Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury
<p>Changes in frontopolar electroencephalography monitored with Medtronic BIS ™ device and corrected QT (QTc) interval. The left part of the figure presents an electrographic seizure and ECG with prolonged QTc (577 ms, calculated with Bazett’s formula). The right part of the figure presents ESz suppression following thiopental administration with reduction in the QTc interval (447 ms, calculated with Bazett’s formula). The case shown is a 22 year-old woman who was admitted to the intensive care unit (ICU) for severe TBI. Her Glasgow Coma Score was 6. Computed tomography (CT) showed acute epidural hematoma with intracerebral hemorrhage. Immediately after CT, craniectomy was performed. According to the local ICU protocol, frontopolar electroencephalography (EEG) was used. Controlled CT was performed 24 h after surgery and showed slight cerebral edema with cerebral lesion and intracerebral hematoma in the temporal region. Despite depth sedation (BIS ranged between 10 and 20), EEG showed alternate polyspike and slow wave without clinical symptoms 24 h after the admission to the ICU. The ESz recurred for 2 h. Hence, status epilepticus was diagnosed and continuous thiopental infusion at the dose of 50 µg·kg<sup>−1</sup>·min<sup>−1</sup> was used to suppress ESz. Such disorders were not observed during treatment in the ICU. Patient was discharged from the ICU 32 days after trauma.</p> "> Figure 2
<p>Changes in frontopolar electroencephalography monitored with Masimo Root device and corrected QT (QTc) interval. Prolonged QTc interval was noted during ESz, and use of thiopental suppressed the seizure successfully, which was associated with a reduction in the automated QTc (from 643 to 499 ms, calculated with Bazett’s formula, and from 610 to 475 ms and 591 to 471 ms, calculated with Fridericia’s formula and Framingham’s formula, respectively). However, the ECG showed bifid T waves in V<sub>4</sub>, V<sub>5</sub>, and V<sub>6</sub> leads before suppression and in II, III, aVF, V<sub>3</sub>, V<sub>4</sub>, V<sub>5</sub>, and V<sub>6</sub> 15 min after ESz suppression, leading to partially spurious automated QTc results. Frontopolar EEG monitoring with the Masimo device showed seizures (upper screenshot) and their spectacular suppression following barbiturate infusion (lower screenshots).</p> "> Figure 3
<p>A 54-year-old male admitted to the intensive care unit (ICU) for severe TBI. His Glasgow Coma Score was 4. Computed tomography (CT) showed cerebral edema with reduced size of both lateral ventricles. Patient was sedated with continuous infusion of propofol and fentanyl, and hyperosmotic therapy with 15% mannitol was administered. According to the local ICU protocol, non-invasive monitoring including near-infrared spectroscopy (NIRS) and frontopolar electroencephalography (EEG) was applied. Frontopolar EEG and seizures were monitored by the Masimo Root SEDLine device. Despite deep sedation (Patient State Index was 7), the DSA image showed upward y-axis arcs in warmer colors, and the recorded EEG confirmed a polyspike and slow wave. Continuous thiopental infusion at the dose of 50 µg·kg<sup>−1</sup>·min<sup>−1</sup> was used to suppress ESz, after which a serial 12-lead ECG showed a notably reduced QTc interval. The patient was discharged from the ICU 14 days after trauma.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. ECG, Derived Vectorcardiogram (VCG), EEG, and Study Protocol
2.2. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Yu, J.; Yuan, Q.; Wu, X.; Wu, X.; Hu, J. Early post-traumatic seizures are associated with valproic acid plasma concentrations and UGT1A6/CYP2C9 genetic polymorphisms in patients with severe traumatic brain injury. Scand. J. Trauma Resusc. Emerg. Med. 2017, 25, 85. [Google Scholar] [CrossRef] [Green Version]
- Tubi, M.A.; Lutkenhoff, E.; Blanco, M.B.; McArthur, D.; Villablanca, P.; Ellingson, B.; Diaz-Arrastia, R.; Van Ness, P.; Real, C.; Shrestha, V.; et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: A longitudinal study. Neurobiol. Dis. 2018, 18, 30152–30159. [Google Scholar] [CrossRef]
- Zimmermann, L.L.; Diaz-Arrastia, R.; Vespa, P.M. Seizures and the role of anticonvulsant after traumatic brain injury. Neurosurg. Clin. N. Am. 2016, 27, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, J.; Scott, B.W. Impaired cardiorespiratory function during focal limbic seizures: A role for serotonergic brainstem nuclei. J. Neurosci. 2016, 36, 8777–8779. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Venkat, P.; Seyfried, D.; Chopp, M.; Yan, T.; Chen, J. Brain-heart interaction. Cardiac complication after stroke. Circ. Res. 2017, 121, 451–468. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, W.; Schlegel, T.T.; Wosko, J.; Rola, R.; Rzecki, Z.; Malbrain, M.; Jaroszynki, A. Changes in spatial QRS-T angle and QTc interval in patients with traumatic brain injury with or without intra-abdominal hypertension. J. Electrocardiol. 2018, 51, 499–507. [Google Scholar] [CrossRef]
- Moseley, B.D.; Wirrell, E.C.; Nickels, K.; Johnson, J.N.; Ackerman, M.J.; Britton, J. Electrocardiographic and oximetric changes during partial complex and generalized seizures. Epilepsy Res. 2011, 95, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Sadrnia, S.; Yousefi, P.; Jalali, L. Correlation between seizure in children and prolonged QT interval. ARYA Atheroscler. 2013, 9, 7–10. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the management of severe traumatic brain injury, Fourth edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Cortez, D.L.; Schlegel, T.T. When deriving the spatial QRS-T angle from the 12-lead electrocardiogram, which transform is more Frank: Regression or inverse dower? J. Electrocardiol. 2010, 42, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.Q. QT interval measurement. What can we really expect? Comput. Cardiol. 2006, 33, 385–388. [Google Scholar]
- John, E.R.; Prichep, L.S.; Fridman, J.; Easton, P. Neurometrics: Computer-assisted differential diagnosis of brain dysfunctions. Science 1988, 239, 162–169. [Google Scholar] [CrossRef]
- Prichep, L.S.; John, E.R.; Gugino, L.D.; Kox, W.; Chabot, R.J. Quantitative EEG Assessment of Changes in the Level of Sedation/Hypnosis during Surgery Under General Anesthesia: I. The Patient State Index (PSI) II. Variable Resolution Electromagnetic Tomography (VARETA). In Memory and Awareness in Anesthesia IV; Jordan, C., Vaughan, D.J.A., Newton, D.E.F., Eds.; Imperial College Press: London, UK, 2000; pp. 97–107. [Google Scholar]
- Pensirikul, A.D.; Beslow, L.A.; Kessler, S.K.; Sachez, S.M.; Topjian, A.A.; Dlugos, D.J.; Abend, N.S. Density spectral array for seizure identification in critically ill children. J. Clin. Neurophsiol. 2013, 30, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, L.J.; Fong, M.W.K.; Leitinger, M.; LaRoche, S.M.; Beniczky, S.; Abend, N.S.; Lee, J.W.; Wusthoff, C.J.; Hahn, C.D.; Westover, M.B.; et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2021 version. J. Clin. Neurophysiol. 2021, 38, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.M. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76 (Suppl. II), ii2–ii7. [Google Scholar] [CrossRef] [Green Version]
- Dericioglu, N.; Yetim, E.; Bas, D.F.; Bilgen, N.; Caglar, G.; Arsava, E.M.; Topcuoglu, M.A. Non-expert use of quantitative EEG displays for seizure identification in the adult neuro-intensive care unit. Epilepsy Res. 2015, 109, 48–56. [Google Scholar] [CrossRef]
- Kang, J.H.; Sherill, G.C.; Sinha, S.R.; Swisher, C.B. A trial of real-time electrographic seizure detection by neuro-ICU nurses using a panel of quantitative EEG trends. Neurocrit. Care 2019, 31, 312–320. [Google Scholar] [CrossRef]
- Hernàndez-Hernàndez, M.A.; Fernàndex-Torre, J.L. Color density spectral array of bilateral bispectral index system: Electroencephalographic correlate in comatose patients with nonconvulsive status epilepticus. Seizure 2016, 34, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Schueke, S.U.; Bermeo, A.C.; Alexopoulos, A.V.; Burgess, R.C. Anoxia-ischemia: A mechanism of seizure termination in ictal asystole. Epilepsia 2010, 51, 170–173. [Google Scholar]
- Jiang, H.; He, B.; Guo, X.; Wang, X.; Guo, M.; Wang, Z.; Xue, T.; Li, H.; Xu, T.; Ye, S.; et al. Brain-Heart interactions underlying traditional Tibetan Buddhist meditation. Cereb. Cortex 2020, 30, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Patron, E.; Mennella, R.; MesserottiBenvenuti, S.; Thayer, J.F. The frontal cortex is a heart-brake: Reduction in delta oscillations is associated with heart rate deceleration. Neuroimage 2019, 188, 403–410. [Google Scholar] [CrossRef]
- Dogan, E.A.; Dogan, U.; Yildiz, G.U.; Akilli, H.; Genc, E.; Genc, B.O.; Gok, H. Evaluation of cardiac repolarization indices in well-controlled partial epilepsy: 12-Lead ECG findings. Epilepsy Res. 2010, 90, 157–163. [Google Scholar] [CrossRef]
- Hocker, S.; Prasad, A.; Rabinstein, A.A. Cardiac injury in refractory status epilepticus. Epilepsia 2013, 54, 518–522. [Google Scholar] [CrossRef]
- Read, M.I.; Andreianova, A.A.; Harrison, J.C.; Goulton, C.S.; Sammut, I.A.; Kerr, D.S. Cardiac electrographic and morphological changes following status epilepticus: Effect of clonidine. Seizure 2014, 23, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swisher, C.B.; White, C.R.; Mace, B.E.; Dombrowski, K.E.; Husain, A.M.; Kolls, B.J.; Radtke, R.R.; Tran, T.T.; Sinhs, S.R. Diagnostic accuracy of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult ICU using a panel of quantitative EEG trends. J. Clin. Neurophysiol. 2015, 32, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Steward, C.P.; Otsubo, H.; Ochi, A.; Sharma, R.; Hutchison, J.S.; Hahn, C.D. Seizure identification in the ICU using quantitative EEG displays. Neurology 2010, 75, 1501–1508. [Google Scholar] [CrossRef]
- Brotherstone, R.; Blackhall, B.; McLellan, A. Lenghening of corrected QT during epileptic seizure. Epilepsia 2010, 51, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Battaglini, D.; Robba, C.; da Silva, L.A.; Dos Santos Samary, C.; Leme Silva, P.; Dal Pizzol, F.; Pelosi, P.; Rocco, P.R.M. Brain-heart interaction after acute ischemic stroke. Crit. Care 2020, 24, 163. [Google Scholar] [CrossRef] [Green Version]
- Etchegoyen, C.V.; Kelle, G.A.; Mrad, S.; Cheng, S.; Di Girolamo, G. Drug-induced QT interval prolongation in the intensive care unit. Curr. Clin. Pharmacol. 2017, 12, 210–222. [Google Scholar] [CrossRef]
- Siniscalchi, A.; Scaglione, F.; Sanzaro, E.; Iemolo, F.; Albertini, G.; Quirino, G.; Manes, M.T.; Gratteri, S.; Mercuri, N.B.; De Sarro, G.; et al. Effects of phenobarbital and levetiracetam on PR and QTc intervals in patients with post-stroke seizure. Clin. Drug Investig. 2014, 34, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Abrich, V.A.; Ramakrishna, H.; Metha, A.; Mookadam, F.; Srivathsan, K. The possible role of propofol in drug-induced torsade’s de pointes: A real-world single-center analysis. Int. J. Cariol. 2017, 232, 243–246. [Google Scholar] [CrossRef]
- Wutzler, A.; De Asmundis, C.; Matsuda, H.; Bennehr, M.; Loehr, L.; Voelk, K.; Jungmann, J.; Humer, M.; Attanasio, P.; Parwani, A.; et al. Effects of propofol on ventricular repolarization and incidence of malignant arrhythmias in adults. J. Electrocardiol. 2018, 51, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Brewster, A.L.; Marzec, K.; Hairston, A.; Ho, M.; Anderson, A.E.; Lai, Y.C. Early cardiac electrographic and molecular remodelling in a model of status epilepticus and acquired epilepsy. Epilepsia 2016, 57, 1907–1915. [Google Scholar] [CrossRef] [Green Version]
- Davie, S.; Mutch, W.A.C.; Monterola, M.; Fidler, K.; Funk, D.J. The incidence and magnitude of cerebral desaturation in traumatic brain injury: An observational cohort study. J. Neurosurg. Anesthesiol. 2021, 33, 258–262. [Google Scholar] [CrossRef]
- Zuluaga, M.T.; Exch, M.E.; Cvijanovich, N.Z.; Gupta, N.; McQuillen, P.S. Diagnosis influences response of cerebral near infrared spectroscopy to intracranial hypertension in children. Pediatr. Crit. Care Med. 2010, 11, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, R.; Ayya, S.S. Neurogenic stress cardiomyopathy: What do we need to know. Ann. Card Anaesth. 2018, 21, 228–234. [Google Scholar] [CrossRef]
- Prasad Hrishi, A.; Ruby Lionel, K.; Prathapadas, U. Head rules over the heart: Cardiac manifestations of cerebral disorders. Indian J. Crit. Care Med. 2019, 23, 329–335. [Google Scholar] [PubMed]
- Georgakopoulos, A.; Pianou, N.; Anagnostopoulos, C. Central nervous system disorders affecting the heart-insights from radionuclide imaging. Hell. J. Nucl. Med. 2016, 19, 189–192. [Google Scholar]
- Mazzeo, A.T.; Micalizzi, A.; Mascia, L.; Scicolone, A.; Siracusano, L. Brain-heart crosstalk: The many faces of stress-related cardiomyopathy syndromes in anaesthesia and intensive care. Br. J. Anaesth. 2014, 112, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Simonassi, F.; Ball, L.; Badenes, R.; Millone, M.; Citerio, G.; Zona, G.; Pelosi, P.; Robba, C. Hemodynamic monitoring in patients with subarachnoid hemorrhage: A systematic review and meta-analysis. J. Neurosurg. Anesthesiol. 2020, in press. [Google Scholar] [CrossRef]
- Owusu, K.; Stredny, E.S.; Williamson, G.; Carr, Z.J.; Karamchandani, K. Cardiovascular collapse in a patient with parotid abscess: Dangerous cross talk between the brain and heart: A case report. A&A Pract. 2019, 13, 281–283. [Google Scholar]
- Dimitri, G.M.; Agrawal, S.; Young, A.; Donnelly, J.; Liu, X.; Smielewski, P.; Hutchinson, P.; Czosnyka, M.; Lio, P.; Haubrich, C. Simultaneous transients of intracranial pressure and heart rate in traumatic brain injury: Methods of analysis. Acta Neurochir. Suppl. 2018, 126, 147–151. [Google Scholar] [PubMed]
- Dimitri, G.M.; Agrawal, S.; Young, A.; Donnelly, J.; Liu, X.; Smielewski, P.; Hutchinson, P.; Czosnyka, M.; Lió, P.; Haubrich, C. A multiplex network approach for the analysis of intracranial pressure and heartrate data in traumatic brain injured patients. Appl. Netw. Sci. 2017, 2, 29. [Google Scholar] [CrossRef] [PubMed]
Manual Measurements | Automatic Measurements | |||
---|---|---|---|---|
During ESz | After ESz | During ESz | After ESz | |
QT | 453.5 ± 66.3 | 416.3 ± 55.44 | 450.71 ± 68.9 | 410.14 ± 53.95 * |
QTc, Bazett | 544.24 ± 57.67 | 487.61 ± 40.37 *** | 540.19 ± 60.68 | 478.67 ± 38.52 *** |
QTc, Fridericia | 511.71 ± 55.96 | 462.16 ± 41.95 ** | 507.9 ± 59 | 455.2 ± 39.8 ** |
QTc, Framingham | 499.67 ± 51.91 | 457.19 ± 40.47 * | 496.54 ± 54.6 | 451 ± 38.7 ** |
Parameter | During ESz | 15 min after Thiopental Administration |
---|---|---|
CI (L/min/m2) | 3.4 ± 0.8 | 3.7 ± 0.9 |
ELWI (mL/kg) | 8.2 ± 1.8 | 7.6 ± 2 |
PVPI | 2.1 ± 0.5 | 1.9 ± 0.5 |
GEF (%) | 27.2 ± 6.8 | 28.9 ± 6.4 |
iTBI (mL/m2) | 781.4 ± 250.4 | 804.4 ± 236.2 |
Left SrO2 (%) | 58.4 ± 6.2 | 60.5 ± 4.2 ** |
Right SrO2 (%) | 58.2 ± 7.2 | 60.8 ± 4.8 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabrowski, W.; Siwicka-Gieroba, D.; Schlegel, T.T.; Robba, C.; Zaid, S.; Bielacz, M.; Jaroszyński, A.; Badenes, R. Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury. J. Clin. Med. 2021, 10, 5374. https://doi.org/10.3390/jcm10225374
Dabrowski W, Siwicka-Gieroba D, Schlegel TT, Robba C, Zaid S, Bielacz M, Jaroszyński A, Badenes R. Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury. Journal of Clinical Medicine. 2021; 10(22):5374. https://doi.org/10.3390/jcm10225374
Chicago/Turabian StyleDabrowski, Wojciech, Dorota Siwicka-Gieroba, Todd T. Schlegel, Chiara Robba, Sami Zaid, Magdalena Bielacz, Andrzej Jaroszyński, and Rafael Badenes. 2021. "Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury" Journal of Clinical Medicine 10, no. 22: 5374. https://doi.org/10.3390/jcm10225374
APA StyleDabrowski, W., Siwicka-Gieroba, D., Schlegel, T. T., Robba, C., Zaid, S., Bielacz, M., Jaroszyński, A., & Badenes, R. (2021). Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury. Journal of Clinical Medicine, 10(22), 5374. https://doi.org/10.3390/jcm10225374