Fusarium Species Shifts in Maize Grain as a Response to Climatic Changes in Poland
<p>Geographic localities where pathogen surveys were conducted (grain samples collected). Localities were visualized using the GinkoMaps project (<a href="http://www.ginkgomaps.com" target="_blank">http://www.ginkgomaps.com</a> accessed on 9 October 2024). Grain samples collected in localities (L1–L16) represented the north-western (NW), north-eastern (NE), central (C), central-western (CW), south-eastern (SE) and south-western (SW) regions of Poland. The SW region was represented by L1 sampled during 2015–2018, L2 sampled from 2016 to 2018 and L3 in 2016 and 2017; the NW region was represented by L5 sampled during 2015–2018, and L15 and L16 sampled in 2015; the SE was represented by L4 sampled in 2018; the NE was represented by L13 and L14 sampled 2015–2018; and the C region was represented by L6, L9 sampled during 2015–2018 and L11 sampled in 2018.</p> "> Figure 2
<p>Average frequency of <span class="html-italic">Fusarium</span> isolates isolated from <span class="html-italic">n</span> = 233 grain samples, each sample representing <span class="html-italic">n</span> = 50 grains, collected from sixteen localities in Poland individually during 2015 (<span class="html-italic">n</span> = 43), 2016 (<span class="html-italic">n</span> = 56), 2017 (<span class="html-italic">n</span> = 86) and 2018 (<span class="html-italic">n</span> = 50).</p> "> Figure 3
<p>Average and maximum frequency of <span class="html-italic">Fusarium</span> isolates isolated from <span class="html-italic">n</span> = 233 grain samples, each sample representing <span class="html-italic">n</span> = 50 grains, collected from sixteen localities during 2015 (<span class="html-italic">n</span> = 54), 2016 (<span class="html-italic">n</span> = 54), 2017 (<span class="html-italic">n</span> = 86) and 2018 (<span class="html-italic">n</span> = 50). Bars represent standard deviation (<span class="html-italic">SD</span>).</p> "> Figure 4
<p>Average and maximum frequency of <span class="html-italic">Fusarium</span> species individually isolated from <span class="html-italic">n</span> = 233 grain samples, each sample representing <span class="html-italic">n</span> = 50 grains, collected from sixteen localities in 2015, 2016, 2017 and 2018, respectively. (<b>A</b>) Average and maximum frequency of <span class="html-italic">Fusarium</span> isolates in 2015 (<span class="html-italic">n</span> = 43). (<b>B</b>) Average and maximum frequency of <span class="html-italic">Fusarium</span> isolates in 2016 (<span class="html-italic">n</span> = 54). (<b>C</b>) Average and maximum frequency of <span class="html-italic">Fusarium</span> isolates in 2017 (<span class="html-italic">n</span> = 86). (<b>D</b>) Average and maximum frequency of <span class="html-italic">Fusarium</span> isolates in 2018 (<span class="html-italic">n</span> = 50). Bars represent standard deviation (<span class="html-italic">SD</span>).</p> "> Figure 5
<p>Average and maximum frequency of <span class="html-italic">Fusarium</span> isolates isolated from <span class="html-italic">n</span> = 233 grain samples, each sample representing <span class="html-italic">n</span> = 50 grains, collected from sixteen localities (L) during 2015 (<span class="html-italic">n</span> = 43), 2016 (<span class="html-italic">n</span> = 54), 2017 (<span class="html-italic">n</span> = 86) and 2018 (<span class="html-italic">n</span> = 50). Bars represent standard deviation (<span class="html-italic">SD</span>).</p> "> Figure 6
<p>Average and maximum frequency of <span class="html-italic">Fusarium</span> isolates isolated from <span class="html-italic">n</span> = 233 grain samples, each sample representing <span class="html-italic">n</span> = 50 grains, collected from sixteen localities (L) individually in 2015, 2016, 2017 and 2018, respectively. (<b>A</b>) Average and maximum <span class="html-italic">Fusarium</span> isolate frequency in 2015 (<span class="html-italic">n</span> = 43). (<b>B</b>) Average and maximum <span class="html-italic">Fusarium</span> isolate frequency in 2016 (<span class="html-italic">n</span> = 54). (<b>C</b>) Average and maximum <span class="html-italic">Fusarium</span> isolate frequency in 2017 (<span class="html-italic">n</span> = 86). (<b>D</b>) Average and maximum <span class="html-italic">Fusarium</span> isolate frequency in 2018 (<span class="html-italic">n</span> = 50). Bars represent standard deviation (<span class="html-italic">SD</span>).</p> "> Figure 7
<p>Projections of the scores for the frequency of <span class="html-italic">Fusarium</span> isolated from grain samples in 2015 and weather conditions in sampled localities onto the PC1 and PC2 factor planes, and projections of the scores for localities (L) onto the PC1 and PC2 factor planes in 2015. (<b>A</b>) PCA score plot of PC1 and PC2 factors representing correlations among the frequency of <span class="html-italic">Fusarium</span> species isolates (%) isolated from <span class="html-italic">n</span> = 43 grain samples (<span class="html-italic">n</span> = 50 grains per sample) and weather conditions in the sampled localities (number of days with temperatures T > 22 °C, T: 19–22 °C and T < 19 °C, and number of days with precipitation above 0.0 mm/m<sup>2</sup> during maize reproductive stages from R1, silking time stage, to R6, physiological maturity stage—June, July, August, September). (<b>B</b>) PCA score plot of PC1 and PC2 factors representing the relationship between localities (L1–L11) based on isolated <span class="html-italic">Fusarium</span> spp. frequency and weather condition data.</p> "> Figure 8
<p>Projections of the scores for the frequency of <span class="html-italic">Fusarium</span> isolated from grain samples in 2016 and weather conditions in sampled localities onto the PC1 and PC2 factor planes, and projections of the scores for localities (L) onto the PC1 and PC2 factor planes in 2016. (<b>A</b>) PCA score plot of PC1 and PC2 factors representing correlations among the frequency of <span class="html-italic">Fusarium</span> species isolates (%) isolated from <span class="html-italic">n</span> = 54 grain samples (<span class="html-italic">n</span> = 50 grains per sample) and weather conditions in sampled localities (number of days with temperatures T > 22 °C, T: 19–22 °C and T < 19 °C, and number of days with precipitation above 0.0 mm/m<sup>2</sup> during maize reproductive stages from R1,silking time stage, to R6, physiological maturity stage—June, July, August, September). (<b>B</b>) PCA score plot of PC1 and PC2 factors representing the relationship between localities (L1–L14 except L5 and L11) based on isolated <span class="html-italic">Fusarium</span> spp. frequency and weather condition data.</p> "> Figure 9
<p>Projections of the scores for the frequency of <span class="html-italic">Fusarium</span> isolated from grain samples in 2017 and weather conditions in sampled localities onto the PC1 and PC2 factor planes, and projections of the scores for localities (L) onto the PC1 and PC2 factor planes in 2017. (<b>A</b>) PCA score plot of PC1 and PC2 factors representing correlations among the frequency of <span class="html-italic">Fusarium</span> species isolates (%) isolated from <span class="html-italic">n</span> = 86 grain samples (<span class="html-italic">n</span> = 50 grains per sample) and weather conditions in sampled localities (number of days with temperatures T > 22 °C, T: 19–22 °C and T < 19 °C, and number of days with precipitation above 0.0 mm/m<sup>2</sup> during maize reproductive stages from R1, silking time stage, to R6, physiological maturity stage—June, July, August, September). (<b>B</b>) PCA score plot of PC1 and PC2 factors representing the relationship between localities (L1–L12 except L10) based on isolated <span class="html-italic">Fusarium</span> spp. frequency and weather condition data.</p> "> Figure 10
<p>Projections of the scores for the frequency of <span class="html-italic">Fusarium</span> isolated from grain samples in 2018 and weather conditions in sampled localities onto the PC1 and PC2 factor planes, and projections of the scores for localities (L) onto the PC1 and PC2 factor planes in 2018. (<b>A</b>) PCA score plot of PC1 and PC2 factors representing correlations among the frequency of <span class="html-italic">Fusarium</span> species isolates (%) isolated from <span class="html-italic">n</span> = 50 grain samples (<span class="html-italic">n</span> = 50 grains per) and weather conditions in sampled localities (number of days with temperatures T > 22 °C, T: 19–22 °C and T < 19 °C, and number of days with precipitation above 0.0 mm/m<sup>2</sup> during maize reproductive stages from R1, silking time stage, to R6, physiological maturity stage—une, July, August, September). (<b>B</b>) PCA score plot of PC1 and PC2 factors representing the relationship between localities (L1–L12 except L8) based on isolated <span class="html-italic">Fusarium</span> spp. frequency and weather condition data.</p> "> Figure 11
<p>Projections of the scores for <span class="html-italic">Fusarium</span> frequency isolates isolated from grain samples (<span class="html-italic">n</span> = 233, <span class="html-italic">n</span> = 50 grains in each sample) using PCA and geographic localization data variables (latitude [(ϕ)], longitude [λ], altitude [m.pm]). (<b>A</b>) PCA score plot of PC1 and PC2 factors representing correlations among the frequency of <span class="html-italic">Fusarium</span> species isolates and geographic localization data variables. (<b>B</b>) PCA score plot of PC1 and PC2 factors representing the relationship between localities (L1–L15) based on isolated <span class="html-italic">Fusarium</span> spp. frequency and geographic localization data variables.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maize Grain Sampling
2.2. Sampled Environments
2.3. Fusarium Species Isolation
2.4. Fungal Species Identification
2.5. Meteorological Data
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Fusarium Species in Maize Sampes Collected during 2015–2018
3.2.1. Fusarium fujikuori Species Complex (FFSC) Frequency
3.2.2. Fusarium sambucinum Species Complex (FSAMSC) Frequency
3.2.3. Fusarium sporotrichioides—F. poae Species Complex (FSP) Frequency
3.2.4. Other Fusarium Species
3.3. Correlations and Associations Observed between the Frequencies of Fusarium Species,
3.4. Correlations and Associations Observed between the Frequencies of Fusarium Species and Weather Conditions
3.5. Correlations and Associations Observed between Fusarium spp. Frequencies and Geographic Region of Poland
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOStat. FAO Stat; FAO: Rome, Italy, 2021; Available online: http://www.fao.org/faostat (accessed on 7 September 2021).
- OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, French, 2021. [CrossRef]
- Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Perincherry, L.; Lalak-Kánczugowska, J.; Stepién, L. Fusarium-produced mycotoxins in plant-pathogen interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Pierzgalski, A.; Zapaśnik, A.; Uwineza, P.A.; Ksieniewicz-Woźniak, E.; Modrzewska, M.; Waśkiewicz, A. Recent research on Fusarium mycotoxins in maize—A review. Foods 2022, 11, 3465. [Google Scholar] [CrossRef] [PubMed]
- Dinolfo, M.I.; Martínez, M.; Castañares, E.; Arata, A.F. Fusarium in maize during harvest and storage: A review of species involved, mycotoxins, and management strategies to reduce contamination. Eur. J. Plant Pathol. 2022, 164, 151–166. [Google Scholar] [CrossRef]
- Meyer-Wolfarth, F.; Oldenburg, E.; Meiners, T.; Muñoz, K.; Schrader, S. Effects of temperature and soil fauna on the reduction and leaching of deoxynivalenol and zearalenone from Fusarium graminearum-infected maize stubbles. Mycotoxin Res. 2021, 37, 249–263. [Google Scholar] [CrossRef]
- Pandey, A.K.; Samota, M.K.; Kumar, A.; Silva, A.S.; Dubey, N.K. Fungal mycotoxins in food commodities: Present status and future concerns. Front. Sustain. Food Syst. 2023, 7, 1162595. [Google Scholar] [CrossRef]
- Vandicke, J.; De Visschere, K.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Mycotoxins in Flanders’ Fields: Occurrence and correlations with Fusarium species in whole-plant harvested maize. Microorganisms 2019, 7, 571. [Google Scholar] [CrossRef]
- Leite, M.; Freitas, A.; Silva, A.S.; Barbosa, J.; Ramos, F. Maize food chain and mycotoxins: A Review on occurrence studies. Trends Food Sci. Technol. 2021, 115, 307–331. [Google Scholar] [CrossRef]
- Lin, C.; Feng, X.-L.; Liu, Y.; Li, Z.-C.; Li, X.Z.; Qi, J. Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic Fusarium. J. Fungi 2023, 9, 850. [Google Scholar] [CrossRef]
- Angulo, C.; Rötter, R.; Lock, R.; Enders, A.; Fronzek, S.; Ewert, F. Implication of crop model calibration strategies for assessing regional Impacts of Climate Change in Europe. Agric. For. Meteorol. 2013, 170, 32–46. [Google Scholar] [CrossRef]
- Juroszek, P.; Von Tiedemann, A. Linking plant disease models to climate change scenarios to project future risks of crop diseases: A Review. J. Plant Dis. Prot. 2015, 122, 3–15. [Google Scholar] [CrossRef]
- Leggieri, M.C.; Toscano, P.; Battilani, P. Predicted aflatoxin B1 increase in Europe due to climate change: Actions and reactions at global level. Toxins 2021, 13, 292. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.F.; Jiranek, J.; Brownell, M.; Coffey, S.; Gray, B.; Stahl, M.; Metcalf, C.J.E. Predicting the effects of climate change on the cross-scale epidemiological dynamics of a fungal plant pathogen. Sci. Rep. 2022, 12, 14823. [Google Scholar] [CrossRef]
- Czembor, E.; Tratwal, A.; Pukacki, J.; Krystek, M.; Czembor, J. Managing fungal pathogens in sustainable agriculture using internet applications. AgroVariety: A case study from Poland. J. Plant. Protect Res. 2025; in press. [Google Scholar]
- Wani, S.H.; Dar, Z.A.; Singh, G.P. Maize Improvement: Current Advances in Yield, Quality, and Stress Tolerance under Changing Climatic Scenarios; Springer: Berlin/Heidelberg, Germany, 2023; ISBN 9783031216404. [Google Scholar]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–652. [Google Scholar] [CrossRef]
- O’Donnell, K.; Ward, T.J.; Robert, V.A.R.G.; Crous, P.W.; Geiser, D.M.; Kang, S. DNA sequence-based identification of Fusarium: Current status and future directions. Phytoparasitica 2015, 43, 583–595. [Google Scholar] [CrossRef]
- O’Donnell, K.; Whitaker, B.K.; Laraba, I.; Proctor, R.H.; Brown, D.W.; Broders, K.; Kim, H.S.; McCormick, S.P.; Busman, M.; Aoki, T.; et al. DNA Sequence-Based identification of Fusarium: A work in progress. Plant Dis. 2022, 106, 1597–1609. [Google Scholar] [CrossRef]
- Chen, X.; Abdallah, M.F.; Landschoot, S.; Audenaert, K.; De Saeger, S.; Chen, X.; Rajkovic, S. Aspergillus flavus and Fusarium verticillioides and their main mycotoxins: Global distribution and scenarios of interactions in maize. Toxins 2023, 15, 577. [Google Scholar] [CrossRef]
- Scauflaire, J.; Gourgue, M.; Callebaut, A.; Munaut, F. Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur. J. Plant Pathol. 2012, 133, 911–922. [Google Scholar] [CrossRef]
- Logrieco, A.; Mule, G.; Moretti, A.; Bottalico, A. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Path. 2002, 108, 597–609. [Google Scholar] [CrossRef]
- Stepień, Ł.; Gromeradzka, K.; Chełkowski, J.; Basińska-Barczak, A.; Lalak-Kończugowska, J. Diversity and mycotoxin production by Fusarium temperatum and Fusarium subglutinans as casual agents of pre-harvest Fusarium maize ear rot in Poland. J. Appl. Genet. 2019, 60, 113–121. [Google Scholar] [CrossRef]
- Jabłońska, E.; Piątek, K.; Wit, M.; Mirzwa-Mróz, E.; Wakuliński, W. Molecular diversity of the Fusarium fujikuroi species complex from maize. Eur. J. Plant Pathol. 2020, 158, 859–877. [Google Scholar] [CrossRef]
- Castañares, E.; Albuquerque, D.R.; Dinolfo, M.I.; Pinto, V.F.; Patriarca, A.; Stenglein, S.A. Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina. Int. J. Food Microbiol. 2014, 179, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Castañares, E.; Dinolfo, M.I.; Del Ponte, E.M.; Pan, D.; Stenglein, S.A. Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America. Plant Pathol. 2016, 65, 930–939. [Google Scholar] [CrossRef]
- Pasquali, M.; Beyer, M.; Logrieco, A.; Audenaert, K.; Balmas, V.; Basler, R.; Boutigny, A.L.; Czembor, E.; Chrpova, J.; Gagkaeva, T.; et al. A European database of Fusarium graminearum and F. culmorum trichothecene genotypes. Front. Microbiol. 2016, 7, 406. [Google Scholar] [CrossRef]
- Mahato, D.K.; Devi, S.; Pandhi, S.; Sharma, B.; Maurya, K.K.; Mishra, S.; Dhawan, K.; Selvakumar, R.; Kamle, M.; Mishra, A.K.; et al. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins 2021, 13, 92. [Google Scholar] [CrossRef]
- Mesterhazy, A. Food safety aspects of breeding maize to multi-resistance against the major (Fusarium graminearum, F. verticillioides, Aspergillus flavus) and minor toxigenic fungi (Fusarium spp.) as well as to toxin accumulation, trends, and solutions—A review. J. Fungi 2024, 10, 40. [Google Scholar] [CrossRef]
- Torp, M.; Langseth, W. Production of T-2 toxin by a Fusarium resembling Fusarium poae. Mycopathologia 1999, 147, 89–96. [Google Scholar] [CrossRef]
- Imathiu, S.M.; Edwards, S.G.; Ray, R.V.; Back, M.A. Fusarium langsethiae—A HT-2 and T-2 toxins producer that needs more attention. J. Phytopathol. 2013, 161, 1–10. [Google Scholar] [CrossRef]
- Beyer, M.; Pogoda, F.; Pallez, M.; Lazic, J.; Hoffmann, L.; Pasquali, M. Evidence for a reversible drought induced shift in the species composition of mycotoxin producing Fusarium Head Blight pathogens isolated from symptomatic wheat heads. Int. J. Food Microbiol. 2014, 182–183, 51–56. [Google Scholar] [CrossRef]
- Czembor, E.; Stępień, Ł.; Waśkiewicz, A. Effect of environmental factors on Fusarium species and associated mycotoxins in maize grain grown in Poland. PLoS ONE 2015, 10, e0133644. [Google Scholar] [CrossRef]
- Stępień, Ł.; Koczyk, G.; Waśkiewicz, A. Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J. Appl. Genet. 2011, 52, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Popovski, S.; Celar, F.A. The impact of environmental factors on the infection of cereals with Fusarium species and mycotoxin production—A review. Acta Agric. Slov. 2013, 101, 105–116. [Google Scholar] [CrossRef]
- Yli-Mattila, T.; Rämö, S.; Hietaniemi, V.; Hussien, T.; Carlobos-Lopez, A.L.; Cumagun, C.J.R. Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms 2013, 1, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Maurer, A.; Draba, V.; Jiang, Y.; Schnaithmann, F.; Sharma, R.; Schumann, E.; Kilian, B.; Reif, J.C.; Pillen, K. Modelling the genetic architecture of flowering time control in barley through nested sssociation mapping. BMC Genom. 2015, 16, 290. [Google Scholar] [CrossRef]
- Czembor, E.; Waśkiewicz, A.; Piechota, U.; Puchta, M.; Czembor, J.H.; Stępień, Ł. Differences in ear rot resistance and Fusarium verticillioides-produced fumonisin contamination between Polish currently and historically used maize inbred lines. Front. Microbiol. 2019, 10, 431317. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.J.; Okoth, S.; Flett, B.C.; Janse van Rensburg, B.; Viljoen, A. Preharvest management strategies and their impact on mycotoxigenic fungi and associated mycotoxins. In Mycotoxins–Impact and Management Strategies; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Miedaner, T.; Juroszek, P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor. Appl. Genet. 2021, 134, 1771–1785. [Google Scholar] [CrossRef]
- Martínez-Fraca, J.; de la Torre-Hernández, M.E.; Meshoulam-Alamilla, M. In search of resistance against Fusarium Ear Rot: Ferulic acid contents in maize pericarp are associated with antifungal activity and inhibition of fumonisin production. Front. Plant Sci. 2022, 13, 852257. [Google Scholar] [CrossRef] [PubMed]
- Richard, B.; Qi, A.; Fitt, B.D.L. Control of crop diseases through integrated crop management to deliver climate-smart farming systems for low- and high-input crop production. Plant Pathol. 2022, 71, 187–206. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Muzolf-Panek, M.; Stępień, Ł.; Czembor, E.; Uwineza, P.A.; Górnaś, P.; Bryła, M. Variation in tocochromanols level and mycotoxins content in sweet maize cultivars after inoculation with Fusarium verticillioides and F. proliferatum. Foods 2022, 11, 2781. [Google Scholar] [CrossRef]
- Magarini, A.; Passera, A.; Ghidoli, M.; Casati, P.; Pilu, R. Genetics and environmental factors associated with resistance to Fusarium graminearum, the causal agent of Gibberella Ear Rot in maize. Agronomy 2023, 13, 1836. [Google Scholar] [CrossRef]
- Kostecki, M.; Grabarkiewicz-Szczęsna, J.; Chełkowski, J.; Wiśniewska, H. Beauvericin and moniliformin production by Polish isolates of Fusarium subglutinans and natural cooccurrence of both mycotoxins in maize samples. Microbiol. Aliment. Nutr. 1995, 13, 67–70. [Google Scholar]
- Kostecki, M.; Wisniewska, H.; Perrone, G.; Ritieni, A.; Golinski, P.; Chelkowski, J.; Logrieco, A. The effects of cereal substrate and temperature on production of beauvericin, moniliformin and fusaproliferin by Fusarium subglutinans ITEM-1434. Food Addit. Contam. 1999, 16, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Chełkowski, J. Mycotoxins associated with corn cob fusariosis. In Topics in Secondary Metabolism Fusarium; Czełkowski, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1989; Volume 2, pp. 53–62. [Google Scholar] [CrossRef]
- Gromadzka, K.; Górna, K.; Chełkowski, J.; Waśkiewicz, A. Mycotoxins and related Fusarium species in preharvest maize ear rot in Poland. Plant Soil. Environ. 2016, 62, 348–354. [Google Scholar] [CrossRef]
- Gromadzka, K.; Błaszczyk, L.; Chełkowski, J.; Waśkiewicz, A. Occurrence of mycotoxigenic Fusarium species and competitive fungi on preharvest maize ear rot in Poland. Toxins 2019, 11, 224. [Google Scholar] [CrossRef]
- Czembor, E.; Stepień, Ł.; Waśkiewicz, A. Fusarium temperatum as a new species causing ear rot on maize in Poland. Plant Dis. 2014, 98, 1001. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Hoboken, NJ, USA, 2006; p. 388. [Google Scholar]
- Stępień, Ł.; Koczyk, G.; Waśkiewicz, A. FUM cluster divergence in fumonisins-producing Fusarium species. Fungal Biol. 2011, 115, 112–123. [Google Scholar] [CrossRef]
- Stępień, Ł.; Jestoi, M.; Chełkowski, J. Cyclic hexadepsipeptides in wheat field samples and esyn1 gene divergence among enniatin producing Fusarium avenaceum strains. World Mycotoxin J. 2013, 6, 399–409. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef]
- Djido, A.; Zougmoré, R.B.; Houessionon, P.; Ouédraogo, M.; Ouédraogo, I.; Seynabou Diouf, N. To what extent do weather and climate cnformation services drive the adoption of alimate-smart agriculture practices in Ghana? Clim. Risk Manag. 2021, 32, 100309. [Google Scholar] [CrossRef]
- Alexander, S.; Block, P. Integration of seasonal precipitation forecast information into local-level agricultural decision-making using an agent-based model to support community adaptation. Clim. Risk Manag. 2022, 36, 100417. [Google Scholar] [CrossRef]
- Torres-Cruz, T.J.; Whitaker, B.K.; Proctor, R.H.; Broders, K.; Laraba, I.; Kim, H.; Brown, D.W.; Donnell, K.O.; Estrada-Rodr, T.L.; Lee, Y.; et al. FUSARIUM-ID v.3.0: An updated, downloadable resource for Fusarium species identification. Plant Dis. 2022, 106, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, S.; Scarpino, V.; Lanzanova, C.; Romano, E.; Reyneri, A. Multi-mycotoxin long-term monitoring survey on north-Italian maize over an 11-Year period (2011–2021): The Co-occurrence of regulated, masked and emerging mycotoxins and fungal metabolites. Toxins 2022, 14, 520. [Google Scholar] [CrossRef]
- Scauflaire, J.; Mahieu, O.; Louvieaux, J.; Foucart, G.; Renard, F.; Munaut, F. Biodiversity of Fusarium species in ears and stalks of maize plants in Belgium. Eur. J. Plant Pathol. 2011, 131, 59–66. [Google Scholar] [CrossRef]
- Robertson, L.A.; Kleinschmidt, C.E.; White, D.G.; Payne, G.A.; Maragos, C.M.; Holland, J.B. Heritabilities and correlations of Fusarium ear rot resistance and fumonisin contamination resistance in two maize populations. Crop Sci. 2006, 46, 353–361. [Google Scholar] [CrossRef]
- Boutigny, A.L.; Scauflaire, J.; Ballois, N.; Ioos, R. Fusarium temperatum isolated from maize in France. Eur. J. Plant Pathol. 2017, 148, 997–1001. [Google Scholar] [CrossRef]
- Basler, R. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat. PeerJ 2016, 4, e2143. [Google Scholar] [CrossRef]
- Goertz, A.; Zuehlke, S.; Spiteller, M.; Steiner, U.; Dehne, H.W.; Waalwijk, C.; de Vries, I.; Oerke, E.C. Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur. J. Plant Pathol. 2010, 128, 101–111. [Google Scholar] [CrossRef]
- Aguín, O.; Cao, A.; Pintos, C.; Santiago, R.; Mansilla, P.; Butrón, A. Occurrence of Fusarium species in maize kernels grown in Northwestern Spain. Plant Pathol. 2014, 63, 946–951. [Google Scholar] [CrossRef]
- Dorn, B.; Forrer, H.R.; Schürch, S.; Vogelgsang, S. Fusarium species complex on maize in Switzerland: Occurrence, prevalence, impact and mycotoxins in commercial hybrids under natural infection. Eur. J. Plant Pathol. 2009, 125, 51–61. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhang, J.B.; Li, H.P.; Gong, A.D.; Xue, S.; Agboola, R.S.; Liao, Y.C. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. J. Phytopathol. 2014, 162, 147–157. [Google Scholar] [CrossRef]
- Qiu, J.; Xu, J.; Dong, F.; Yin, X.; Shi, J. Isolation and characterization of Fusarium verticillioides from maize in Eastern China. Eur. J. Plant Pathol. 2015, 142, 791–800. [Google Scholar] [CrossRef]
- Fumero, M.V.; Reynoso, M.M.; Chulze, S. Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina. Int. J. Food Microbiol. 2015, 199, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Nayaka, S.C.; Shankar, A.C.U.; Niranjana, S.R.; Wulff, E.G.; Mortensen, C.N.; Prakash, H.S. Detection and quantification of fumonisins from Fusarium verticillioides in maize grown in Southern India. World J. Microbiol. Biotechnol. 2010, 26, 71–78. [Google Scholar] [CrossRef]
- Bottalico, A. Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. J. Plant Pathol. 1998, 80, 85–103. [Google Scholar]
Variable | F. proliferatum | F. subglutinans | F. temperatum | F. graminearum | F. culmorum | F. sporotrichioides | F. poae | F. avenaceum | F. oxysporum | F. equiseti | F. tricinctum |
---|---|---|---|---|---|---|---|---|---|---|---|
F. verticillioides | 0.09 | 0.17 | 0.11 | 0.22 | 0.07 | −0.02 | 0.03 | 0.06 | 0.17 | 0.0 | 0.02 |
F. proliferatum | 1.00 | −0.09 | 0.23 | 0.036 | 0.0 | 0.14 | 0.22 | 0.21 | 0.11 | 0.05 | 0.01 |
F. subglutinans | 1.00 | 0.08 | 0.03 | −0.01 | −0.02 | 0.23 | −0.11 | −0.03 | −0.03 | 0.03 | |
F. temperatum | 1.00 | −0.13 | 0.3 | 0.09 | 0.05 | 0.24 | −0.02 | −0.01 | −0.01 | ||
F. graminearum | 1.00 | −0.07 | −0.01 | 0.0 | −0.06 | 0.03 | −0.02 | 0.02 | |||
F. culmorum | 1.00 | −0.01 | −0.00 | 0.11 | 0.03 | −0.02 | −0.01 | ||||
F. sporotrichioides | 1.00 | 0.15 | 0.12 | −0.02 | 0.26 | −0.01 | |||||
F. poae | 1.00 | −0.07 | −0.02 | 0.36 | −0.02 | ||||||
F. avenaceum | 1.00 | −0.04 | −0.03 | −0.02 | |||||||
F. oxysporum | 1.00 | −0.010 | −0.01 | ||||||||
F. equiseti | 1.00 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czembor, E.; Frasiński, S.; Urbaniak, M.; Waśkiewicz, A.; Czembor, J.H.; Stępień, Ł. Fusarium Species Shifts in Maize Grain as a Response to Climatic Changes in Poland. Agriculture 2024, 14, 1793. https://doi.org/10.3390/agriculture14101793
Czembor E, Frasiński S, Urbaniak M, Waśkiewicz A, Czembor JH, Stępień Ł. Fusarium Species Shifts in Maize Grain as a Response to Climatic Changes in Poland. Agriculture. 2024; 14(10):1793. https://doi.org/10.3390/agriculture14101793
Chicago/Turabian StyleCzembor, Elzbieta, Seweryn Frasiński, Monika Urbaniak, Agnieszka Waśkiewicz, Jerzy H. Czembor, and Łukasz Stępień. 2024. "Fusarium Species Shifts in Maize Grain as a Response to Climatic Changes in Poland" Agriculture 14, no. 10: 1793. https://doi.org/10.3390/agriculture14101793
APA StyleCzembor, E., Frasiński, S., Urbaniak, M., Waśkiewicz, A., Czembor, J. H., & Stępień, Ł. (2024). Fusarium Species Shifts in Maize Grain as a Response to Climatic Changes in Poland. Agriculture, 14(10), 1793. https://doi.org/10.3390/agriculture14101793