The Influence of Visual Input on Electromyographic Patterns of Masticatory and Cervical Spine Muscles in Subjects with Myopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Protocol
2.2.1. Assessment of the Muscle Activity
2.2.2. Ophthalmic Examination
2.2.3. Activity and Asymmetry Indexes
2.2.4. Functional Indices
2.2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baird, P.N.; Saw, S.-M.; Lanca, C.; Guggenheim, J.A.; Smith, E.L.; Zhou, X.; Matsui, K.-O.; Wu, P.-C.; Sankaridurg, P.; Chia, A.; et al. Myopia. Nat. Rev. Dis. Primer 2020, 6, 99. [Google Scholar] [CrossRef]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Grzybowski, A.; Kanclerz, P.; Tsubota, K.; Lanca, C.; Saw, S.-M. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020, 20, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidoo, K.S.; Fricke, T.R.; Frick, K.D.; Jong, M.; Naduvilath, T.J.; Resnikoff, S.; Sankaridurg, P. Potential lost productivity resulting from the global burden of myopia: Systematic review, meta-analysis, and modeling. Ophthalmology 2019, 126, 338–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikuno, Y. Overview of the complications of high myopia. Retina Phila. Pa 2017, 37, 2347–2351. [Google Scholar] [CrossRef]
- Monaco, A.; Sgolastra, F.; Petrucci, A.; Ciarrocchi, I.; D’Andrea, P.D.; Necozione, S. Prevalence of vision problems in a hospital-based pediatric population with malocclusion. Pediatr. Dent. 2013, 35, 272–274. [Google Scholar] [PubMed]
- Monaco, A.; Ortu, E.; Giannoni, M.; D’Andrea, P.; Cattaneo, R.; Mummolo, A.; Pietropaoli, D. Standard correction of vision worsens EMG activity of pericranial muscles in chronic TMD subjects. Pain Res. Manag. 2020, 2020, 3932476. [Google Scholar] [CrossRef] [Green Version]
- Akinci, A.; Güven, A.; Degerliyurt, A.; Kibar, E.; Mutlu, M.; Citirik, M. The correlation between headache and refractive errors. J. AAPOS Off. Publ. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2008, 12, 290–293. [Google Scholar] [CrossRef]
- Cuccia, A.; Caradonna, C. The relationship between the stomatognathic system and body posture. Clin. Sao Paulo Braz. 2009, 64, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Somisetty, S.; Das, J. Neuroanatomy, vestibulo-ocular reflex. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Stack, B.; Sims, A. The relationship between posture and equilibrium and the auriculotemporal nerve in patients with disturbed gait and balance. Cranio J. Craniomandib. Pract. 2009, 27, 248–260. [Google Scholar] [CrossRef]
- Büttner-Ennever, J.A.; Büttner, U. Neuroanatomy of the oculomotor system. The reticular formation. Rev. Oculomot. Res. 1988, 2, 119–176. [Google Scholar] [PubMed]
- Bradnam, L.; Barry, C. The role of the trigeminal sensory nuclear complex in the pathophysiology of craniocervical dystonia. J. Neurosci. 2013, 33, 18358–18367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torvik, A. afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures; an experimental study in the rat. J. Comp. Neurol. 1956, 106, 51–141. [Google Scholar] [CrossRef]
- Zieliński, G.; Suwała, M.; Ginszt, M.; Szkutnik, J.; Majcher, P. Bioelectric activity of mastication muscles and the functional impairment risk groups concerning the masticatory muscles. Acta Bioeng. Biomech. 2018, 20, 161–166. [Google Scholar] [PubMed]
- Monaco, A.; Cattaneo, R.; Spadaro, A.; Giannoni, M.; Di Martino, S.; Gatto, R. Visual input effect on EMG activity of masticatory and postural muscles in healthy and in myopic children. Eur. J. Paediatr. Dent. 2006, 7, 18–22. [Google Scholar] [PubMed]
- Ciavarella, D.; Palazzo, A.; De Lillo, A.; Lo Russo, L.; Paduano, S.; Laino, L.; Chimenti, C.; Frezza, F.; Lo Muzio, L. Influence of vision on masticatory muscles function: Surface electromyographic evaluation. Ann. Stomatol. 2014, 5, 61–65. [Google Scholar] [CrossRef]
- Spadaro, A.; Monaco, A.; Cattaneo, R.; Masci, C.; Gatto, R. Effect on anterior temporalis surface EMG of eyes open-closed condition. Eur. J. Paediatr. Dent. 2010, 11, 210–212. [Google Scholar]
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.-P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the international RDC/TMD consortium network and orofacial pain special interest group. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef]
- Wieczorek, A.; Loster, J.; Loster, B.W.; Sierpińska, T.; Gołębiewska, M. Correlation between activity and asymmetry indices and skeletal classes in symptomatic-free young adults. J. Stomatol. 2013, 66, 750–760. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Zieliński, G.; Byś, A.; Szkutnik, J.; Majcher, P.; Ginszt, M. Electromyographic patterns of masticatory muscles in relation to active myofascial trigger points of the upper trapezius and temporomandibular disorders. Diagn. Basel Switz. 2021, 11, 580. [Google Scholar] [CrossRef]
- Zieliński, G.; Ginszt, M.; Zawadka, M.; Rutkowska, K.; Podstawka, Z.; Szkutnik, J.; Majcher, P.; Gawda, P. the relationship between stress and masticatory muscle activity in female students. J. Clin. Med. 2021, 10, 3459. [Google Scholar] [CrossRef]
- Tiraset, N.; Poonyathalang, A.; Padungkiatsagul, T.; Deeyai, M.; Vichitkunakorn, P.; Vanikieti, K. Comparison of visual acuity measurement using three methods: Standard ETDRS chart, near chart and a smartphone-based eye chart application. Clin. Ophthalmol. 2021, 15, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jin, N.; Pei, R.-X.; Zhao, L.-Q.; Du, B.; Liu, G.-H.; Wang, X.-L.; Wei, R.-H.; Li, X.-R. Comparison between two autorefractor performances in large scale vision screening in chinese school age children. Int. J. Ophthalmol. 2020, 13, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI—Defining and classifying myopia: A proposed set of standards for clinical and epidemiologic studies. Invest. Ophthalmol. Vis. Sci. 2019, 60, M20–M30. [Google Scholar] [CrossRef] [Green Version]
- Naeije, M.; McCarroll, R.S.; Weijs, W.A. Electromyographic activity of the human masticatory muscles during submaximal clenching in the inter-cuspal position. J. Oral Rehabil. 1989, 16, 63–70. [Google Scholar] [CrossRef]
- Ginszt, M.; Zieliński, G. Novel functional indices of masticatory muscle activity. J. Clin. Med. 2021, 10, 1440. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Shankar Kikkeri, N.; Nagalli, S. Trigeminal neuralgia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Tuthill, J.C.; Azim, E. Proprioception. Curr. Biol. 2018, 28, R194–R203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, J.L.; Kim, P.E.; Zee, C.S. The trigeminal nerve. Semin. Ultrasound. CT MR 2001, 22, 502–520. [Google Scholar] [CrossRef]
- Marchili, N.; Ortu, E.; Pietropaoli, D.; Cattaneo, R.; Monaco, A. Dental occlusion and ophthalmology: A literature review. Open Dent. J. 2016, 10, 460–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorena, K.; Gładysiak, A.; Ślęzak, D. Early Intervention and nonpharmacological therapy of myopia in young adults. J. Ophthalmol. 2018, 2018, 4680603. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.K. Upper crossed syndrome and its relationship to cervicogenic headache. J. Manip. Physiol. Ther. 2004, 27, 414–420. [Google Scholar] [CrossRef]
Indices | Eyes Open | Eyes Closed | Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | 95%CI | M | SD | 95%CI | Test | Test Result | p Value | ||||
Rest | AsI TA | −6.66 | 23.72 | −13.40 | 0.08 | −7.33 | 22.10 | −13.62 | −1.05 | t | 0.22 | 0.83 |
AsI MM | −2.14 | 20.25 | −8.02 | 3.74 | −1.14 | 22.86 | −7.78 | 5.50 | t | −0.36 | 0.72 | |
AcI R | 7.27 | 35.10 | −2.92 | 17.46 | 13.12 | 29.05 | 4.68 | 21.55 | t | −1.22 | 0.23 | |
AcI L | 3.64 | 36.60 | −6.98 | 14.27 | 6.53 | 32.85 | −3.00 | 16.07 | t | −0.69 | 0.49 | |
AcI total | 4.96 | 32.97 | −4.61 | 14.53 | 9.81 | 28.11 | 1.64 | 17.97 | t | −1.18 | 0.24 | |
AsI SCM | −3.73 | 14.44 | −7.84 | 0.37 | −5.25 | 15.65 | −9.70 | −0.80 | t | 0.84 | 0.40 | |
AsI DA | 1.27 | 12.96 | −2.58 | 5.12 | 1.75 | 12.79 | −2.05 | 5.55 | t | −0.33 | 0.74 | |
Clenching in the intercuspal position | AsI TA | −0.66 | 14.08 | −4.66 | 3.34 | −1.08 | 18.88 | −6.45 | 4.29 | z | 0.01 | 0.99 |
AsI MM | 4.27 | 19.02 | −1.25 | 9.79 | 2.59 | 16.85 | −2.30 | 7.48 | t | 1.31 | 0.20 | |
AcI R | −1.36 | 23.45 | −8.17 | 5.45 | −1.82 | 24.93 | −9.06 | 5.42 | t | 0.20 | 0.84 | |
AcI L | −5.58 | 28.77 | −13.93 | 2.77 | −4.93 | 30.31 | −13.73 | 3.87 | t | −0.30 | 0.77 | |
AcI total | −3.24 | 23.13 | −9.96 | 3.48 | −3.59 | 26.23 | −11.20 | 4.03 | t | 0.16 | 0.87 | |
AsI SCM | 1.99 | 18.50 | −3.27 | 7.25 | 1.47 | 18.27 | −3.72 | 6.66 | t | 0.41 | 0.69 | |
AsI DA | 0.62 | 22.25 | −5.98 | 7.23 | 3.04 | 16.56 | −1.88 | 7.96 | z | 0.73 | 0.47 | |
Clenching on dental cotton rollers | AsI TA | −2.33 | 14.44 | −6.43 | 1.78 | −2.79 | 15.99 | −7.33 | 1.76 | t | 0.28 | 0.78 |
AsI MM | −0.01 | 14.98 | −4.35 | 4.34 | 0.42 | 15.12 | −3.97 | 4.81 | t | −0.43 | 0.67 | |
AcI R | 15.58 | 22.06 | 9.17 | 21.98 | 13.64 | 22.26 | 7.18 | 20.10 | t | 1.65 | 0.11 | |
AcI L | 13.17 | 23.13 | 6.46 | 19.89 | 10.07 | 25.08 | 2.79 | 17.35 | t | 2.02 | 0.05 | |
AcI total | 14.58 | 20.10 | 8.75 | 20.42 | 11.82 | 21.36 | 5.61 | 18.02 | t | 2.35 | 0.02 * ES = 0.34 | |
AsI SCM | −0.12 | 18.15 | −5.28 | 5.03 | −2.22 | 17.05 | −7.07 | 2.62 | t | 1.66 | 0.10 | |
AsI DA | 0.50 | 19.80 | −5.38 | 6.38 | 2.13 | 18.73 | −3.44 | 7.69 | t | −0.90 | 0.37 | |
Maximum mouth opening | AsI TA | 3.37 | 19.52 | −2.17 | 8.92 | 2.89 | 19.09 | −2.53 | 8.32 | t | 0.26 | 0.80 |
AsI MM | 3.98 | 15.49 | −0.52 | 8.48 | 3.72 | 17.27 | −1.29 | 8.74 | t | 0.15 | 0.88 | |
AcI R | 12.56 | 23.32 | 5.78 | 19.33 | 12.87 | 23.92 | 5.92 | 19.81 | t | −0.16 | 0.87 | |
AcI L | 13.16 | 23.60 | 6.31 | 20.01 | 13.31 | 23.49 | 6.48 | 20.13 | t | −0.06 | 0.95 | |
AcI total | 12.68 | 21.22 | 6.52 | 18.84 | 13.23 | 21.94 | 6.86 | 19.60 | t | −0.28 | 0.78 | |
AsI SCM | 3.05 | 17.00 | −1.78 | 7.88 | 2.28 | 16.75 | −2.49 | 7.04 | t | 0.81 | 0.42 | |
AsI DA | 0.43 | 13.50 | −3.58 | 4.44 | −0.84 | 12.73 | −4.62 | 2.94 | z | 1.10 | 0.27 |
Indices | Eyes Open | Eyes Closed | Statistics | |||||||||
M | SD | 95%CI | M | SD | 95%CI | Test | Test Result | p Value | ||||
Clenching in the intercuspal position | FCI TA R | 84.10 | 94.14 | 57.35 | 110.86 | 77.51 | 60.63 | 60.28 | 94.74 | z | 0.33 | 0.74 |
FCI TA L | 80.50 | 106.35 | 50.28 | 110.73 | 70.54 | 55.31 | 54.82 | 86.25 | z | 0.53 | 0.60 | |
FCI TA total | 79.22 | 98.58 | 51.20 | 107.23 | 70.32 | 50.86 | 55.87 | 84.78 | z | 0.63 | 0.53 | |
FCSI TA | 5.90 | 24.51 | −1.06 | 12.87 | 5.90 | 27.21 | −1.84 | 13.63 | t | 0.00 | 1.00 | |
FCI MM R | 70.01 | 60.49 | 52.44 | 87.57 | 63.45 | 56.89 | 46.93 | 79.97 | z | 1.56 | 0.12 | |
FCI MM L | 66.64 | 61.33 | 48.83 | 84.45 | 60.76 | 53.53 | 45.21 | 76.30 | z | 1.62 | 0.11 | |
FCI MM total | 66.61 | 59.19 | 49.42 | 83.80 | 60.19 | 52.77 | 44.87 | 75.52 | z | 1.63 | 0.10 | |
FCSI MM | 6.33 | 26.20 | −1.28 | 13.94 | 3.36 | 27.03 | −4.49 | 11.21 | t | 1.08 | 0.29 | |
FCAI R | −8.10 | 36.97 | −18.83 | 2.64 | −13.72 | 36.59 | −24.35 | −3.10 | t | 1.12 | 0.27 | |
FCAI L | −8.58 | 42.66 | −20.97 | 3.81 | −10.19 | 44.80 | −23.20 | 2.82 | t | 0.40 | 0.69 | |
FCAI total | −7.89 | 36.26 | −18.42 | 2.64 | −12.45 | 39.11 | −23.80 | −1.09 | t | 1.09 | 0.28 | |
FCI SCM R | 8.84 | 8.34 | 6.48 | 11.21 | 7.86 | 7.06 | 5.85 | 9.87 | z | 2.65 | 0.01 * ES = 0.37 | |
FCI SCM L | 8.42 | 9.48 | 5.72 | 11.11 | 6.67 | 5.70 | 5.04 | 8.29 | z | 2.62 | 0.01* ES = 0.37 | |
FCI SCM total | 8.48 | 8.53 | 6.06 | 10.90 | 7.09 | 5.92 | 5.41 | 8.78 | z | 2.37 | 0.02 * ES = 0.33 | |
FCSI SCM | 5.60 | 22.41 | −0.77 | 11.96 | 6.58 | 20.90 | 0.64 | 12.52 | t | −0.49 | 0.63 | |
FCI DA R | 12.33 | 9.50 | 9.51 | 15.15 | 11.96 | 10.45 | 8.86 | 15.06 | z | 0.99 | 0.32 | |
FCI DA L | 13.68 | 14.12 | 9.49 | 17.88 | 11.79 | 11.97 | 8.24 | 15.34 | z | 1.61 | 0.11 | |
FCI DA total | 13.00 | 10.44 | 9.90 | 16.10 | 11.85 | 11.08 | 8.56 | 15.13 | z | 1.47 | 0.14 | |
FCSI DA | −0.54 | 20.92 | −6.75 | 5.67 | 1.37 | 16.04 | −3.40 | 6.13 | z | 0.15 | 0.88 | |
Clenching on dental cotton rollers | FCI TA R | 77.01 | 87.88 | 52.04 | 101.99 | 76.71 | 53.22 | 61.59 | 91.84 | z | 1.45 | 0.15 |
FCI TA L | 73.55 | 100.15 | 45.09 | 102.01 | 69.47 | 46.86 | 56.16 | 82.79 | z | 1.69 | 0.09 | |
FCI TA total | 72.54 | 92.84 | 46.15 | 98.92 | 69.33 | 44.14 | 56.79 | 81.88 | z | 1.60 | 0.11 | |
FCSI TA | 4.18 | 24.07 | −2.66 | 11.02 | 4.49 | 26.50 | −3.04 | 12.02 | t | −0.10 | 0.92 | |
FCI MM R | 78.53 | 56.95 | 61.99 | 95.06 | 76.28 | 57.82 | 59.50 | 93.07 | z | 0.57 | 0.57 | |
FCI MM L | 79.90 | 71.33 | 59.19 | 100.61 | 78.81 | 63.49 | 60.38 | 97.25 | z | 0.18 | 0.85 | |
FCI MM total | 77.15 | 62.76 | 58.93 | 95.37 | 74.92 | 57.96 | 58.09 | 91.75 | z | 0.21 | 0.84 | |
FCSI MM | 2.04 | 24.43 | −5.06 | 9.13 | 1.20 | 27.11 | −6.67 | 9.07 | t | 0.29 | 0.78 | |
FCAI R | 7.46 | 37.49 | −3.43 | 18.34 | 0.22 | 33.02 | −9.37 | 9.80 | t | 1.58 | 0.12 | |
FCAI L | 7.60 | 41.01 | −4.31 | 19.51 | 2.50 | 42.05 | −9.71 | 14.71 | t | 1.18 | 0.24 | |
FCAI total | 8.22 | 36.39 | −2.34 | 18.79 | 1.22 | 34.81 | −8.88 | 11.33 | t | 1.71 | 0.09 | |
FCI SCM R | 10.65 | 8.44 | 8.25 | 13.05 | 10.33 | 8.68 | 10.74 | 17.03 | t | 1.39 | 0.16 | |
FCI SCM L | 10.03 | 8.17 | 7.71 | 12.35 | 9.47 | 6.60 | 10.27 | 18.21 | t | 0.78 | 0.44 | |
FCI SCM total | 10.18 | 7.90 | 7.93 | 12.42 | 9.71 | 7.15 | 7.68 | 11.75 | t | 1.15 | 0.25 | |
FCSI SCM | 3.44 | 21.22 | −2.59 | 9.47 | 2.93 | 20.72 | −2.96 | 8.82 | t | 0.23 | 0.82 | |
FCI DA R | 14.02 | 8.48 | 11.50 | 16.54 | 13.88 | 10.59 | 10.74 | 17.03 | z | 0.80 | 0.42 | |
FCI DA L | 13.82 | 7.87 | 11.49 | 16.16 | 14.24 | 13.38 | 10.27 | 18.21 | z | 0.88 | 0.38 | |
FCI DA total | 13.89 | 7.77 | 11.58 | 16.20 | 14.06 | 11.77 | 10.57 | 17.56 | z | 0.75 | 0.45 | |
FCSI DA | −0.56 | 18.46 | −6.04 | 4.92 | 0.49 | 17.53 | −4.72 | 5.69 | z | 0.62 | 0.54 | |
Maximum mouth opening | FOI TA R | 4.66 | 4.72 | 3.32 | 6.00 | 4.46 | 3.75 | 3.39 | 5.52 | z | 0.29 | 0.77 |
FOI TA L | 3.58 | 3.45 | 2.60 | 4.56 | 3.91 | 3.71 | 2.85 | 4.96 | z | 5.26 | <0.001 * ES = 0.74 | |
FOI TA total | 3.91 | 3.67 | 2.87 | 4.95 | 3.99 | 3.38 | 3.03 | 4.95 | z | 1.16 | 0.24 | |
FCSI TA | 9.58 | 26.93 | 1.92 | 17.23 | 9.57 | 28.32 | 1.52 | 17.62 | t | 0.00 | 1.00 | |
FOI MM R | 6.01 | 9.96 | 3.11 | 8.90 | 6.01 | 11.00 | 2.82 | 9.20 | z | 1.06 | 0.29 | |
FOI MM L | 4.98 | 6.90 | 2.98 | 6.99 | 4.75 | 6.07 | 2.98 | 6.51 | z | 0.39 | 0.70 | |
FOI MM total | 5.29 | 7.95 | 2.98 | 7.60 | 5.11 | 7.72 | 2.86 | 7.35 | z | 0.88 | 0.38 | |
FOSI MM | 5.87 | 23.30 | −0.89 | 12.64 | 4.28 | 28.71 | −4.06 | 12.61 | t | 0.44 | 0.66 | |
FOAI R | 5.01 | 40.15 | −6.65 | 16.67 | −0.32 | 31.52 | −9.48 | 8.83 | t | 1.03 | 0.31 | |
FOAII L | 8.93 | 29.81 | 0.28 | 17.59 | 6.10 | 31.49 | −3.05 | 15.24 | t | 0.70 | 0.49 | |
FOAI total | 7.21 | 31.51 | −1.93 | 16.36 | 2.99 | 27.01 | −4.85 | 10.83 | t | 1.03 | 0.31 | |
FOI SCM R | 11.19 | 12.63 | 7.60 | 14.78 | 11.19 | 12.46 | 7.65 | 14.73 | z | 1.26 | 0.21 | |
FOI SCM L | 11.50 | 19.21 | 6.04 | 16.96 | 11.50 | 19.13 | 6.06 | 16.93 | z | 0.48 | 0.63 | |
FOI SCM total | 11.10 | 15.30 | 6.75 | 15.45 | 11.05 | 15.30 | 6.71 | 15.40 | z | 1.10 | 0.27 | |
FOSI SCM | 6.77 | 21.62 | 0.62 | 12.91 | 7.35 | 22.96 | 0.82 | 13.87 | t | −0.29 | 0.77 | |
FOI DA R | 48.47 | 34.95 | 38.09 | 58.85 | 44.34 | 26.76 | 36.40 | 52.29 | z | 0.89 | 0.37 | |
FOI DA L | 47.54 | 31.64 | 38.14 | 56.93 | 45.57 | 25.21 | 38.08 | 53.05 | z | 0.29 | 0.77 | |
FOI DA total | 47.61 | 32.38 | 37.99 | 57.23 | 44.54 | 25.23 | 37.04 | 52.03 | z | 0.61 | 0.54 | |
FOSI DA | −0.88 | 16.12 | −5.67 | 3.91 | −2.69 | 17.61 | −7.92 | 2.54 | t | 1.11 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, G.; Matysik-Woźniak, A.; Rapa, M.; Baszczowski, M.; Ginszt, M.; Zawadka, M.; Szkutnik, J.; Rejdak, R.; Gawda, P. The Influence of Visual Input on Electromyographic Patterns of Masticatory and Cervical Spine Muscles in Subjects with Myopia. J. Clin. Med. 2021, 10, 5376. https://doi.org/10.3390/jcm10225376
Zieliński G, Matysik-Woźniak A, Rapa M, Baszczowski M, Ginszt M, Zawadka M, Szkutnik J, Rejdak R, Gawda P. The Influence of Visual Input on Electromyographic Patterns of Masticatory and Cervical Spine Muscles in Subjects with Myopia. Journal of Clinical Medicine. 2021; 10(22):5376. https://doi.org/10.3390/jcm10225376
Chicago/Turabian StyleZieliński, Grzegorz, Anna Matysik-Woźniak, Maria Rapa, Michał Baszczowski, Michał Ginszt, Magdalena Zawadka, Jacek Szkutnik, Robert Rejdak, and Piotr Gawda. 2021. "The Influence of Visual Input on Electromyographic Patterns of Masticatory and Cervical Spine Muscles in Subjects with Myopia" Journal of Clinical Medicine 10, no. 22: 5376. https://doi.org/10.3390/jcm10225376
APA StyleZieliński, G., Matysik-Woźniak, A., Rapa, M., Baszczowski, M., Ginszt, M., Zawadka, M., Szkutnik, J., Rejdak, R., & Gawda, P. (2021). The Influence of Visual Input on Electromyographic Patterns of Masticatory and Cervical Spine Muscles in Subjects with Myopia. Journal of Clinical Medicine, 10(22), 5376. https://doi.org/10.3390/jcm10225376