There Is Significant Within-Subject Variation in the Time from Light Stimulus to Maximum Pupil Constriction Among Healthy Controls
<p>Highlighting the time to maximum constriction.</p> "> Figure 2
<p>Data collection plan for QP readings during the 4 observation periods.</p> "> Figure 3
<p>Showing the mean (µ) coefficient of variation (CoVar) time to maximum constriction (tMC) values during each observation period, as well as the mean difference (∆) and intraclass correlation coefficient (ICC) values of each comparison, showing left eye values (<b>a</b>) and right eye values (<b>b</b>) separately.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brazel, M.; Harris, J.; Carroll, D.; Davidson, J.; Levchak, P.J.; Malhotra, A.; LaBuzetta, J.N. Reporting on Neurological Decline as Identified by Hourly Neuroassessments. J. Neurosci. Nurs. 2024, 56, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Banzon, P.C.; Vashisht, A.; Euckert, M.; Nairon, E.; Aiyagari, V.; Stutzman, S.E.; Olson, D.M. Original Research: Practice Variations in Documenting Neurologic Examinations in Non-Neuroscience ICUs. Am. J. Nurs. 2023, 123, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lapierre, A.; Proulx, A.; Gélinas, C.; Dollé, S.; Alexander, S.; Williamson, D.; Bernard, F.; Arbour, C. Association Between Pupil Light Reflex and Delirium in Adults With Traumatic Brain Injury: Preliminary Findings. J. Neurosci. Nurs. 2024, 56, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Ciuffreda, K.J.; Joshi, N.R.; Truong, J.Q. Understanding the effects of mild traumatic brain injury on the pupillary light reflex. Concussion 2017, 2, Cnc36. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bansal, R.; Sharma, A.; Kapil, A. Pupillary Signs. In Ophthalmic Signs in Practice of Medicine; Gupta, A., Bansal, R., Sharma, A., Kapil, A., Eds.; Springer: Singapore, 2023; pp. 475–492. [Google Scholar] [CrossRef]
- Martinez-Palacios, K.; Vasquez-Garcia, S.; Fariyike, O.A.; Robba, C.; Rubiano, A.M.; Noninvasive Intracranial Pressure Monitoring International Consensus Group. Quantitative Pupillometry for Intracranial Pressure (ICP) Monitoring in Traumatic Brain Injury: A Scoping Review. Neurocrit. Care 2024, 41, 255–271. [Google Scholar] [CrossRef]
- Aoun, S.G.; Welch, B.G.; Cortes, M.; Stutzman, S.E.; MacAllister, M.C.; El Ahmadieh, T.Y.; Osman, M.; Figueroa, S.A.; White, J.A.; Batjer, H.H.; et al. Objective Pupillometry as an Adjunct to Prediction and Assessment for Oculomotor Nerve Injury and Recovery: Potential for Practical Applications. World Neurosurg. 2019, 121, e475–e480. [Google Scholar] [CrossRef]
- Olson, D.M.; Stutzman, S.; Saju, C.; Wilson, M.; Zhao, W.; Aiyagari, V. Interrater Reliability of Pupillary Assessments. Neurocrit. Care 2016, 24, 251–257. [Google Scholar] [CrossRef]
- Figueroa, S.A.; Olson, D.M.; Kamal, A.; Aiyagari, V. Quantitative Pupillometry: Clinical Applications for the Internist. Am. J. Med. 2024, 137, 825–831. [Google Scholar] [CrossRef]
- Lele, A.V.; Wahlster, S.; Khadka, S.; Walters, A.M.; Fong, C.T.; Blissitt, P.A.; Livesay, S.L.; Jannotta, G.E.; Gulek, B.G.; Srinivasan, V.; et al. Neurological Pupillary Index and Disposition at Hospital Discharge following ICU Admission for Acute Brain Injury. J. Clin. Med. 2023, 12, 3806. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, Z.; Chen, W.; Zhang, Q.; Shi, Y.; Chen, J.; Cen, L.; Li, T. Repeatability and clinical use of pupillary light reflex measurement using RAPDx(R) pupillometer. Int. Ophthalmol. 2022, 42, 2227–2234. [Google Scholar] [CrossRef]
- Romagnoli, S.; Lobo, F.A.; Picetti, E.; Rasulo, F.A.; Robba, C.; Matta, B. Non-invasive technology for brain monitoring: Definition and meaning of the principal parameters for the International PRactice On TEChnology neuro-moniToring group (I-PROTECT). J. Clin. Monit. Comput. 2024, 38, 827–845. [Google Scholar] [CrossRef] [PubMed]
- Shoyombo, I.; Aiyagari, V.; Stutzman, S.E.; Atem, F.; Hill, M.; Figueroa, S.A.; Miller, C.; Howard, A.; Olson, D.M. Understanding the Relationship Between the Neurologic Pupil Index and Constriction Velocity Values. Sci. Rep. 2018, 8, 6992. [Google Scholar] [CrossRef] [PubMed]
- Privitera, C.M.; Neerukonda, S.V.; Aiyagari, V.; Yokobori, S.; Puccio, A.M.; Schneider, N.J.; Stutzman, S.E.; Olson, D.M. A differential of the left eye and right eye neurological pupil index is associated with discharge modified Rankin scores in neurologically injured patients. BMC Neurol. 2022, 22, 273. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Flower, O.; Tracey, A.; Johnson, P. A comparison of manual pupil examination versus an automated pupillometer in a specialised neurosciences intensive care unit. Aust. Crit. Care 2020, 33, 162–166. [Google Scholar] [CrossRef]
- Blandino Ortiz, A.; Higuera Lucas, J. Usefulness of quantitative pupillometry in the intensive care unit. Med. Intensiv. (Engl. Ed.) 2022, 46, 273–276. [Google Scholar] [CrossRef]
- Olson, D.M.; Fishel, M. The Use of Automated Pupillometry in Critical Care. Crit. Care Nurs. Clin. N. Am. 2016, 28, 101–107. [Google Scholar] [CrossRef]
- Lussier, B.L.; Stutzman, S.E.; Atem, F.; Venkatachalam, A.M.; Perera, A.C.; Barnes, A.; Aiyagari, V.; Olson, D.M. Distributions and Reference Ranges for Automated Pupillometer Values in Neurocritical Care Patients. J. Neurosci. Nurs. 2019, 51, 335–340. [Google Scholar] [CrossRef]
- Kamal, A.; Nairon, E.B.; Bashmakov, A.; Aoun, S.G.; Olson, D.M. Time to maximum pupil constriction is variable in neurocritical care patients. J. Clin. Monit. Comput. 2024. [Google Scholar] [CrossRef]
- Shao, L.; Zhou, Y.; Yue, Z.; Gu, Z.; Zhang, J.; Hui, K.; Xiong, J.; Xu, M.; Duan, M. Pupil maximum constriction velocity predicts post-induction hypotension in patients with lower ASA status: A prospective observational study. BMC Anesthesiol. 2022, 22, 274. [Google Scholar] [CrossRef]
- Uhrenholt, S.; Linér, S.M.; Stokholm, J.; Christensen, T.; Bestle, M.H. Pupillary dilation velocity is reduced in intensive care unit patients with septic shock. Acta Anaesthesiol. Scand. 2024, 68, 56–62. [Google Scholar] [CrossRef]
- Romagnosi, F.; Bernini, A.; Bongiovanni, F.; Iaquaniello, C.; Miroz, J.P.; Citerio, G.; Taccone, F.S.; Oddo, M. Neurological Pupil Index for the Early Prediction of Outcome in Severe Acute Brain Injury Patients. Brain Sci. 2022, 12, 609. [Google Scholar] [CrossRef] [PubMed]
- Lussier, B.L.; Olson, D.M.; Aiyagari, V. Automated Pupillometry in Neurocritical Care: Research and Practice. Curr. Neurol. Neurosci. Rep. 2019, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Sari, H.; Goldman, R.; Huff, E.; Hanna, A.; Samraj, R.; Gourabathini, H.; Bhalala, U. Neurological Pupillary Index (NPi) Measurement Using Pupillometry and Outcomes in Critically Ill Children. Cureus 2023, 15, e46480. [Google Scholar] [CrossRef] [PubMed]
- Campos, Y.A.; Rana, P.; Reyes, R.G.; Mazhar, K.; Stutzman, S.E.; Atem, F.; Olson, D.M.; Aiyagari, V. Relationship Between Automated Pupillometry Measurements and Ventricular Volume in Patients With Aneurysmal Subarachnoid Hemorrhage. J. Neurosci. Nurs. 2022, 54, 166–170. [Google Scholar] [CrossRef]
- Brasil, S.; Frigieri, G.; Taccone, F.S.; Robba, C.; Solla, D.J.F.; de Carvalho Nogueira, R.; Yoshikawa, M.H.; Teixeira, M.J.; Malbouisson, L.M.S.; Paiva, W.S. Noninvasive intracranial pressure waveforms for estimation of intracranial hypertension and outcome prediction in acute brain-injured patients. J. Clin. Monit. Comput. 2023, 37, 753–760. [Google Scholar] [CrossRef]
- Murtaugh, B.; Olson, D.M.; Badjatia, N.; Lewis, A.; Aiyagari, V.; Sharma, K.; Creutzfeldt, C.J.; Falcone, G.J.; Shapiro-Rosenbaum, A.; Zink, E.K.; et al. Caring for Coma after Severe Brain Injury: Clinical Practices and Challenges to Improve Outcomes: An Initiative by the Curing Coma Campaign. Neurocrit. Care 2024. [Google Scholar] [CrossRef]
- Chau, C.Y.C.; Mediratta, S.; McKie, M.A.; Gregson, B.; Tulu, S.; Ercole, A.; Solla, D.J.F.; Paiva, W.S.; Hutchinson, P.J.; Kolias, A.G. Optimal Timing of External Ventricular Drainage after Severe Traumatic Brain Injury: A Systematic Review. J. Clin. Med. 2020, 9, 1996. [Google Scholar] [CrossRef]
- Olson, D.M.; Ortega-Pérez, S. The Cue-Response Theory and Nursing Care of the Patient With Acquired Brain Injury. J. Neurosci. Nurs. 2019, 51, 43–47. [Google Scholar] [CrossRef]
- Chairattanawan, P.; Angkoontassaneeyarat, C.; Yuksen, C.; Jenpanitpong, C.; Phontabtim, M.; Laksanamapune, T. Early Discharge versus 6-hour Observation in Mild Traumatic Brain Injury with Normal Brain CT Scan; a Comparative Pilot study of Outcomes. Arch. Acad. Emerg. Med. 2024, 12, e50. [Google Scholar] [CrossRef]
- Baker, J.R.; Hira, R.; Uppal, J.; Raj, S.R. Clinical Assessment of the Autonomic Nervous System. Card. Electrophysiol. Clin. 2024, 16, 239–248. [Google Scholar] [CrossRef]
- Saju, C.; Barnes, A.; Kuramatsu, J.B.; Marshall, J.L.; Obinata, H.; Puccio, A.M.; Yokobori, S.; Olson, D.M. Describing Anisocoria in Neurocritically Ill Patients. Am. J. Crit. Care 2023, 32, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Doyle, B.R.; Aiyagari, V.; Yokobori, S.; Kuramatsu, J.B.; Barnes, A.; Puccio, A.; Nairon, E.B.; Marshall, J.L.; Olson, D.M. Anisocoria After Direct Light Stimulus is Associated with Poor Outcomes Following Acute Brain Injury. Neurocrit. Care 2024, 41, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Vrettou, C.S.; Fragkou, P.C.; Mallios, I.; Barba, C.; Giannopoulos, C.; Gavrielatou, E.; Dimopoulou, I. The Role of Automated Infrared Pupillometry in Traumatic Brain Injury: A Narrative Review. J. Clin. Med. 2024, 13, 614. [Google Scholar] [CrossRef] [PubMed]
- Aderman, M.J.; Meister, M.R.; Roach, M.H.; Dengler, B.A.; Ross, J.D.; Malvasi, S.R.; Cameron, K.L. Normative Values for Pupillary Light Reflex Metrics Among Healthy Service Academy Cadets. Mil. Med. 2024, 189, 1593–1602. [Google Scholar] [CrossRef]
- Bonmati-Carrion, M.A.; Hild, K.; Isherwood, C.; Sweeney, S.J.; Revell, V.L.; Skene, D.J.; Rol, M.A.; Madrid, J.A. Relationship between Human Pupillary Light Reflex and Circadian System Status. PLoS ONE 2016, 11, e0162476. [Google Scholar] [CrossRef]
- Abokyi, S.; Owusu-Mensah, J.; Osei, K.A. Caffeine intake is associated with pupil dilation and enhanced accommodation. Eye 2017, 31, 615–619. [Google Scholar] [CrossRef]
- Hartmann, E.V.; Reichert, C.F.; Spitschan, M. Effects of caffeine intake on pupillary parameters in humans: A systematic review and meta-analysis. Behav. Brain Funct. 2024, 20, 19. [Google Scholar] [CrossRef]
- Stout, D.E.; Cortes, M.X.; Aiyagari, V.; Olson, D.M. Management of External Ventricular Drains During Intrahospital Transport for Radiographic Imaging. J. Radiol. Nurs. 2019, 38, 92–97. [Google Scholar] [CrossRef]
Characteristic | Subjects | |
---|---|---|
Age | <40 Years 40–59 Years ≥60 years | 37 (74.0%) 9 (18.0%) 4 (8.0%) |
Gender | Female Male | 40 (80.0%) 10 (20.0%) |
Race | White Black Asian Not given | 31 (62.0%) 10 (20.0%) 8 (16.0%) 1 (2.0%) |
Ethnicity | Non-Hispanic Hispanic Not given | 43 (86.0%) 6 (12.0%) 1 (2.0%) |
Side | Pupillary Light Reflex Metric | Mean (sd) | Units |
---|---|---|---|
Left Eye (n = 190) | Neurological pupil index | 4.3 (0.33) | |
Diameter of pupil before light stimulation | 4.2 (0.81) | mm | |
Time between stimulus and initial constriction (latency) | 0.2 (0.03) | s | |
Constriction velocity (CV) | 2.6 (0.82) | mm/s2 | |
Maximum constriction velocity (mCV) | 3.8 (1.14) | mm/s2 | |
Smallest diameter of pupil after light stimulation | 2.8 (0.45) | mm | |
Time from stimulus to maximum constriction (tMC) | 1.0 (0.14) | s | |
Percent change in pupil size after light (DV) | 31.9 (6.61) | % | |
Dilation velocity (DV) | 1.1 (0.31) | mm/s2 | |
Right Eye (n = 190) | Neurological pupil index | 4.3 (0.31) | |
Diameter of pupil before light stimulation | 4.2 (0.80) | mm | |
Time between stimulus and initial constriction (latency) | 0.2 (0.03) | s | |
Constriction velocity (CV) | 2.6 (0.77) | mm/s2 | |
Maximum constriction velocity (mCV) | 3.8 (1.12) | mm/s2 | |
Smallest diameter of pupil after light stimulation | 2.8 (0.43) | mm | |
Time from stimulus to maximum constriction (tMC) | 1.0 (0.17) | s | |
Percent change in pupil size after light | 32.0 (6.7) | % | |
Dilation velocity (DV) | 1.1 (0.31) | mm/s2 |
Day | Observation Period | Left Eye tMC Mean (CoVar) | Right Eye tMC Mean (CoVar) | ∆ (sd) | ICC (95%CI) |
---|---|---|---|---|---|
1 | 1 | 1.050 (14.44) | 1.048 (17.19) | 0.14 (0.15) | 0.25 (0.08–0.57) |
2 | 1.032 (12.87) | 1.032 (18.79) | 0.14 (0.12) | 0.38 (0.19–0.63) | |
2 | 3 | 1.058 (11.64) | 1.058 (13.89) | 0.12 (0.09) | 0.40 (0.20–0.65) |
4 | 0.995 (14.13) | 0.995 (16.18) | 0.12 (0.12) | 0.35 (0.15–0.62) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, A.; Kim, Y.; Salter, A.; Gunna, S.; Nairon, E.B.; Olson, D.M. There Is Significant Within-Subject Variation in the Time from Light Stimulus to Maximum Pupil Constriction Among Healthy Controls. J. Clin. Med. 2024, 13, 7451. https://doi.org/10.3390/jcm13237451
Kamal A, Kim Y, Salter A, Gunna S, Nairon EB, Olson DM. There Is Significant Within-Subject Variation in the Time from Light Stimulus to Maximum Pupil Constriction Among Healthy Controls. Journal of Clinical Medicine. 2024; 13(23):7451. https://doi.org/10.3390/jcm13237451
Chicago/Turabian StyleKamal, Abdulkadir, Yohan Kim, Amber Salter, Shripal Gunna, Emerson B. Nairon, and DaiWai M. Olson. 2024. "There Is Significant Within-Subject Variation in the Time from Light Stimulus to Maximum Pupil Constriction Among Healthy Controls" Journal of Clinical Medicine 13, no. 23: 7451. https://doi.org/10.3390/jcm13237451
APA StyleKamal, A., Kim, Y., Salter, A., Gunna, S., Nairon, E. B., & Olson, D. M. (2024). There Is Significant Within-Subject Variation in the Time from Light Stimulus to Maximum Pupil Constriction Among Healthy Controls. Journal of Clinical Medicine, 13(23), 7451. https://doi.org/10.3390/jcm13237451