A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications
<p>Schematic diagram of the e-beam evaporation system used to deposit ITO films. Reproduced from with permission from the copyright clearance center.</p> "> Figure 2
<p>The XRD patterns for the phase analysis of the ITO on Si films (<b>A</b>) as deposited and post-annealed at (<b>B</b>) 500 °C, (<b>C</b>) 600 °C, and (<b>D</b>) 700 °C. Reproduced from [<a href="#B37-nanomaterials-14-02013" class="html-bibr">37</a>] with permission from the copyright clearance center.</p> "> Figure 3
<p>Transmittance spectra for the ITO thin films as deposited and after annealing are displayed. Reproduced from [<a href="#B37-nanomaterials-14-02013" class="html-bibr">37</a>] with permission from the copyright clearance center.</p> "> Figure 4
<p>ITO’s electrical resistivity was measured, and its relationship to the post-annealing temperature was determined. Reproduced from [<a href="#B37-nanomaterials-14-02013" class="html-bibr">37</a>] with permission from the copyright clearance center.</p> "> Figure 5
<p>At three distinct post-annealing temperatures, surface roughness was measured for ITO thin films on Si using 3D AFM: (<b>a</b>) as deposited, (<b>b</b>) 500 °C, (<b>c</b>) 600 °C, and (<b>d</b>) 700 °C. Reproduced from [<a href="#B37-nanomaterials-14-02013" class="html-bibr">37</a>] with permission from the copyright clearance center.</p> "> Figure 5 Cont.
<p>At three distinct post-annealing temperatures, surface roughness was measured for ITO thin films on Si using 3D AFM: (<b>a</b>) as deposited, (<b>b</b>) 500 °C, (<b>c</b>) 600 °C, and (<b>d</b>) 700 °C. Reproduced from [<a href="#B37-nanomaterials-14-02013" class="html-bibr">37</a>] with permission from the copyright clearance center.</p> "> Figure 6
<p>ITO films’ XRD patterns after being deposited and heated to various temperatures (<b>a</b>) in air and (<b>b</b>) under vacuum. Reproduced from [<a href="#B2-nanomaterials-14-02013" class="html-bibr">2</a>] with permission from the copyright clearance center.</p> "> Figure 7
<p>The transmittance spectra of the ITO thin films under diverse environmental conditions, including (<b>a</b>) in air and (<b>b</b>) under vacuum, at different temperatures during deposition and annealing. Reproduced from [<a href="#B2-nanomaterials-14-02013" class="html-bibr">2</a>] with permission from the copyright clearance center.</p> "> Figure 8
<p>Transmittances (%T) and resistivities (%R) of (<b>a</b>) Asahi ITO film and (<b>b</b>) conventional sol–gel ITO film (were measured and fitted. Reproduced from [<a href="#B45-nanomaterials-14-02013" class="html-bibr">45</a>] with permission from the copyright clearance center.</p> "> Figure 9
<p>Electrical resistivity and mobility (μ) spectra were calculated from the fit of the optical data in <a href="#nanomaterials-14-02013-f010" class="html-fig">Figure 10</a>b. Reproduced from [<a href="#B45-nanomaterials-14-02013" class="html-bibr">45</a>] with permission from the copyright clearance center.</p> "> Figure 10
<p>The heated ITO films’ XRD patterns, which were made from an aqueous solution with r = 0.030–0.15, are as follows: (<b>a</b>) from 20 to 60° and (<b>b</b>) from 28 to 33°. Reproduced from [<a href="#B44-nanomaterials-14-02013" class="html-bibr">44</a>] with permission from the copyright clearance center.</p> "> Figure 11
<p>Optical transmittance (%T) spectra (<b>a</b>) and annealing-temperature-dependent optical transmittance and bandgap (<b>b</b>,<b>c</b>) of inkjet-printed ITO thin films annealed at various temperatures. Reproduced from [<a href="#B47-nanomaterials-14-02013" class="html-bibr">47</a>] with permission from the copyright clearance center.</p> "> Figure 12
<p>XRD patterns of glass, ITO/NP–glass samples, and ITO/glass. Reproduced from [<a href="#B48-nanomaterials-14-02013" class="html-bibr">48</a>] with permission from the copyright clearance center.</p> "> Figure 13
<p>Variations in resistivity with substrate temperature for ITO films. Reproduced from [<a href="#B43-nanomaterials-14-02013" class="html-bibr">43</a>] with permission from copyright clearance center.</p> "> Figure 14
<p>XRD patterns of the AZO/Ag/AZO multilayer stacks on mica sheets at different annealing temperatures. Reproduced from [<a href="#B38-nanomaterials-14-02013" class="html-bibr">38</a>] with permission from the copyright clearance center.</p> "> Figure 15
<p>The AZO/Ag/AZO films’ optical transmittance (%T) spectra recorded at various annealing temperatures and for the as-deposited sample. Reproduced from [<a href="#B55-nanomaterials-14-02013" class="html-bibr">55</a>] with permission from the copyright clearance center.</p> "> Figure 16
<p>Resistivity and FOM values of AZO/Ag/AZO films for the as-deposited sample and different annealing temperatures. Reproduced from [<a href="#B55-nanomaterials-14-02013" class="html-bibr">55</a>] with permission from the copyright clearance center.</p> "> Figure 17
<p>Resistivity spatial distribution as a function of the film thickness for AZO thin films produced by RF-DC with H2 injection. Reproduced from [<a href="#B49-nanomaterials-14-02013" class="html-bibr">49</a>] with permission from the copyright clearance center.</p> "> Figure 18
<p>Resistivities of AZO films, made with different thicknesses via PLD, as a function of the exposure duration. Reproduced from [<a href="#B49-nanomaterials-14-02013" class="html-bibr">49</a>] with permission from the copyright clearance center.</p> ">
Abstract
:1. Introduction
2. Properties of TCFs
2.1. Chemical Durability
2.2. Toxicity
2.3. Criteria for Choosing Transparent Conductors
2.4. Production Costs
2.5. Cost-Effective Deposition Technique
3. Deposition Techniques with Various Optimized Parameters
3.1. Magnetron Sputtering
Minimum Temperature for Deposition
3.2. Electron-Beam Evaporation
3.3. Dip-Coating
3.4. Spin-Coating
3.5. Inkjet Printing
3.6. Pulsed Laser Deposition
4. Optoelectrical Properties of ITO Films
5. Issues Associated with Substituting AZO
6. Applications of Transparent Conducting Thin Films and Coatings
6.1. Flat Panel Displays (FPDs)
6.2. Touchscreen Panel Controls
6.3. Solar Cells
6.4. Buildings with Low-Emissivity Windows
6.5. Transistors
6.6. Electromagnetic (EM) Shielding
6.7. Dielectrics
6.8. Aerospace Industry
6.9. Medical Applications
6.10. Lithium-Ion Batteries (LIBs)
6.11. Defrosting Windows
6.12. Circuits
6.13. Durability of Glasses
6.14. Oven Windows
7. Stability of AZO Thin Films
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naghdi, S.; Rhee, K.Y.; Hui, D.; Park, S.J. A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications. Coatings 2018, 8, 278. [Google Scholar] [CrossRef]
- Hu, Y.; Diao, X.; Wang, C.; Hao, W.; Wang, T. Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering. Vacuum 2004, 75, 183–188. [Google Scholar] [CrossRef]
- Dekkers, J.M. Transparent Conducting Oxides on Polymeric Substrates by Pulsed Laser Deposition. Ph.D. Thesis, Institute for Nanotechnology, Enschede, The Netherlands, 2007. [Google Scholar]
- Patel, K.J.; Desai, M.S.; Panchal, C.J. Properties of RF Magnetron Sputtered Indium Tin Oxide Thin Films on Externally Unheated Glass Substrate. J. Mater. Sci. Mater. Electron. 2011, 22, 959–965. [Google Scholar] [CrossRef]
- Sankir, N.D.; Aydin, E.; Ugur, E.; Sankir, M. Spray Pyrolysis of Nano-Structured Optical and Electronic Materials. Adv. Funct. Mater. 2015, 127–181. [Google Scholar]
- El-Atab, N.; Hussain, M.M. Flexible and stretchable inorganic solar cells: Progress, challenges, and opportunities. MRS Energy Sustain. 2020, 7, E19. [Google Scholar] [CrossRef]
- Zang, Z.; Cai, W.; Zhou, Y. Metal Oxide Semiconductors: Synthesis, Properties, and Devices; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Rani, A.; Dutta, M.; Shekhar, C.; Bhaduri, A. Numerical Simulation Studies on CdTe-Based Solar Cells. In Eco-Materials and Green Energy for a Sustainable Future; CRC Press: Boca Raton, FL, USA, 2024; pp. 22–35. [Google Scholar]
- Schuster, C.S.; Crupi, I.; Halme, J.; Koç, M.; Mendes, M.J.; Peters, I.M.; Yerci, S. Empowering Photovoltaics with Smart Light Management Technologies. In Handbook of Climate Change Mitigation and Adaptation; Springer International Publishing: Cham, Switzerland, 2022; pp. 1165–1248. [Google Scholar]
- Chiou, B.-S.; Tsai, J.-H. Antireflective Coating for ITO Films Deposited on Glass Substrate. J. Mater. Sci. Mater. Electron. 1999, 10, 491–495. [Google Scholar] [CrossRef]
- Ho, W.J.; Lin, J.C.; Liu, J.J.; Bai, W.B.; Shiao, H.P. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells. Materials 2017, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Shankar, U.; Oberoi, D.; Bandyopadhyay, A. A review on the alternative of indium tin oxide coated glass substrate in flexible and bendable organic optoelectronic device. Polym. Adv. Technol. 2022, 33, 3078–3111. [Google Scholar] [CrossRef]
- Cueva, A.; Carretero, E. Comparison of the Optical Properties of Different Dielectric Materials (SnO2, ZnO, AZO, or SiAlNx) Used in Silver-Based Low-Emissivity Coatings. Coatings 2023, 13, 1709. [Google Scholar] [CrossRef]
- Van Toan, N.; Tuoi, T.T.K.; Inomata, N.; Toda, M.; Ono, T. Aluminum doped zinc oxide deposited by atomic layer deposition and its applications to micro/nano devices. Sci. Rep. 2021, 11, 1204. [Google Scholar] [CrossRef]
- Han, D.; Chen, Y.; Li, D.; Dong, H.; Xu, B.; He, X.; Sang, S. Conductometric Nitrogen Dioxide Gas Sensor Based on Gallium Nitride Quantum Dots Film. Sens. Actuators B Chem. 2023, 379, 133197. [Google Scholar] [CrossRef]
- Guziewicz, E.; Godlewski, M.; Krajewski, T.; Wachnicki, Ł.; Szczepanik, A.; Kopalko, K.; Wójcik-Głodowska, A.; Przeździecka, E.; Paszkowicz, W.; Łusakowska, E.; et al. ZnO grown by atomic layer deposition: A material for transparent electronics organic heteojunctions. J. Appl. Phys. 2009, 105, 122413. [Google Scholar] [CrossRef]
- Acosta, E. Thin films/properties and applications. In Thin Films; IntechOpen: London, UK, 2021. [Google Scholar]
- Abdallah, B.; Jazmati, A.K.; Nounou, F. Morphological, structural and photoresponse characterization of ZnO nanostructure films deposited on plasma etched silicon substrates. J. Nanostruct. 2020, 10, 185–197. [Google Scholar]
- Why Would You Need Conductive Coatings?|Diamond Coatings. Diamondcoatings.com, Diamond Coatings Inc. Available online: https://diamondcoatings.com/why-would-you-need-conductive-coatings/ (accessed on 1 September 2023).
- Hussain, S.; Sabiruddin, K. Surface modification methods of titanium (Ti)-based implant materials for biomedical applications. In Bioimplants Manufacturing; CRC Press: Boca Raton, FL, USA, 2024; pp. 96–117. [Google Scholar]
- Noman, M.T.; Amor, N.; Petru, M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2022, 47, 99–141. [Google Scholar] [CrossRef]
- Biradar, A.; Arulvel, S.; Kandasamy, J. Significance of ballistic parameters and nanohybridization in the development of textile-based body armor: A review. Int. J. Impact Eng. 2023, 180, 104700. [Google Scholar] [CrossRef]
- Pan, D.; Feixue, C.; Junhua, L.; Shulong, L. The Property of ITO Produced by Optical Thin Film Coating for Solar Cell. In Proceedings of the 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China, 23–25 October 2020; pp. 163–167. [Google Scholar]
- Aperathitis, E. RF Sputtered Indium-Tin-Oxide as Antireflective Coating for GaAs Solar Cells. Sol. Energy Mater. Sol. Cells 1997, 45, 161–168. [Google Scholar] [CrossRef]
- Zahid, M.A.; Khokhar, M.Q.; Cui, Z.; Park, H.; Yi, J. Improved Optical and Electrical Properties for Heterojunction Solar Cell Using Al2O3/ITO Double-Layer Anti-Reflective Coating. Results Phys. 2021, 28, 104640. [Google Scholar] [CrossRef]
- Wachnicki, L.; Lukasiewicz, M.; Witkowski, B.; Krajewski, T.; Luka, G.; Kopalko, K.; Minikayev, R.; Przezdziecka, E.; Domagala, J.Z.; Godlewski, M.; et al. Comparison of dimethylzinc and diethylzinc as precursors for monocrystalline zinc oxide grown by atomic layer deposition method. Phys. Status Solidi B 2010, 247, 1699–1701. [Google Scholar] [CrossRef]
- Contreras, M.V.; Li, J.; Kim, M.; Green, M.A. Solar photovoltaic technologies for mitigating global climate change. In Handbook on Climate Change and Technology; Edward Elgar Publishing: Cheltenham, UK, 2023; pp. 58–81. [Google Scholar]
- Solayman, M.; Sarker, M.A.; Muntasir, M.; Sharme, R.K.; Islam, M.R. Pressure-induced investigation of structural, electronic, optical, and mechanical properties of BaCeO3. Opt. Mater. 2024, 148, 114699. [Google Scholar] [CrossRef]
- Sharme, R.K.; Islam, R.; Sarker, A.; Solayman; Momin, A.; Islam, R. First-principles study on electronic, mechanical, and optical properties of pressure-induced vanadium-based perovskite KVO3. Phys. B Condens. Matter 2024, 681, 415785. [Google Scholar] [CrossRef]
- Director, K.B. Managing. The Importance of Optical Coatings in Defence & Aerospace Pt. 1. UQG Optics. 2024. Available online: https://www.uqgoptics.com/the-importance-of-optical-coatings-in-defense-and-aerospace/#:~:text=Opti-cal%20coatings%20are%20used%20in%20thermal%20control%20systems%20to%20manage,within%20their%20optimal%20temperature%20ranges (accessed on 27 August 2024).
- Wang, F.; Wu, J. Applications in Optical Films; Elsevier: Amsterdam, The Netherlands, 2023; pp. 381–410. [Google Scholar]
- Wang, S.F.; Zhang, J.; Luo, D.W.; Gu, F.; Tang, D.Y.; Dong, Z.L.; Tan, G.E.; Que, W.X.; Zhang, T.S.; Li, S.; et al. Transparent Ceramics: Processing, Materials and Applications. Prog. Solid State Chem. 2013, 41, 20–54. [Google Scholar] [CrossRef]
- Gordon, R.G. Criteria for Choosing Transparent Conductors. MRS Bull. 2011, 25, 52–57. [Google Scholar] [CrossRef]
- Indium Corporation Global Solder & PCB Assembly Materials Supplier. Indium Corporation. Available online: https://www.indium.com/ (accessed on 3 April 2024).
- Metal Oxides for Optoelectronics and Optics-Based Medical Applications; Elsevier: Amsterdam, The Netherlands, 2022.
- Transparent Conducting Oxide (TCO) Glass Market Size and Overview by Key Players with Top Countries Data. Food Science and Technology, 12 September 2023. Available online: www.linkedin.com (accessed on 5 June 2024).
- Ali, A.H.; Hassan, Z.; Shuhaimi, A. Enhancement of Optical Transmittance and Electrical Resistivity of Post-Annealed ITO Thin Films RF Sputtered on Si. Appl. Surf. Sci. 2018, 443, 544–547. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Sabah, F.A.; Abdulgafour, H.I.; Alsadig, A.; Sulieman, A.; Alkhoaryef, M. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys. 2019, 13, 102159. [Google Scholar] [CrossRef]
- Tipparach, U.; Paichit, U. Preparation and properties of indium tin oxide (ITO) films by RF magnetron sputtering for solar cell applications. Thai J. Phys. Ser. 2008, 3, 34. [Google Scholar]
- Gwamuri, J.; Marikkannan, M.; Mayandi, J.; Bowen, P.K.; Pearce, J.M. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices. Materials 2016, 9, 63. [Google Scholar] [CrossRef]
- Tien, C.-L.; Lin, H.-Y.; Chang, C.-K.; Tang, C.-J. Effect of Oxygen Flow Rate on the Optical, Electrical, and Mechanical Properties of DC Sputtering ITO Thin Films. Adv. Condens. Matter Phys. 2018, 2018, 2647282. [Google Scholar] [CrossRef]
- Pokaipisit, A.; Horprathum, M.; Limsuwan, P. Influence of Oxygen Flow Rate on Properties of Indium Tin Oxide Thin Films Prepared by Ion-Assisted Electron Beam Evaporation. Songklanakarin Journal of Science and Technology. 8 July 2009. Available online: www.sjst.psu.ac.th (accessed on 3 December 2024).
- George, J.; Menon, C.S. Electrical and Optical Properties of Electron Beam Evaporated ITO Thin Films. Surf. Coatings Technol. 2000, 132, 45–48. [Google Scholar] [CrossRef]
- Ito, T.; Uchiyama, H.; Kozuka, H. Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique. Langmuir 2017, 33, 5314–5320. [Google Scholar] [CrossRef] [PubMed]
- Solieman, A.; Aegerter, M.A. Modeling of optical and electrical properties of In2O3:Sn coatings made by various techniques. Thin Solid Films 2006, 502, 205–211. [Google Scholar] [CrossRef]
- Kanneboina, V.; Basumatary, P.; Agarwal, P. Influence of Deposition Temperature on Indium Tin Oxide Thin Films for Solar Cell Applications. AIP Conf. Proc. 2019, 2091, 020016. [Google Scholar]
- Pan, Y.; Liu, M.; Lu, C.; Liu, B.; Shao, W.; Pan, D.; Shi, X. Ionic Liquid-Assisted Ink for Inkjet-Printed Indium Tin Oxide Transparent and Conductive Thin Films. Langmuir 2023, 39, 5107–5114. [Google Scholar] [CrossRef] [PubMed]
- Socol, M.; Preda, N.; Rasoga, O.; Costas, A.; Stanculescu, A.; Breazu, C.; Gherendi, F.; Socol, G. Pulsed Laser Deposition of Indium Tin Oxide Thin Films on Nanopatterned Glass Substrates. Coatings 2019, 9, 19. [Google Scholar] [CrossRef]
- Minami, T. Present Status of Transparent Conducting Oxide Thin-Film Development for Indium-Tin-Oxide (ITO) Substitutes. Thin Solid Films 2008, 516, 5822–5828. [Google Scholar] [CrossRef]
- Furubayashi, Y.; Hitosugi, T.; Yamamoto, Y.; Inaba, K.; Kinoda, G.; Hirose, Y.; Shimada, T.; Hasegawa, T. Response to “Comment on a Transparent Metal: Nb-Doped Anatase TiO2” [Appl. Phys. Lett. 86, 252101 (2005)]. Appl. Phys. Lett. 2006, 88, 226103. [Google Scholar] [CrossRef]
- Hitosugi, T.; Ueda, A.; Furubayashi, Y.; Hirose, Y.; Konuma, S.; Shimada, T.; Hasegawa, T. Fabrication of TiO2-Based Transparent Conducting Oxide Films on Glass by Pulsed Laser Deposition. Jpn. J. Appl. Phys. 2007, 46, L86. [Google Scholar] [CrossRef]
- Tabata, H.; Kawai, T. Dielectric Properties of Strained (Sr,Ca)TiO3/(Ba,Sr)TiO3 Artificial Lattices. Appl. Phys. Lett. 1997, 70, 321–323. [Google Scholar] [CrossRef]
- Hamberg, I.; Granqvist, C.G. Evaporated Sn-Doped in2O3Films: Basic Optical Properties and Applications to Energy-Efficient Windows. J. Appl. Phys. 1986, 60, R123–R160. [Google Scholar] [CrossRef]
- Li, S.; Qiao, X.; Chen, J. Effects of oxygen flow on the properties of indium tin oxide films. Mater. Chem. Phys. 2006, 98, 144–147. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Wang, Y.; Wei, X. A AZO/Ag/AZO Transparent Flexible Electrodes on Mica Substrates for High Temperature Application. Ceram. Int. 2017, 43, 15442–15446. [Google Scholar] [CrossRef]
- Zheng, Q.; Kim, J.-K. Graphene for Transparent Conductors; Springer EBooks; Springer: New York, NY, USA, 2015. [Google Scholar]
- Soga, T. Fundamentals of Solar Cell. In Nanostructured Materials for Solar Energy Conversion; Elsevier: Amsterdam, The Netherlands, 2006; pp. 3–43. [Google Scholar]
- Liao, Y.-C. Nanowire Thin Films for Flexible Macroelectronics; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Wu, C.-C. Highly Flexible Touch Screen Panel Fabricated with Silver-Inserted Transparent ITO Triple-Layer Structures. RSC Adv. 2018, 8, 11862–11870. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Chang, C.-Y.; Chen, C.-Y.; Wu, C.-Y.; Shen, C.-Y.; Hwang, R.-C. The Intelligent Control of ITO Bar’s Resistance for Touch Panel. In Proceedings of the 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), Toronto, ON, Canada, 23–24 December 2013; pp. 716–719. [Google Scholar]
- Minami, T.; Oohashi, K.; Takata, S.; Mouri, T.; Ogawa, N. Preparations of ZnO:Al Transparent Conducting Films by D.c. Magnetron Sputtering. Thin Solid Films 1990, 193–194, 721–729. [Google Scholar] [CrossRef]
- Takata, S.; Minami, T.; Nanto, H. The Stability of Aluminium-Doped ZnO Transparent Electrodes Fabricated by Sputtering. Thin Solid Films 1986, 135, 183–187. [Google Scholar] [CrossRef]
- Minami, T.; Miyata, T.; Yamamoto, T. Stability of Transparent Conducting Oxide Films for Use at High Temperatures. J. Vac. Sci. Technol. 1999, 17, 1822–1826. [Google Scholar] [CrossRef]
- Minami, T.; Yamamoto, T.; Miyata, T. Highly Transparent and Conductive Rare Earth-Doped ZnO Thin Films Prepared by Magnetron Sputtering. Thin Solid Films 2000, 366, 63–68. [Google Scholar] [CrossRef]
- Suzuki, S.; Miyata, T.; Ishii, M.; Minami, T. Transparent Conducting V-Co-Doped AZO Thin Films Prepared by Magnetron Sputtering. Thin Solid Films 2003, 434, 14–19. [Google Scholar] [CrossRef]
- Marques, A.C.; Faria, J.; Perdigão, P.; Faustino, B.M.M.; Ritasalo, R.; Costabello, K.; Da Silva, R.C.; Ferreira, I. Stability under Humidity, UV-Light and Bending of AZO Films Deposited by ALD on Kapton. Sci. Rep. 2019, 9, 17919. [Google Scholar] [CrossRef]
Property | Material |
---|---|
Lowest price | SnO2:F |
Least harmful | SnO2:F; ZnO:F |
Optimal resistance to H plasmas | ZnO:F |
Maximum frequency of plasma | In2O3:Sn; TiN; Ag |
Minimum frequency of plasma | ZnO:F; SnO2:F |
Maximum conductivity | In2O3:Sn |
Maximum transparency | Cd2SnO4; ZnO:F |
Maximum work function; best contact to p-Si | ZnSnO3; SnO2:F |
Minimum work function; best contact to n-Si | ZnO:F |
Optimal thermal stability | Cd2SnO4; SnO2:F; TiN |
Optimal chemical durability | SnO2:F |
Optimal mechanical durability | SnO2:F; TiN |
Minimum deposition temperature | ZnO:B; In2O3:Sn; Ag |
Easily etched | TiN; ZnO:F |
Material | Dopant | Resistivity Value |
---|---|---|
ITO | Ta; Nb; W; Zr; Ti; Mo; Ge; Sn | Excellent |
SrTiO3 | La; Nb | Bad |
GaInO3 | Sn; Ge | Average |
CdO | In; Sn | Excellent |
ZnO | Zr; Ti; Ge; Si; In; B; Ga; Al | Excellent |
CdIn2O4 | CdO–In2O3 system | Good |
Zn2SnO4 | ZnO–SnO2 system | Average |
Flow Rate of Oxygen (sccm) | Sheet Resistance (Ω/sq.) | Resistivity (10−4 Ω cm) | Transmittance (%) | Root-Mean-Square Surface Roughness) RMSSR (nm) | Bandgap (eV) | Figure of Merit (10−4 Ω−1) |
---|---|---|---|---|---|---|
8 | 130 | 15.6 | 75 | 0.52 | 4.15 | 4.33 |
10 | 74 | 8.9 | 82 | 0.74 | 4.17 | 18.57 |
12 | 60 | 7.2 | 84 | 0.93 | 4.19 | 29.15 |
14 | 84 | 10.1 | 80 | 0.38 | 4.16 | 12.78 |
Samples | Sheet Resistance (Ω/sq.) | Carrier Concentration (cm−3) | Mobility (cm2/Vs) | Resistivity (Ω·cm) |
---|---|---|---|---|
ITO/glass | 5.3 | 3.3 × 1021 | 10.6 | 1.8 × 10−4 |
ITO/NP–glass | 8 | 1.5 × 1021 | 15.1 | 2.8 × 10−4 |
Material | Plasma Wavelength | Resistivity |
---|---|---|
ZnO:F | >2.0 | 400 |
SnO2:F | >1.6 | 200 |
ZnO:Al | >1.3 | 150 |
Cd2SnO4 | >1.3 | 130 |
In2O3:Sn | >1.0 | 100 |
TiN | 0.7 | 80 |
Ag | 0.4 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, J.; Sharme, R.K.; Quijada, M.A.; Rana, M.M. A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications. Nanomaterials 2024, 14, 2013. https://doi.org/10.3390/nano14242013
Patel J, Sharme RK, Quijada MA, Rana MM. A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications. Nanomaterials. 2024; 14(24):2013. https://doi.org/10.3390/nano14242013
Chicago/Turabian StylePatel, Jessica, Razia Khan Sharme, Manuel A. Quijada, and Mukti M. Rana. 2024. "A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications" Nanomaterials 14, no. 24: 2013. https://doi.org/10.3390/nano14242013
APA StylePatel, J., Sharme, R. K., Quijada, M. A., & Rana, M. M. (2024). A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications. Nanomaterials, 14(24), 2013. https://doi.org/10.3390/nano14242013