Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr3 for the Top Layer of Four-Junction Solar Cells
<p>XRD pattern of MAPbBr<sub>3</sub> with BABr modified.</p> "> Figure 2
<p>(<b>a</b>) The PL spectra for both the pristine and BABr-modified MAPbBr<sub>3</sub> samples. (<b>b</b>) The UV–vis absorption spectra curves and the Tauc plot as inset in (<b>b</b>) for both samples.</p> "> Figure 3
<p>PD-SSPL results in MAPbBr<sub>3</sub> QDs: (<b>a</b>) pristine and (<b>b</b>) with BABr with different power densities in mW·cm<sup>−2</sup>, where the high-energy-tail fitting region is indicated by the shaded area. Absorbed power-dependent carrier temperature for MAPbBr<sub>3</sub> QDs (<b>c</b>) pristine and (<b>d</b>) with BABr modified calculated by high-energy-tail fitting.</p> "> Figure 4
<p><span class="html-italic">P<sub>abs</sub></span>/<span class="html-italic">exp</span>(<span class="html-italic">−E<sub>LO</sub></span>/<span class="html-italic">k<sub>B</sub>T<sub>C</sub></span>) (mW·cm<sup>−2</sup>) as a function of Δ<span class="html-italic">T</span> (K); the gradient indicated by the blue dashed line yields the thermalization coefficient <span class="html-italic">Q<sub>th</sub></span>, with values of 2.64 ± 0.29 mW·K<sup>−1</sup>·cm<sup>−2</sup> and 2.36 ± 0.25 mW·K<sup>−1</sup>·cm<sup>−2</sup> for pristine and with BABr modified.</p> "> Figure 5
<p>The effects of BABr addition on thermalization and <span class="html-italic">Q<sub>th</sub></span> in MAPbBr<sub>3</sub> QDs are analyzed from different perspectives.</p> ">
Abstract
:1. Introduction
2. Experiments
2.1. Sample Fabrication
2.2. Characterizations
3. Results and Discussion
3.1. XRD
3.2. PL and Abs
3.3. SSPL
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Nozik, A.J.; Beard, M.C.; Luther, J.M.; Law, M.; Ellingson, R.J.; Johnson, J.C. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chem. Rev. 2010, 110, 6873–6890. [Google Scholar] [CrossRef] [PubMed]
- Dac-Trung, N.; Lombez, L.; Gibelli, F.; Boyer-Richard, S.; Le Corre, A.; Durand, O.; Guillemoles, J.-F. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature. Nat. Energy 2018, 3, 236–242. [Google Scholar] [CrossRef]
- Luque, A.; Marti, A.; Stanley, C. Understanding intermediate-band solar cells. Nat. Photonics 2012, 6, 146–152. [Google Scholar] [CrossRef]
- Lal, N.N.; Dkhissi, Y.; Li, W.; Hou, Q.; Cheng, Y.-B.; Bach, U. Perovskite Tandem Solar Cells. Adv. Energy Mater. 2017, 7, 1602761. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Yu, Y.; He, D.; Shai, X.; Zhang, S.; Zhang, Z.; Feng, J.; Yi, J.; Chen, J. Advancements of highly efficient perovskite based tandem solar cells. Sci. China Mater. 2024, 1–18. [Google Scholar] [CrossRef]
- Hirst, L.C.; Lumb, M.P.; Hoheisel, R.; Philipps, S.P.; Bett, A.W.; Walters, R.J. Hot-carrier solar cell spectral insensitivity: Why develop the hot-carrier solar cell when we have multi-junction devices? In Proceedings of the Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III, San Francisco, CA, USA, 1–6 February 2014; Volume 8981, pp. 81–87. [Google Scholar]
- Hirst, L.C.; Yakes, M.K.; Bailey, C.G.; Tischler, J.G.; Lumb, M.P.; Gonzalez, M.; Fuhrer, M.F.; Ekins-Daukes, N.J.; Walters, R.J. Enhanced Hot-Carrier Effects in InAlAs/InGaAs Quantum Wells. IEEE J. Photovolt. 2014, 4, 1526–1531. [Google Scholar] [CrossRef]
- Hirst, L.C.; Fujii, H.; Wang, Y.; Sugiyama, M.; Ekins-Daukes, N.J. Hot Carriers in Quantum Wells for Photovoltaic Efficiency Enhancement. IEEE J. Photovolt. 2014, 4, 244–252. [Google Scholar] [CrossRef]
- Lim, J.W.M.; Wang, Y.; Fu, J.; Zhang, Q.; Sum, T.C. Spotlight on Hot Carriers in Halide Perovskite Luminescence. ACS Energy Lett. 2022, 7, 749–756. [Google Scholar] [CrossRef]
- He, R.; Ren, S.; Chen, C.; Yi, Z.; Luo, Y.; Lai, H.; Wang, W.; Zeng, G.; Hao, X.; Wang, Y.; et al. Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 2021, 14, 5723–5759. [Google Scholar] [CrossRef]
- Hejda, B.; Kra, K. Hot-electron cooling and second-generation phonons in polar semiconductors. Phys. Rev. B Condens. Matter 1993, 47, 15554–15561. [Google Scholar] [CrossRef] [PubMed]
- Langot, P.; Del Fatti, N.; Christofilos, D.; Tommasi, R.; Vallee, F. Femtosecond investigation of the hot-phonon effect in GaAs at room temperature. Phys. Rev. B 1996, 54, 14487–14493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiang, W.; Wang, R.; Zhang, J.; Conibeer, G. Study of the mechanisms of the phonon bottleneck effect in CdSe/CdS core/shell quantum dots and nanoplatelets and their application in hot carrier multi-junction solar cells. Nanoscale Adv. 2023, 5, 5594–5600. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Luo, J.; Shi, L.; Wu, J.; Xu, L.; Song, J.; Wang, P.; Li, H.; Deng, Z. Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators. J. Mater. Chem. A 2019, 7, 4872–4880. [Google Scholar] [CrossRef]
- Han, Z.; Liu, Y.; Zou, Y.; Li, J.; He, Y.; Zeng, H. Surface-passivated MAPbBr3 microwire with enhanced stability and suppressed ion migration. J. Mater. Chem. C 2023, 11, 6327–6335. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, A.; Wang, Y.; Liang, K.; Zhu, W.; Wu, Y.; Sun, W.; Wu, J. Interfacial modulation by ammonium salts in hole transport layer free CsPbBr3 solar cells with fill factor over 86%. Mater. Today Chem. 2024, 40, 102228. [Google Scholar] [CrossRef]
- Ghosh, D.; Perez, C.M.; Prezhdo, O.; Nie, W.Y.; Tretiak, S.; Neukirch, A.J. Impact of composition engineering on charge carrier cooling in hybrid perovskites: Computational insights. J. Mater. Chem. C 2022, 10, 9563–9572. [Google Scholar] [CrossRef]
- Ji, X.; Lu, R.; Yu, A. Effect of the A-Site Cation on the Biexciton Dynamics in Lead Bromide Perovskite Nanocrystals. J. Phys. Chem. C 2023, 127, 19579–19590. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, H.; Brocks, G.; Bobbert, P.A.; Tao, S. Thermodynamic Origin of the Photostability of the Two-Dimensional Perovskite PEA2Pb(I1–xBrx)4. ACS Energy Lett. 2023, 8, 943–949. [Google Scholar] [CrossRef]
- Chou, S.S.; Swartzentruber, B.S.; Janish, M.T.; Meyer, K.C.; Biedermann, L.B.; Okur, S.; Burckel, D.B.; Carter, C.B.; Kaehr, B. Laser Direct Write Synthesis of Lead Halide Perovskites. J. Phys. Chem. Lett. 2016, 7, 3736–3741. [Google Scholar] [CrossRef]
- Le Bris, A.; Guillemoles, J.F. Hot carrier solar cells: Achievable efficiency accounting for heat losses in the absorber and through contacts. Appl. Phys. Lett. 2010, 97, 113506. [Google Scholar] [CrossRef]
- Le Bris, A.; Lombez, L.; Laribi, S.; Boissier, G.; Christol, P.; Guillemoles, J.F. Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers. Energy Environ. Sci. 2012, 5, 6225–6232. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, X.; Chi, X.; Wang, Q.; Sui, N.; Kang, Z.; Zhou, Q.; Zhang, H.; Li, L.; Wang, Y. Manipulating hot carrier behavior of MAPbBr3 nanocrystal by photon flux and temperature. J. Lumin. 2021, 239, 118332. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Han, G.; Wu, B.; Huan, C.H.A.; Leek, M.L.; Sum, T.C. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 2017, 8, 1300. [Google Scholar] [CrossRef]
- Yang, Y.; Xing, Y.; Liang, C.; Hu, L.; Xu, F.; Mei, Q. Screening genes associated with melanoma using a combined analysis of mRNA and methylation microarray. Gene Rep. 2016, 4, 53–59. [Google Scholar] [CrossRef]
- Price, M.B.; Butkus, J.; Jellicoe, T.C.; Sadhanala, A.; Briane, A.; Halpert, J.E.; Broch, K.; Hodgkiss, J.M.; Friend, R.H.; Deschler, F. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites. Nat. Commun. 2015, 6, 8420. [Google Scholar] [CrossRef]
- Zhu, H.; Miyata, K.; Fu, Y.; Wang, J.; Joshi, P.P.; Niesner, D.; Williams, K.W.; Jin, S.; Zhu, X.Y. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 2016, 353, 1409–1413. [Google Scholar] [CrossRef]
- Zhang, Y.; Conibeer, G.; Liu, S.; Zhang, J.; Guillemoles, J.F. Review of the mechanisms for the phonon bottleneck effect in III–V semiconductors and their application for efficient hot carrier solar cells. Prog. Photovolt. Res. Appl. 2022, 30, 581–596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, H.; Qu, J.; Zhang, J.; Conibeer, G. Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr3 for the Top Layer of Four-Junction Solar Cells. Nanomaterials 2024, 14, 2041. https://doi.org/10.3390/nano14242041
Zhang Y, Chen H, Qu J, Zhang J, Conibeer G. Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr3 for the Top Layer of Four-Junction Solar Cells. Nanomaterials. 2024; 14(24):2041. https://doi.org/10.3390/nano14242041
Chicago/Turabian StyleZhang, Yi, Huilong Chen, Junfeng Qu, Jiayu Zhang, and Gavin Conibeer. 2024. "Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr3 for the Top Layer of Four-Junction Solar Cells" Nanomaterials 14, no. 24: 2041. https://doi.org/10.3390/nano14242041
APA StyleZhang, Y., Chen, H., Qu, J., Zhang, J., & Conibeer, G. (2024). Study of Thermalization Mechanisms of Hot Carriers in BABr-Added MAPbBr3 for the Top Layer of Four-Junction Solar Cells. Nanomaterials, 14(24), 2041. https://doi.org/10.3390/nano14242041