV-Vis absorption spectroscopy was tested on
Hitachi’s UH5700 UV-Vis near-infrared spectrophotometer.

3. Results and Discussion
3.1. Characterization of PB

First, the morphological changes in PB before and after doping were examined by scan-
ning electron microscopy (SEM) and transmission electron microscopy (TEM). As shown in
Figure 1A–C, the SEM images reveal that all three prepared materials are nanoparticles,
which enhance their performance. Notably, the sizes of the doped Ni-PB and Co-Ni-PB
particles are smaller, and their dispersion is improved. This is probably due to the influence
of Co and Ni on the nucleation and growth process of the grains [27], which refines the grain
structure and subsequently enhances the electrochemical effective area and the number of
active sites in the materials. The TEM images of Figure 1D–F further illustrate the topogra-
phy changes before and after doping, which is consistent with the SEM observations. The
electron diffraction patterns in Figure 1G–I indicate a relatively poor crystallinity of all three
materials, which may affect their stability to a certain extent. In addition, Figure S1 displays
the EDS mapping of the three materials, which characterizes their elemental composition
and distribution, showing that the Fe, Co, Ni, and N elements are uniformly distributed in
the corresponding materials. These results confirm the successful incorporation of Co and
Ni elements into PB.
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Then, the crystal structure and physical phase purity of PB, Ni-PB, and Co-Ni-PB
samples were investigated using X-ray diffraction (XRD), as shown in Figure 2A. The
XRD patterns of all samples display the characteristic diffraction peaks of PB, with a
notable peak at 11.25◦, corresponding to the surfactant PVP [28]. No additional peaks
were observed, indicating the successful preparation of PB. The enlarged view of the XRD
pattern (Figure S2) shows that the peaks corresponding to the (200) crystal planes of Ni-PB
and Co-Ni-PB are shifted compared with those of PB, indicating that the introduction
of Co and Ni induces a certain degree of lattice distortion, which further proves that Co
and Ni elements are successfully incorporated into PB. Then, the chemical compositions
and corresponding chemical valences of the PBs before and after Co and Ni doping were
examined by XPS, as shown in Figures 2B and S3. The high-resolution XPS spectra (Figure
S3) support the presence of Fe ions in both +2 and +3 oxidation states across all three
materials, with peaks located at 724.4 and 720.7 eV attributed to Fe3+ and Fe2+ in Fe 2p1/2,
and the peaks at 711.7 and 707.9 eV assigned to Fe3+ and Fe2+ in Fe 2p3/2. The Ni ions
in Ni-PB mainly existed in the form of Ni2+, and both Co and Ni in Co-Ni-PB existed in
divalent forms [29,30].

Biosensors 2025, 15, x FOR PEER REVIEW 5 of 14 
 

Figure 1. (A–C) SEM images, (D–F) TEM images, and (G–I) electron diffraction patterns of PB, Ni-
PB, and Co-Ni-PB. 

Then, the crystal structure and physical phase purity of PB, Ni-PB, and Co-Ni-PB 
samples were investigated using X-ray diffraction (XRD), as shown in Figure 2A. The XRD 
patterns of all samples display the characteristic diffraction peaks of PB, with a notable 
peak at 11.25°, corresponding to the surfactant PVP [28]. No additional peaks were ob-
served, indicating the successful preparation of PB. The enlarged view of the XRD pattern 
(Figure S2) shows that the peaks corresponding to the (200) crystal planes of Ni-PB and 
Co-Ni-PB are shifted compared with those of PB, indicating that the introduction of Co 
and Ni induces a certain degree of lattice distortion, which further proves that Co and Ni 
elements are successfully incorporated into PB. Then, the chemical compositions and cor-
responding chemical valences of the PBs before and after Co and Ni doping were exam-
ined by XPS, as shown in Figures 2B and S3. The high-resolution XPS spectra (Figure S3) 
support the presence of Fe ions in both +2 and +3 oxidation states across all three materials, 
with peaks located at 724.4 and 720.7 eV attributed to Fe3+ and Fe2+ in Fe 2p1/2, and the 
peaks at 711.7 and 707.9 eV assigned to Fe3+ and Fe2+ in Fe 2p3/2. The Ni ions in Ni-PB 
mainly existed in the form of Ni2+, and both Co and Ni in Co-Ni-PB existed in divalent 
forms [29,30]. 

 

Figure 2. (A) XRD pattern. (B) Full spectrum of XPS measurements. (C) Raman spectrum. The peak 
corresponding to the dotted blue line belongs to Fe2+–CN–M2+, and the peak corresponding to the 
dotted red line belongs to Fe2+–CN–M3+. (D) FTIR spectrum. 

Furthermore, the chemical environment of each cation was investigated using Raman 
spectroscopy (Figure 2C). The spectra reveal two vibrational peaks at 2107 cm−1 and 2146 
cm−1, which can be attributed to Fe2+–CN–M2+ and Fe2+–CN–M3+ [31,32]. The chemical 
structures of the three materials were further investigated by Fourier transform infrared 
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corresponding to the dotted blue line belongs to Fe2+–CN–M2+, and the peak corresponding to the
dotted red line belongs to Fe2+–CN–M3+. (D) FTIR spectrum.

Furthermore, the chemical environment of each cation was investigated using Raman
spectroscopy (Figure 2C). The spectra reveal two vibrational peaks at 2107 cm−1 and
2146 cm−1, which can be attributed to Fe2+–CN–M2+ and Fe2+–CN–M3+ [31,32]. The
chemical structures of the three materials were further investigated by Fourier transform
infrared (FTIR) spectroscopy (Figure 2D). The peak observed at 2081 cm−1 is attributed
to the typical stretching vibration of the C≡N group, while the peak at 1656 cm−1 is
attributed to the C=O stretching of the PVP. The weak peak at 1607 cm−1 and the broad
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peak at 3403 cm−1 are derived from the –OH bending and stretching vibrations of H2O,
respectively [24,29]. In short, PB, Ni-PB, and Co-Ni-PB were successfully prepared.

3.2. Performance Analysis of Single Signal Based on Electrochemical/Ultraviolet
Multi-Mode Sensor

In order to ensure the reliability of the data used for BP ANN analysis, the three
prepared materials were used to construct electrochemical/ultraviolet multi-mode sensors,
and their sensing performance was explored and compared. Figure 3 demonstrated the
OCV, CA, and UV absorption at different AA concentrations, and the results indicate
that with the increase in AA concentration, the OCV, CA, and UV absorption signals of
these materials changed significantly. Specifically, both the OCV and UV absorption peak
intensities decreased with increasing AA concentration, while the CA signal increased with
the increase in AA concentration.
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As the concentration of AA increases, the decrease in OCV signal may be due to the
fact that PB, as a transition metal complex with a unique crystal structure, exhibits excellent
redox activity, while AA has certain reducing properties because its molecular structure
contains specific hydroxy functional groups [33–36]. Therefore, when detecting AA, PB
will undergo a redox reaction with AA. As the concentration of AA increases, according
to the equilibrium principle of chemical reactions, namely the Le Chatelier’s principle,
the reaction will proceed in the direction of consuming more AA and generating more
reduced state PB, resulting in redox equilibrium on the electrode surface to move toward
the reduced state [37,38]. According to the Nernst equation, the electrode potential is closely
related to the ratio of the concentration of the oxidized substance and the reduced substance.
The concentration of oxidized substances is relatively reduced, and the concentration of
reducing substances is relatively increased, which will cause the electrode potential to
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change. At this time, under open circuit conditions, the change in the electrode potential is
directly reflected in the decrease in the open circuit voltage.

And the decrease in UV absorbance of PB with increasing AA concentration may be
because PB is a compound with a specific crystal structure and electron cloud distribution
in which iron ions are in a specific valence state. In the reaction with AA, some iron ions in
PB that were originally in a higher valence state may be reduced to a lower valence state,
resulting in changes in their electron cloud distribution. And the ability of matter to absorb
ultraviolet light is closely related to its electronic structure. Thus, as the concentration of
AA increases, more PB structures change and the concentration of the effective absorbent
material decreases, which according to the Lambert–Beer law, causes a decrease in its
absorbance at the corresponding UV wavelength [39].

While the increase in CA signal with increasing AA concentration is due to the ox-
idation reaction of AA on the electrode surface. According to the principle of chemical
reaction kinetics, an increase in the reactant concentration will speed up the reaction rate.
Thus, as the AA concentration increases, the reaction rate accelerates, and the number of
electron transfers through the electrode surface increases per unit time, resulting in a larger
oxidative current, namely the CA signal enhancement [37,38].

Figure S4 shows the calibration curves for the three signals versus concentration. As
can be seen from the figure, the OCV, CA, and UV absorption signals of the sensor based on
PB (Figure S4A–C) exhibit a good linear relationship with AA concentrations in the range
of 0–70 µM. The OCV, CA, and UV absorption signals of the Ni-PB sensor (Figure S4D–F)
demonstrate a good linear relationship with AA concentration in the range of 0–100 µM.
The OCV, CA, and UV absorption signals of the Co-Ni-PB sensor (Figure S4G–I) show
the widest linear detection range, with a good linear relationship with AA concentrations
in the range of 0–110 µM. And the typical range of ascorbic acid in the bloodstream is
approximately 40–80 µM [40], indicating that each sensor has practical application value.
The R2 values for all modes were greater than 0.99, indicating that each mode had strong
predictive ability.

Furthermore, the electrochemical test sensitivity of the Co-Ni-PB sensor is better than
that of the PB and Ni-PB sensors. However, the UV test sensitivity of the Co-Ni-PB sensor is
slightly lower than that of the PB and Ni-PB sensors. In addition, the confidence bands and
prediction bands presented in Figure S4 are crucial for evaluating the reliability of linear
regression as well as the accuracy of numerical estimates. In a specific range, the narrower
the confidence interval, the more accurate the estimate of the overall parameters and the
higher the confidence level. Similarly, a narrower prediction band enhances the accuracy of
the mode’s prediction for future observations. It is notable that some of the data points are
at the edge of the 95% confidence interval, and the prediction interval is relatively wide
(Figure S4), which implies that there is still room for improvement in the accuracy of linear
regression in predicting AA concentrations, despite the good fit of linear regression.

Furthermore, in order to evaluate the repeatability of each sensing mode (Figure 4),
five replicate experiments were conducted. The results showed relatively poor repeatability
of the CA test for each sensing mode, and good repeatability of the OCV and UV absorption
tests. Among them, the overall repeatability of the PB sensor is the best, which may be due
to the slight decrease in material stability caused by the lattice distortion after doping of Co
and Ni atoms.
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Finally, to evaluate the anti-interference performance of each sensing platform, the
selectivity of each sensor for AA in the presence of uric acid (UA), dopamine (DA), glucose
(Glu), acetaminophen (APAP), and cysteine (Cys) was also tested, as shown in Figure 5. The
results show that the overall selectivity is ideal, with the Co-Ni-PB sensor demonstrating
optimal selectivity across all modes. However, the selectivity of the CA mode of each
sensing mode is worse than that of the other two.

Overall, the Co-Ni-PB sensor has the widest linear detection range for OCV, CA, and
UV absorption signals, which means it can detect AA over a broader concentration range.
And its sensitivity is also optimal, enabling more precise detection of AA concentration
changes. Although its stability is slightly inferior to that of the PB sensor but better than that
of the Ni-PB sensor, it shows the best selectivity in all detection modes. Considering these
factors together, the Co-Ni-PB sensor is considered to have the optimal comprehensive
performance. These multi-mode sensors are all able to realize mutual verification by
dissecting the detection results in each mode individually, which effectively improves the
reliability of the detection results. However, it should be noted that the test performance
of the CA mode is relatively suboptimal. In the case of strong interference factors, the
test results obtained from this mode may have a significant deviation from the other two
modes, complicating the final judgment of the test results. This situation underscores the
necessity of using the BP ANN.
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Figure 5. Selective testing of OCV (Green bar chart), CA (Orange bar chart), and UV (Yellow bar
chart) absorption from sensors prepared by (A–C) PB, (D–F) Ni-PB, and (G–I) Co-Ni-PB, respectively.
The concentration of AA in each group was 0.05 mM, and the concentration of each interference was
0.005 mM.

3.3. Comprehensive Analysis of Data Based on BP ANN

Based on the discussions above, we selected the data obtained from the Co-Ni-PB
sensor for the BP ANN analysis. In addition, a few more concentrations were measured
as shown in Figure S5, and the results showed that the multi-mode sensor had a good
linear relationship between signal and concentration only in the range of 0~0.11 mM.
Generally, when the detection error of the sensor is less than 5%, the prediction result is
acceptable. However, it can be seen from Table 1 that the prediction accuracy of each model
is unsatisfactory, especially at lower concentrations.

Table 1. Prediction error for the different modes.

Concentration (mM) OCV (%) CA (%) UV (%)

0.005 20.32 57.48 34.64
0.0075 26.90 17.44 13.29

0.01 20.67 9.25 6.53
0.02 19.16 8.58 3.61
0.03 8.31 9.69 11.56
0.04 5.76 0.91 10.63
0.05 4.07 3.64 7.33
0.06 7.00 8.80 3.83
0.07 1.45 4.67 2.72
0.08 3.48 0.26 0.56
0.09 1.00 1.69 3.76
0.1 3.78 2.10 2.21
0.11 4.56 1.55 1.29
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To address this, the three signal data points of the Co-Ni-PB sensor were input into
the constructed BP ANN model for calculation. To ensure the accuracy of the calculation
results, each concentration data was calculated for 50 replicates (Figure S6), and the average
value was taken as the prediction result from the BP ANN. The results show that the
prediction results of the BP ANN are very close to the actual value, including the detection
range higher than 0.11 mM, which significantly improves the detection range. Additionally,
the RSD of each figure indicates that the stability of BP ANN is good.

Compared with the prediction results of the OCV, CA, and UV models, the BP ANN
model showed obvious superiority, as its predicted results are significantly closer to the
actual concentration of AA (Figures 6A and 7A). More importantly, the prediction error of
the BP ANN for each concentration was consistently below 5%, which was notably lower
than that of the OCV, CA, and UV modes (Figure 6B). Even when the estimation error of the
OCV, CA, and UV model test exceeded 50%, the error of the BP ANN remained below 3.5%,
highlighting its robustness and excellent generalization ability. Moreover, in the presence
of interference factors, even if the prediction error of one of the modes is greater than
15%, the BPANN can still achieve accurate prediction and ensure that the error is less than
2%, highlighting the strong fault tolerance of the BP ANN (Figure 7B). The above results
show that the BP ANN can extract accurate concentration data from the analysis of low-
quality detection results, demonstrating good prediction performance, which significantly
improves the detection accuracy and anti-interference ability of the sensor.
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4. Conclusions
In conclusion, the multi-mode sensor based on Co-Ni-PB demonstrates the best overall

performance, but its test performance still exhibits relative shortcomings in the CA mode,
which is prone to significant data fluctuations. These fluctuations can interfere with the
accurate judgment of the final test results. The prediction accuracy of single signal output
from each single mode also needs to be further improved. To address these issues, the
BP ANN was introduced to comprehensively process the signal data collected by the
three sensing modes. This innovative approach effectively mitigates the risk of sensor
malfunction resulting from significant deviations in the detection results of a particular
signal. The predictions generated by the BP ANN are more accurate than the isolated
analysis of each sensing mode, which significantly improves the prediction accuracy of
the sensor, broadens the detection range, and improves the anti-interference performance.
These breakthrough findings have opened up an effective new way to optimize the data
analysis process of multi-modal sensors, and are expected to show broad and far-reaching
applications in cutting-edge fields such as bioanalysis and clinical diagnosis, thereby
injecting strong impetus into the development of related fields.
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