Temporal Dynamics of Soil Carbon Stocks and Mineralization Rates in Coffea arabica Agroforestry Systems
<p>Location of the study sites and the distribution of the field sample sites in the Nong Hoi Highland Agricultural Station in Pong Yeang Subdistrict, Muang District, Chiang Mai Province, Thailand.</p> "> Figure 2
<p>Mean temperature (aboveground and belowground) and relative humidity during the experimental period (September 2022 to April 2023).</p> "> Figure 3
<p>Soil characteristics across different land uses in three seasons, namely (<b>a</b>) BD, (<b>b</b>) pH, (<b>c</b>) EC, (<b>d</b>) C (%), (<b>e</b>) N (%), (<b>f</b>) C/N, (<b>g</b>) C stock, (<b>h</b>) STN, (<b>i</b>) available P, (<b>j</b>) exchangeable K, (<b>k</b>) exchangeable Ca, and (<b>l</b>) exchangeable Mg. Note: NF: natural forest; CA: coffee monoculture; CF; coffee combined with forest; CP: Arabica coffee combined with persimmon; BD: bulk density; EC: electrical conductivity; C (%): carbon; N (%): nitrogen; C/N: C:N ratio; P: phosphorus; K: potassium; Ca: calcium; Mg: magnesium. Different letters indicate the significance of different land uses. ns: non-significant level at <span class="html-italic">p</span> > 0.05.</p> "> Figure 4
<p>Soil C stock across the different land uses in three seasons and three depths, with depths of (<b>a</b>) 0–20 cm., (<b>b</b>) 20–40 cm., and (<b>c</b>) 40–60 cm. NF: natural forest; CA: coffee monoculture; CF; coffee combined with forest; CP: Arabica coffee combined with persimmon. Different letters indicate the statistical significance at <span class="html-italic">p</span> < 0.05. ns: non-significant level at <span class="html-italic">p</span> > 0.05.</p> "> Figure 5
<p>Soil stock C stack bar varies according to various land uses in three seasons and three depths, with the (<b>a</b>) rainy season, (<b>b</b>) cold season, and (<b>c</b>) summer season. NF: natural forest; CA: coffee monoculture; CF: coffee combined with forest; CP: Arabica coffee combined with persimmon. Different letters indicate the statistical significance at <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>The results of MBC and DOC for different land uses in three seasons by MBC (<b>a</b>) and DOC (<b>b</b>). NF: natural forest; CA: coffee monoculture; CF: coffee combined with forest; CP: Arabica coffee combined with persimmon; MBC: microbial biomass carbon; DOC: dissolved organic carbon. A, B, and C indicate the statistically significant differences in season at <span class="html-italic">p</span> < 0.05. a and b indicate the statistically significant differences in land use at <span class="html-italic">p</span> < 0.05. ns indicates non-significant differences within group at <span class="html-italic">p</span> < 0.05.</p> "> Figure 7
<p>Result of MR across the different land uses in three seasons, namely the (<b>a</b>) rainy season, (<b>b</b>) cold season, and (<b>c</b>) summer season. NF: natural forest; CA: coffee monoculture; CF: coffee combined with forest; CP: Arabica coffee combined with persimmon; MR: microbial respiration; *: significant; ns: non-significant. Different letters in the table indicate the significance of different land uses. Error bars indicate standard error.</p> "> Figure 8
<p>Mean commutative values of MR across the different land uses in three seasons, namely the (<b>a</b>) rainy season, (<b>b</b>) cold season, and (<b>c</b>) summer season. NF: natural forest; CA: coffee monoculture; CF: coffee combined with forest; CP: Arabica coffee combined with persimmon; MR: microbial respiration; Different letters in the table indicate the significance of different land uses.</p> "> Figure 9
<p>Relationship between soil characteristics with different soil depths of (<b>a</b>) 0–20 cm, (<b>b</b>) 20–40 cm, and (<b>c</b>) 40–60 cm. Note: *** significant at <span class="html-italic">p</span> < 0.001, ** significant at <span class="html-italic">p</span> < 0.01, * significant at <span class="html-italic">p</span> < 0.05. BD: bulk density; C: carbon; N: nitrogen; C/N: C:N ratio; C stock: soil carbon stock; STN: soil total nitrogen; P: available phosphorus; K: exchangeable potassium; Ca: exchangeable calcium; Mg: exchangeable magnesium; MR: microbial respiration; MBC: microbial biomass carbon; DOC: dissolved organic carbon.</p> "> Figure 10
<p>Relationships between C stock and microbial activity for (<b>a</b>) MBC, (<b>b</b>) DOC, and (<b>c</b>) MR. MR: microbial respiration; MBC: microbial biomass carbon; DOC: dissolved organic carbon.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection
2.3. Soil Physicochemical and Microbial Analysis
2.4. Statistical Analyses
3. Result
3.1. Soil Physical and Chemical Characteristics Before Experiment
3.2. Changes in Soil Characteristics Across Different Land Uses and Seasons
3.3. Impacts of Coffee Agroforestry Systems on Soil Carbon Stock
3.4. Impacts of Coffee Agroforestry Systems on Microbial Activity
3.5. Relationships of Soil Parameters Through Linear Regression Correlation and Principal Component Analysis
4. Discussion
4.1. Soil Physical and Chemical Characteristics
4.2. Soil Carbon Stock Across Different Land Use Types
4.3. Soil Microbial Respiration and Microbial Biomass Carbon
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adiyah, F.; Csorba, Á.; Dawoe, E.; Ocansey, C.M.; Asamoah, E.; Szegi, T.; Fuchs, M.; Michéli, E. Soil organic carbon changes under selected agroforestry cocoa systems in Ghana. Geoderma Reg. 2023, 35, e00737. [Google Scholar] [CrossRef]
- Angkasith, P. Coffee production status and potential of organic Arabica coffee in Thailand. AU J. Technol. 2002, 5, 26–28. [Google Scholar]
- Aquino, B.F.; Hanson, R.G. Soil phosphorus supplying capacity evaluated by plant removal and available phosphorus extraction. Soil Sci. Soc. Am. J. 1984, 48, 1091–1096. [Google Scholar] [CrossRef]
- Arun Jyoti, N.; Lal, R.; Das, A.K. Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system. Sci. Total Environ. 2015, 521–522, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Arunrat, N.; Kongsurakan, P.; Solomon, L.W.; Sereenonchai, S. Fire Impacts on Soil Properties and Implications for Sustainability in Rotational Shifting Cultivation: A Review. Agriculture 2024, 14, 1660. [Google Scholar] [CrossRef]
- Bania, J.K.; Sileshi, G.W.; Nath, A.J.; Paramesh, V.; Das, A.K. Spatial distribution of soil organic carbon and macronutrients in the deep soil across a chronosequence of tea agroforestry. Catena 2024, 236, 107760. [Google Scholar] [CrossRef]
- Castro, J.; Fernández-Ondoño, E.; Rodríguez, C.; Lallena, A.M.; Sierra, M.; Aguilar, J. Effects of different olive-grove management systems on the organic carbon and nitrogen content of the soil in Jaén (Spain). Soil Tillage Res. 2008, 98, 56–67. [Google Scholar] [CrossRef]
- Chase, P.; Singh, O.P. Soil nutrients and fertility in three traditional land use systems of Khonoma, Nagaland, India. Resour. Environ. 2014, 4, 181–189. [Google Scholar]
- Chen, C.; Liu, W.; Jiang, X.; Wu, J. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implications for land use. Geoderma 2017, 299, 13–24. [Google Scholar] [CrossRef]
- Ferreiro-Domínguez, N.; Palma, J.H.N.; Paulo, J.A.; Rigueiro-Rodríguez, A.; Mosquera-Losada, M.R. Assessment of soil carbon storage in three land use types of a semi-arid ecosystem in South Portugal. Catena 2022, 213, 106196. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA. Soil Tillage Res. 2005, 83, 120–147. [Google Scholar] [CrossRef]
- Fukuda, M.; Nakamura, S.; Fonseca, A.D.C.L.; Nasukawa, H.; Ibraimo, M.M.; Naruo, K.; Kobayashi, K.; Oya, T. Evaluation of the Mehlich 3 reagent as an extractant for cations and available phosphorus for soils in Mozambique. Commun. Soil Sci. Plant Anal. 2017, 48, 1462–1472. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. 2.4 Particle-size analysis. In Methods of Soil Analysis: Part 4 Physical Methods; Wiley: Hoboken, NJ, USA, 2002; Volume 5, pp. 255–293. [Google Scholar]
- Grüneberg, E.; Ziche, D.; Wellbrock, N. Organic carbon stocks and sequestration rates of forest soils in Germany. Glob. Change Biol. 2014, 20, 2644–2662. [Google Scholar] [CrossRef] [PubMed]
- Guillot, E.; Hinsinger, P.; Dufour, L.; Roy, J.; Bertrand, I. With or without trees: Resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system. Soil Biol. Biochem. 2019, 129, 122–135. [Google Scholar] [CrossRef]
- Heimsch, L.; Huusko, K.; Karhu, K.; Mganga, K.Z.; Kalu, S.; Kulmala, L. Effects of a tree row on greenhouse gas fluxes, growing conditions and soil microbial communities on an oat field in Southern Finland. Agric. Ecosyst. Environ. 2023, 352, 108525. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Blanchart, E.; Skiba, U.; Hénault, C.; Harmand, J.M. Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agric. Ecosyst. Environ. 2012, 148, 102–110. [Google Scholar] [CrossRef]
- Hodges, C.; Araujo, P.I.; Hess, L.J.T.; Vivanco, L.; Kaye, J.; Austin, A.T. Metal cation concentrations improve understanding of controls on soil organic carbon across a precipitation by vegetation gradient in the Patagonian Andes. Geoderma 2023, 440, 116718. [Google Scholar] [CrossRef]
- Jagadesh, M.; Selvi, D.; Thiyageshwari, S.; Srinivasarao, C.; Kalaiselvi, T.; Lourdusamy, K.; Kumaraperumal, R.; Allan, V. Soil Carbon Dynamics Under Different Ecosystems of Ooty Region in the Western Ghats Biodiversity Hotspot of India. J. Soil Sci. Plant Nutr. 2023, 23, 1374–1385. [Google Scholar] [CrossRef]
- Jinger, D.; Kakade, V.; Bhatnagar, P.R.; Paramesh, V.; Dinesh, D.; Singh, G.; Kaushal, R.; Singhal, V.; Rathore, A.C.; Tomar, J.M.S.; et al. Enhancing productivity and sustainability of ravine lands through horti-silviculture and soil moisture conservation: A pathway to land degradation neutrality. J. Environ. Manag. 2024, 364, 121425. [Google Scholar] [CrossRef]
- Kamolrattanakul, K.; Tungkananuruk, K.; Rungratanaubon, T.; Sillberg, C.V. Analytical Approach to Deforestation Effect on Climate Change Using Metadata in Thailand. EnvironmentAsia 2022, 15, 154–165. [Google Scholar]
- Kamthonkiat, D.; Thanyapraneedkul, J.; Nuengjumnong, N.; Ninsawat, S.; Unapumnuk, K.; Vu, T.T. Identifying priority air pollution management areas during the burning season in Nan Province, Northern Thailand. Environ. Dev. Sustain. 2021, 23, 5865–5884. [Google Scholar] [CrossRef]
- Karunaratne, S.; Asanopoulos, C.; Jin, H.; Baldock, J.; Searle, R.; Macdonald, B.; Macdonald, L.M. Estimating the attainable soil organic carbon deficit in the soil fine fraction to inform feasible storage targets and de-risk carbon farming decisions. Soil Res. 2024, 62, SR23096. [Google Scholar] [CrossRef]
- Klute, A. Part 1. Physical and mineralogical methods. In Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1986. [Google Scholar]
- Leifeld, J.; Siebert, S.; Kögel-Knabner, I. Changes in the chemical composition of soil organic matter after application of compost. Eur. J. Soil Sci. 2002, 53, 299–309. [Google Scholar] [CrossRef]
- Lilavanichakul, A. The economic impact of Arabica coffee farmers’ participation in geographical indication in northern Highland of Thailand. J. Rural Probl. 2020, 56, 124–131. [Google Scholar] [CrossRef]
- Llorente, M.; Turrión, M.B. Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur. J. For. Res. 2010, 129, 73–81. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv. Agron. 2005, 88, 35–66. [Google Scholar]
- Lori, M.; Armengot, L.; Schneider, M.; Schneidewind, U.; Bodenhausen, N.; Mäder, P.; Krause, H.M. Organic management enhances soil quality and drives microbial community diversity in cocoa production systems. Sci. Total Environ. 2022, 834, 155223. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.P.; Zhai, P.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Scheel Monteiro, P.M. Ipcc, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Mehta, H.; Rathore, A.C.; Tomar, J.M.S.; Mandal, D.; Kumar, P.; Kumar, S.; Sharma, S.K.; Kaushal, R.; Singh, C.; Chaturvedi, O.P.; et al. Minor millets based agroforestry of multipurpose tree species of Bhimal (Grewia optiva Drummond J.R. ex Burret) and Mulberry (Morus alba L.) for resource conservation and production in north western Himalayas—10-year study. Agric. Ecosyst. Environ. 2024, 359, 108761. [Google Scholar] [CrossRef]
- Melero, S.; López-Garrido, R.; Murillo, J.M.; Moreno, F. Conservation tillage: Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil Tillage Res. 2009, 104, 292–298. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.M.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. In Soil and Tillage Research; Elsevier: Amsterdam, The Netherlands, 2024; Volume 237. [Google Scholar] [CrossRef]
- Stevenson, A.; Zhang, Y.; Huang, J.; Hu, J.; Paustian, K.; Hartemink, A.E. Rates of soil organic carbon change in cultivated and afforested sandy soils. Agric. Ecosyst. Environ. 2024, 360, 108785. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B. Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain). Solid Earth 2014, 5, 299–311. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Wiley: Hoboken, NJ, USA, 1982; Volume 9, pp. 539–579. [Google Scholar]
- Niether, W.; Schneidewind, U.; Fuchs, M.; Schneider, M.; Armengot, L. Below- and aboveground production in cocoa monocultures and agroforestry systems. Sci. Total Environ. 2019, 657, 558–567. [Google Scholar] [CrossRef]
- Noponen, M.R.A.; Healey, J.R.; Soto, G.; Haggar, J.P. Sink or source-The potential of coffee agroforestry systems to sequester atmospheric CO2 into soil organic carbon. Agric. Ecosyst. Environ. 2013, 175, 60–68. [Google Scholar] [CrossRef]
- Noppakoonwong, U.; Khomarwut, C.; Hanthewee, M.; Jarintorn, S.; Hassarungsee, S.; Meesook, S.; Daoruang, C.; Naka, P.; Lertwatanakiat, S.; Satayawut, K. Research and development of Arabica coffee in Thailand. In Proceedings of the 25th International Conference on Coffee Science (ASIC), Armenia, Colombia, 8–13 September 2014; pp. 8–13. [Google Scholar]
- Kisaka, M.O.; Shisanya, C.; Cournac, L.; Manlay, J.R.; Gitari, H.; Muriuki, J. Integrating no-tillage with agroforestry augments soil quality indicators in Kenya’s dry-land agroecosystems. Soil Tillage Res. 2023, 227, 105586. [Google Scholar] [CrossRef]
- Paudel, B.R.; Udawatta, R.P.; Anderson, S.H. Agroforestry and grass buffer effects on soil quality parameters for grazed pasture and row-crop systems. Appl. Soil Ecol. 2011, 48, 125–132. [Google Scholar] [CrossRef]
- Peech, N. Hydrogen ion activity. In Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1965; pp. 914–926. [Google Scholar]
- Primo, A.A.; de Araújo Neto, R.A.; Zeferino, L.B.; Fernandes, F.É.P.; de Araújo Filho, J.A.; Cerri, C.E.P.; de Oliveira, T.S. Slash and burn management and permanent or rotation agroforestry systems: A comparative study for C sequestration by century model simulation. J. Environ. Manag. 2023, 336, 117594. [Google Scholar] [CrossRef] [PubMed]
- Reis dos Santos Bastos, T.; Anjos Bittencourt Barreto-Garcia, P.; de Carvalho Mendes, I.; Henrique Marques Monroe, P.; Ferreira de Carvalho, F. Response of soil microbial biomass and enzyme activity in coffee-based agroforestry systems in a high-altitude tropical climate region of Brazil. Catena 2023, 230, 107270. [Google Scholar] [CrossRef]
- Reynolds, S.G. The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3 Chemical Methods; Wiley: Hoboken, NJ, USA, 1996; Volume 5, pp. 417–435. [Google Scholar]
- Rivest, D.; Lorente, M.; Olivier, A.; Messier, C. Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Sci. Total Environ. 2013, 463–464, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Suárez, J.C.; Rodriguez, W.; Artunduaga, K.J.; Lavelle, P. Agroforestry systems impact soil macroaggregation and enhance carbon storage in Colombian deforested Amazonia. Geoderma 2021, 384, 114810. [Google Scholar] [CrossRef]
- Saikhammoon, R.; Sungkaew, S.; Thinkampaeng, S.; Phumphuang, W.; Kamyo, T.; Marod, D. Forest Restoration in an Abandoned Seasonally Dry Tropical Forest in the Mae Klong Watershed, Western Thailand. Environ. Nat. Resour. J. 2023, 21, 443–457. [Google Scholar] [CrossRef]
- Singh, A.; Choudhury, B.U.; Balusamy, A.; Sahoo, U.K. Restoring the inventory of biomass and soil carbon in abandoned croplands: An agroforestry system approach in India’s eastern Himalayas. Agric. Ecosyst. Environ. 2024, 362, 108843. [Google Scholar] [CrossRef]
- Soleimani, A.; Hosseini, S.M.; Massah Bavani, A.R.; Jafari, M.; Francaviglia, R. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena 2019, 177, 227–237. [Google Scholar] [CrossRef]
- de Souza, H.N.; de Goede, R.G.; Brussaard, L.; Cardoso, I.M.; Duarte, E.M.; Fernandes, R.B.; Gomes, L.C.; Pulleman, M.M. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric. Ecosyst. Environ. 2012, 146, 179–196. [Google Scholar] [CrossRef]
- Steinfeld, J.P.; Bianchi, F.J.; Locatelli, J.L.; Rizzo, R.; de Resende, M.E.B.; Ballester, M.V.R.; Cerri, C.E.; Bernardi, A.C.; Creamer, R.E. Increasing complexity of agroforestry systems benefits nutrient cycling and mineral-associated organic carbon storage, in south-eastern Brazil. Geoderma 2023, 440, 116726. [Google Scholar] [CrossRef]
- Tippayachan, H. The Determination of Cabon Loss by Soil Erosion and Sediment Transport Processes in Mea Thang Watershed, Rong Kwang District, Phrae Province; Mahidol University: Nakhon Pathom, Thailand, 2006. [Google Scholar]
- Tumwebaze, S.B.; Byakagaba, P. Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agric. Ecosyst. Environ. 2016, 216, 188–193. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Kuzyakov, Y.; Stahr, K. Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes. Water Air Soil Pollut. 2004, 158, 401–418. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Villafuerte, A.B.; Soria, R.; Rodríguez-Berbel, N.; Zema, D.A.; Lucas-Borja, M.E.; Ortega, R.; Miralles, I. Short-term evaluation of soil physical, chemical and biochemical properties in an abandoned cropland treated with different soil organic amendments under semiarid conditions. J. Environ. Manag. 2024, 349, 119372. [Google Scholar] [CrossRef]
- Wani, O.A.; Kumar, S.S.; Hussain, N.; Wani, A.I.A.; Babu, S.; Alam, P.; Rashid, M.; Popescu, S.M.; Mansoor, S. Multi-scale processes influencing global carbon storage and land-carbon-climate nexus: A critical review. In Pedosphere; Soil Science Society of China: Nanjing, China, 2023; Volume 33, pp. 250–267. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, H.; Zhao, F.; Chen, C.; Liu, W.; Yang, B.; Zhang, W. Recognizing the role of plant species composition in the modification of soil nutrients and water in rubber agroforestry systems. Sci. Total Environ. 2020, 723, 138042. [Google Scholar] [CrossRef]
- Xiao, C.; Li, P.; Feng, Z. Agricultural expansion and forest retreat in Mainland Southeast Asia since the late 1980s. Land Degrad. Dev. 2023, 34, 5606–5621. [Google Scholar] [CrossRef]
- Zhou, S.; Li, P.; Zhang, Y. Factors influencing and changes in the organic carbon pattern on slope surfaces induced by soil erosion. Soil Tillage Res. 2024, 238, 106001. [Google Scholar] [CrossRef]
- Zipei, L.; Qi, S.; Ndzana, G.M.; Lijun, C.; Yuqi, C.; sheng, L.; Lichao, W. Dynamic of Organic Matter, Nutrient Cycling, and PH in Soil Aggregate Particle Sizes Under Long-Term Cultivation of Camellia Oleifera. J. Soil Sci. Plant Nutr. 2024, 24, 2599–2606. [Google Scholar] [CrossRef]
Land Use × Depth (cm) | Physical Characteristics | Chemical Characteristics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD | Sand | Silt | Clay | pH | EC | C | N | C/N | Available | Exchangeable | |||
P | K | Ca | Mg | ||||||||||
g cm−3 | % | % | % | μS cm−1 | % | % | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | |||
NF 0–20 | 1.11 e | 44.67 cd | 27.33 | 28.00 ef | 5.76 | 49.82 | 2.29 b | 0.19 b | 12.68 | 1.92 d | 461 | 760 | 26.61 |
NF 20–40 | 1.15 e | 50.67 a | 24.67 | 24.67 fg | 5.73 | 34.31 | 1.39 d | 0.13 c | 10.79 | 1.22 d | 327 | 616 | 20.67 |
NF 40–60 | 1.23 cd | 36.00 g | 16.67 | 47.33 a | 5.39 | 27.55 | 0.91 fg | 0.09 d | 11.26 | 0.49 d | 301 | 520 | 17.05 |
CA 0–20 | 1.30 ab | 40.00 efg | 28.67 | 31.33 cde | 5.95 | 64.73 | 1.76 c | 0.15 c | 12.15 | 43.14 a | 251 | 1116 | 10.59 |
CA 20–40 | 1.33 a | 50.00 ab | 26.00 | 24.00 fg | 5.95 | 44.63 | 0.99 fg | 0.09 d | 10.87 | 20.73 b | 274 | 801 | 7.03 |
CA 40–60 | 1.31 a | 46.00 bc | 22.67 | 31.33 cde | 6.07 | 45.18 | 0.91 fg | 0.09 d | 11.63 | 4.67 cd | 255 | 779 | 7.13 |
CF 0–20 | 1.12 e | 41.33 def | 20.67 | 38.00 b | 6.12 | 76.38 | 2.68 a | 0.25 a | 11.36 | 5.97 cd | 380 | 1889 | 37.91 |
CF 20–40 | 1.24 bcd | 44.00 cde | 26.00 | 30.00 de | 6.22 | 52.62 | 1.36 de | 0.13 c | 10.29 | 1.55 d | 341 | 1293 | 28.56 |
CF 40–60 | 1.27 abcd | 44.00 cde | 21.33 | 34.67 bcd | 6.21 | 41.82 | 0.97 fg | 0.09 d | 10.52 | 1.00 d | 385 | 1128 | 25.85 |
CP 0–20 | 1.22 d | 50.00 ab | 28.00 | 22.00 g | 5.92 | 55.95 | 1.81 c | 0.16 bc | 11.68 | 8.93 c | 417 | 1430 | 15.29 |
CP 20–40 | 1.28 abc | 38.67 fg | 26.67 | 34.67 bcd | 5.92 | 43.99 | 1.12 fg | 0.10 d | 12.05 | 4.45 cd | 338 | 1151 | 8.83 |
CP 40–60 | 1.32 a | 43.33 def | 28.67 | 35.33 bc | 5.84 | 41.23 | 0.76 g | 0.08 d | 10.25 | 0.88 d | 319 | 1031 | 6.63 |
p values | 0.013 | 0 | 0.112 | 0 | 0.67 | 0.530 | 0 | 0 | 0.890 | 0 | 0.358 | 0.094 | 0.403 |
F-test0.05 | * | * | ns | * | ns | ns | * | * | ns | * | ns | ns | ns |
CV | 5.21 | 6.24 | 16.14 | 9.14 | 7.66 | 30.37 | 19.43 | 23.88 | 27.72 | 82.71 | 37.75 | 26.07 | 31.24 |
Depth (cm) | Carbon Stock (t C ha−1) | Carbon Stock (t C ha−1) | Δ Carbon Stock (t C ha−1) | Change Loss | % Change | p-Value |
---|---|---|---|---|---|---|
NF | CA | |||||
0–20 | 51.03 ± 2.61 | 45.83 ± 2.70 | −5.20 ± 1.14 | − | 10.18 | 0.002 |
20–40 | 32.06 ± 2.15 | 26.44 ± 2.97 | −5.62 ± 3.60 | − | 17.53 | 0.157 |
40–60 | 22.59 ± 1.27 | 23.83 ± 2.55 | 1.24 ± 3.04 | + | 5.48 | 0.694 |
0–60 | 105.68 ± 4.49 | 96.10 ± 5.56 | −9.58 ± 4.64 | − | 9.06 | 0.073 |
NF | CF | |||||
0–20 | 51.03 ± 2.61 | 59.78 ± 2.72 | 8.75 ± 4.10 | + | 17.15 | 0.065 |
20–40 | 32.06 ± 2.15 | 33.93 ± 2.50 | 1.87 ± 1.37 | + | 5.84 | 0.208 |
40–60 | 22.59 ± 1.27 | 24.76 ± 1.50 | 2.16 ± 1.37 | + | 9.57 | 0.153 |
0–60 | 105.68 ± 4.49 | 118.47 ± 3.73 | 12.79 ± 3.15 | + | 12.10 | 0.004 |
NF | CP | |||||
0–20 | 51.03 ± 2.61 | 44.13 ± 1.33 | −6.90 ± 2.68 | − | 13.51 | 0.033 |
20–40 | 32.06 ± 2.15 | 28.88 ± 3.56 | −3.18 ± 2.89 | − | 9.92 | 0.304 |
40–60 | 22.59 ± 1.27 | 20.11 ± 1.62 | −2.49 ± 2.26 | − | 11.02 | 0.304 |
0–60 | 105.68 ± 4.49 | 93.12 ± 5.25 | −12.56 ± 5.09 | − | 11.89 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soilueang, P.; Chromkaew, Y.; Mawan, N.; Wicharuck, S.; Kullachonphuri, S.; Buachun, S.; Wu, Y.-T.; Chen, Y.; Iamsaard, K.; Khongdee, N. Temporal Dynamics of Soil Carbon Stocks and Mineralization Rates in Coffea arabica Agroforestry Systems. Agriculture 2025, 15, 14. https://doi.org/10.3390/agriculture15010014
Soilueang P, Chromkaew Y, Mawan N, Wicharuck S, Kullachonphuri S, Buachun S, Wu Y-T, Chen Y, Iamsaard K, Khongdee N. Temporal Dynamics of Soil Carbon Stocks and Mineralization Rates in Coffea arabica Agroforestry Systems. Agriculture. 2025; 15(1):14. https://doi.org/10.3390/agriculture15010014
Chicago/Turabian StyleSoilueang, Phonlawat, Yupa Chromkaew, Nipon Mawan, Suwimon Wicharuck, Sasiprapa Kullachonphuri, Sureerat Buachun, Yu-Ting Wu, Yaoliang Chen, Kesinee Iamsaard, and Nuttapon Khongdee. 2025. "Temporal Dynamics of Soil Carbon Stocks and Mineralization Rates in Coffea arabica Agroforestry Systems" Agriculture 15, no. 1: 14. https://doi.org/10.3390/agriculture15010014
APA StyleSoilueang, P., Chromkaew, Y., Mawan, N., Wicharuck, S., Kullachonphuri, S., Buachun, S., Wu, Y. -T., Chen, Y., Iamsaard, K., & Khongdee, N. (2025). Temporal Dynamics of Soil Carbon Stocks and Mineralization Rates in Coffea arabica Agroforestry Systems. Agriculture, 15(1), 14. https://doi.org/10.3390/agriculture15010014