Antibody Response of BNT162b2 and CoronaVac Platforms in Recovered Individuals Previously Infected by COVID-19 against SARS-CoV-2 Wild Type and Delta Variant
<p>Trial profile.</p> "> Figure 2
<p>Change in neutralizing activity in participants after recovering from COVID-19. Convalescent patients infected by COVID-19 aged above 18 years were recruited, and blood samples were taken after discharge and at 6 weeks, 12 weeks, 6 months, and 1 year post recovery. vMN was used to determine the neutralizing antibody in sera. BL: baseline; W6: 6 weeks post recovery; W12: 12 weeks post recovery; M6: 6 months post recovery; Y1: 1 year post recovery; <span class="html-italic">p</span> < 0.05, statistically significant difference. Each dot represents an individual serum sample, and the error bar represents the 95% confidential interval (CI).</p> "> Figure 3
<p>GMT fold change after vaccination. (<b>a</b>) Recovered individuals previously infected by COVID-19 received a booster dose of BNT162b2 (PC-B) or CoronaVac (PC-C) and had their blood taken at baseline and at day 28 post vaccination. SARS-CoV-2 naïve participants received two doses of BNT 162b2 (CN-B) or CoronaVac (CN-C) and has their blood collected at baseline, on day 21 (CN-B) and day 28 (CN-C), and on day 56 after their first dose. Neutralizing antibody titre in serum was determined with vMN, and GMT change against the wild type (<b>b</b>) and Delta variant (<b>c</b>) was determined by comparing the antibody titre after vaccination with the antibody titre at baseline. PFD: post first dose; PSD: post second dose.</p> "> Figure 4
<p>Comparison of neutralizing antibody titre against wild type and Delta variant after vaccination. Recovered individuals previously infected by COVID-19 received a booster of BNT162b2 (PC-B) or CoronaVac vaccines (PC-C) and had their blood taken at baseline and day 28 post vaccination. SARS-CoV-2 naïve participants received two doses of BNT 162b2 (CN-B) or CoronaVac (CN-C) and had their blood collected at baseline, on day 21 (CN-B) or day 28 (CN-C), and on day 56 after their first dose. vMN was used to determine neutralizing antibody titre in sera from (<b>a</b>) PC-B, (<b>b</b>) PC-C, (<b>c</b>) CN-B, and (<b>d</b>) CN-C. WT: wild type; DV: Delta variant; BL: baseline; PFD: post first dose; PSD: post second dose.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedure
2.3. Outcome
2.4. Statistical Analysis
3. Results
3.1. Neutralizing Activity in Individuals after Recovery from COVID-19
3.2. Comparison of the Immunogenicity of COVID-19 Vaccines in Recovered Patients Previously Infected by COVID-19 and SARS-CoV-2 Naïve Individuals
3.3. Effect of Time from Recovery on Immunogenicity of COVID-19 Vaccines in Recovered Individuals Previously Infected by COVID-19
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charitos, I.A.; Ballini, A.; Bottalico, L.; Cantore, S.; Passarelli, P.C.; Inchingolo, F.; D’Addona, A.; Santacroce, L. Special features of SARS-CoV-2 in daily practice. World J. Clin. Cases 2020, 8, 3920–3933. [Google Scholar] [CrossRef] [PubMed]
- Hanson, Q.M.; Wilson, K.M.; Shen, M.; Itkin, Z.; Eastman, R.T.; Shinn, P.; Hall, M.D. Targeting ACE2-RBD interaction as a platform for COVID19 therapeutics: Development and drug repurposing screen of an AlphaLISA proximity assay. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zhou, L.; Ayeh, S.K.; Chidambaram, V.; Karakousis, P.C. Modes of transmission of SARS-CoV-2 and evidence for preventive behavioral interventions. BMC Infect. Dis. 2021, 21, 496. [Google Scholar] [CrossRef]
- Falzone, L.; Gattuso, G.; Tsatsakis, A.; Spandidos, D.A.; Libra, M. Current and innovative methods for the diagnosis of COVID19 infection (Review). Int. J. Mol. Med. 2021, 47. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Rodda, L.B.; Netland, J.; Shehata, L.; Pruner, K.B.; Morawski, P.A.; Thouvenel, C.D.; Takehara, K.K.; Eggenberger, J.; Hemann, E.A.; Waterman, H.R.; et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell 2021, 184, 169–183.e17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zuiani, A.; Fischinger, S.; Mullur, J.; Atyeo, C.; Travers, M.; Lelis, F.J.N.; Pullen, K.M.; Martin, H.; Tong, P.; et al. Quick COVID-19 Healers Sustain Anti-SARS-CoV-2 Antibody Production. Cell 2020, 183, 1496–1507.e1416. [Google Scholar] [CrossRef]
- Hansen, C.H.; Michlmayr, D.; Gubbels, S.M.; Molbak, K.; Ethelberg, S. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: A population-level observational study. Lancet 2021, 397, 1204–1212. [Google Scholar] [CrossRef]
- Greaney, A.J.; Loes, A.N.; Crawford, K.H.D.; Starr, T.N.; Malone, K.D.; Chu, H.Y.; Bloom, J.D. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 2021, 29, 463–476.e466. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.; Hung, I.F.; Ip, J.D.; Chu, A.W.; Chan, W.M.; Tam, A.R.; Fong, C.H.; Yuan, S.; Tsoi, H.W.; Ng, A.C.; et al. Coronavirus Disease 2019 (COVID-19) Re-infection by a Phylogenetically Distinct Severe Acute Respiratory Syndrome Coronavirus 2 Strain Confirmed by Whole Genome Sequencing. Clin. Infect. Dis. 2021, 73, e2946–e2951. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.J.; Pade, C.; Gibbons, J.M.; Butler, D.K.; Otter, A.D.; Menacho, K.; Fontana, M.; Smit, A.; Sackville-West, J.E.; Cutino-Moguel, T.; et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science 2021, 372, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Hicks, P.; Meng, W.; Rosenfeld, A.M.; et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals following mRNA vaccination. Sci. Immunol. 2021, 6. [Google Scholar] [CrossRef]
- Chia, P.Y.; Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Chavatte, J.-M.; Mak, T.-M.; Cui, L.; Kalimuddin, S.; Chia, W.N.; Tan, C.W.; et al. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine-breakthrough infections: A multi-center cohort study. medRxiv 2021. [Google Scholar] [CrossRef]
- Lim, W.W.; Mak, L.; Leung, G.M.; Cowling, B.J.; Peiris, M. Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19. Lancet Microbe 2021, 2, e423. [Google Scholar] [CrossRef]
- Chan, K.H.; Leung, K.Y.; Zhang, R.R.; Liu, D.; Fan, Y.; Chen, H.; Yuen, K.Y.; Hung, I.F. Performance of a Surrogate SARS-CoV-2-Neutralizing Antibody Assay in Natural Infection and Vaccination Samples. Diagnostics 2021, 11, 1757. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Chan, J.F.; Yuen, T.T.; Shuai, H.; Yuan, S.; Wang, Y.; Hu, B.; Yip, C.C.; Tsang, J.O.; Huang, X.; et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: An observational study. Lancet Microbe 2020, 1, e14–e23. [Google Scholar] [CrossRef]
- Chen, L.L.; Lu, L.; Choi, C.Y.; Cai, J.P.; Tsoi, H.W.; Chu, A.W.; Ip, J.D.; Chan, W.M.; Zhang, R.R.; Zhang, X.; et al. Impact of SARS-CoV-2 variant-associated RBD mutations on the susceptibility to serum antibodies elicited by COVID-19 infection or vaccination. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- To, K.K.; Hung, I.F.; Chan, K.H.; Yuan, S.; To, W.K.; Tsang, D.N.; Cheng, V.C.; Chen, Z.; Kok, K.H.; Yuen, K.Y. Serum Antibody Profile of a Patient With Coronavirus Disease 2019 Reinfection. Clin. Infect. Dis. 2021, 72, e659–e662. [Google Scholar] [CrossRef] [PubMed]
- Jalkanen, P.; Kolehmainen, P.; Hakkinen, H.K.; Huttunen, M.; Tahtinen, P.A.; Lundberg, R.; Maljanen, S.; Reinholm, A.; Tauriainen, S.; Pakkanen, S.H.; et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. Nat. Commun. 2021, 12, 3991. [Google Scholar] [CrossRef] [PubMed]
- Quast, I.; Tarlinton, D. B cell memory: Understanding COVID-19. Immunity 2021, 54, 205–210. [Google Scholar] [CrossRef]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371. [Google Scholar] [CrossRef] [PubMed]
- Havenar-Daughton, C.; Carnathan, D.G.; Torrents de la Pena, A.; Pauthner, M.; Briney, B.; Reiss, S.M.; Wood, J.S.; Kaushik, K.; van Gils, M.J.; Rosales, S.L.; et al. Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. Cell Rep. 2016, 17, 2195–2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.S.; O’Halloran, J.A.; Kalaidina, E.; Kim, W.; Schmitz, A.J.; Zhou, J.Q.; Lei, T.; Thapa, M.; Chen, R.E.; Case, J.B.; et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021, 596, 109–113. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Li, X.N.; Huang, Y.; Wang, W.; Jing, Q.L.; Zhang, C.H.; Qin, P.Z.; Guan, W.J.; Gan, L.; Li, Y.L.; Liu, W.H.; et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. Emerg. Microbes Infect. 2021, 10, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Vogels, C.B.F.; Yildirim, I.; Rothman, J.E.; Lu, P.; Monteiro, V.; Gelhausen, J.R.; Campbell, M.; Silva, J.; Tabachikova, A.; et al. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 2021. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Wall, E.C.; Wu, M.; Harvey, R.; Kelly, G.; Warchal, S.; Sawyer, C.; Daniels, R.; Hobson, P.; Hatipoglu, E.; Ngai, Y.; et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet 2021, 397, 2331–2333. [Google Scholar] [CrossRef]
- Ip, J.D.; Kok, K.H.; Chan, W.M.; Chu, A.W.; Wu, W.L.; Yip, C.C.; To, W.K.; Tsang, O.T.; Leung, W.S.; Chik, T.S.; et al. Intra-host non-synonymous diversity at a neutralizing antibody epitope of SARS-CoV-2 spike protein N-terminal domain. Clin. Microbiol. Infect. 2021, 27, 1350.e1–1350.e5. [Google Scholar] [CrossRef] [PubMed]
- Factsheet on COVID-19 Vaccination for Persons with Prior COVID-19 Infection. Available online: https://www.covidvaccine.gov.hk/pdf/factsheet_priorCOVID19infection_ENG.pdf (accessed on 18 October 2021).
- Mok, D.Z.L.; Chan, K.R. The Effects of Pre-Existing Antibodies on Live-Attenuated Viral Vaccines. Viruses 2020, 12, 520. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Slezak, J.M.; Fischer, H.; Hong, V.; Ackerson, B.K.; Ranasinghe, O.N.; Frankland, T.B.; Ogun, O.A.; Zamparo, J.M.; Gray, S.; et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: A retrospective cohort study. Lancet 2021, 398, 1407–1416. [Google Scholar] [CrossRef]
- Thomas, S.J.; Moreira, E.D., Jr.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Polack, F.P.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N. Engl. J. Med. 2021, 385, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Kruttgen, A.; Lauen, M.; Klingel, H.; Imohl, M.; Kleines, M. Two novel SARS-CoV-2 surrogate virus neutralization assays are suitable for assessing successful immunization with mRNA-1273. J. Virol. Methods 2021, 299, 114297. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, G.; Scavone, C.; Rafaniello, C.; Rossi, F.; Capuano, A. SARS-Cov-2 infection: Response of human immune system and possible implications for the rapid test and treatment. Int. Immunopharmacol. 2020, 84, 106519. [Google Scholar] [CrossRef]
- Shurin, M.R.; Morris, A.; Wells, A.; Wheeler, S.E. Assessing Immune Response to SARS-CoV-2 Infection. Immunotargets Ther. 2020, 9, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Bouam, A.; Edouard, S.; Fenollar, F.; Di Pinto, F.; Mege, J.L.; Drancourt, M.; Vitte, J. Evaluating ELISA, Immunofluorescence, and Lateral Flow Assay for SARS-CoV-2 Serologic Assays. Front. Microbiol. 2020, 11, 597529. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, G.; Guo, Y.; Zhou, T.; Gorman, J.; Lee, M.; Rapp, M.; Reddem, E.R.; Yu, J.; Bahna, F.; Bimela, J.; et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe 2021, 29, 819–833.e7. [Google Scholar] [CrossRef] [PubMed]
- Doria-Rose, N.; Suthar, M.S.; Makowski, M.; O’Connell, S.; McDermott, A.B.; Flach, B.; Ledgerwood, J.E.; Mascola, J.R.; Graham, B.S.; Lin, B.C.; et al. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. N. Engl. J. Med. 2021, 384, 2259–2261. [Google Scholar] [CrossRef]
PC-B (n = 54) | CN-B (n = 34) | PC-C (n = 25) | CN-C (n = 36) | |
---|---|---|---|---|
Age (years) | 50.5 (23–80) | 50 (18–68) | 55 (21–73) | 61 (20–76) |
Female | 19 (35.2%) | 22 (64.7%) | 7 (28%) | 22 (61.1%) |
Male | 35 (64.8%) | 12 (35.3%) | 18 (72%) | 14 (38.9%) |
Severity of COVID-19 | ||||
Severe | 5 (9.3%) | N/A | 4 (16%) | N/A |
Mild | 49 (90.7%) | N/A | 21 (84%) | N/A |
Comorbidities | 13 (24.1%) | 8 (23.5%) | 11 (44%) | 17 (47.2%) |
PC-B (n = 54) | CN-B (n = 34) | PC-C (n = 25) | CN-C (n = 36) | |
---|---|---|---|---|
Wild type | ||||
Baseline | ||||
GMT | 32.2 (24.8–41.6) | 5 (5–5) | 32.9 (24.7–44.0) | 5 (5–5) |
Post primer dose | ||||
GMT | 11.5 (14.3–9.3) | 5.5 (5.0–6.1) | ||
GMT fold increase value | 2.3 (1.9–2.9) | 1.1 (1.0–1.2) | ||
Post booster dose | ||||
GMT | 718.4 (513.2–1005.7) | 81.6 (60.4–110.3) | 59.0 (43.1–80.8) | 12.1 (9.9–14.9) |
GMT fold increase value | 22.3 (16.2–30.8) | 16.3 (12.1–22.1) | 1.8 (1.2–2.6) | 2.4 (2.0–3.0) |
Delta variant | ||||
Baseline | ||||
GMT | 37.5 (28.4–49.6) | 5 (5–5) | 32.9 (23.3–46.6) | 5 (5–5) |
Post primer dose | ||||
GMT | 6.9 (5.8–8.2) | 5.9 (5.0–7.0) | ||
GMT fold increase value | 1.4 (1.2–1.6) | 1.2 (1.0–1.4) | ||
Post booster dose | ||||
GMT | 766.0 (528.1–1111.0) | 53.2 (39.0–72.5) | 71.6 (51.0–100.5) | 6.6 (5.5–7.8) |
GMT fold increase value | 20.4 (14.8–28.1) | 10.6 (7.8–14.5) | 2.2 (1.4–3.3) | 1.3 (1.1–1.6) |
Virus Strain | PC-B | p Value | PC-C | p Value | ||
---|---|---|---|---|---|---|
Before 6 Months (n = 20) | Post 6 Months (n = 34) | Before 6 Months (n = 5) | Post 6 Months (n = 20) | |||
Wild type | ||||||
Baseline | ||||||
GMT | 29.3 (19.6–43.7) | 34.0 (24.2–47.7) | 0.526 | 30.3 (17.6–52.2) | 33.6 (23.9–47.2) | 0.627 |
Post booster dose | ||||||
GMT | 685.9 (463.0–1016.2) | 738.2 (454.1–1200.1) | 0.204 | 69.6 (21.6–224.1) | 56.6 (42.4–75.4) | 0.123 |
GMT fold increase value | 23.4 (15.0–36.6) | 21.7 (14.0–33.8) | 0.613 | 2.3 (0.7–7.4) | 1.7 (1.1–2.5) | 0.155 |
Delta variant | ||||||
Baseline | ||||||
GMT | 32.5 (22.2–47.7) | 40.8 (27.8–59.8) | 0.191 | 23.0 (13.8–38.2) | 36.1 (23.9–54.3) | 0.351 |
Post booster dose | ||||||
GMT | 618.2 (409.4–933.4) | 868.9 (507.1–1489.1) | 0.066 | 60.6 (24.1–152.4) | 74.6 (51.7–107.8) | 0.910 |
GMT fold increase value | 19.0 (12.7–28.5) | 21.3 (13.5–33.5) | 0.195 | 2.6 (1.3–5.3) | 2.1 (1.2–3.4) | 0.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Khong, K.-W.; Leung, K.-Y.; Liu, D.; Fan, Y.; Lu, L.; Chan, P.-C.; Chen, L.; To, K.K.-W.; Chen, H.; et al. Antibody Response of BNT162b2 and CoronaVac Platforms in Recovered Individuals Previously Infected by COVID-19 against SARS-CoV-2 Wild Type and Delta Variant. Vaccines 2021, 9, 1442. https://doi.org/10.3390/vaccines9121442
Zhang R, Khong K-W, Leung K-Y, Liu D, Fan Y, Lu L, Chan P-C, Chen L, To KK-W, Chen H, et al. Antibody Response of BNT162b2 and CoronaVac Platforms in Recovered Individuals Previously Infected by COVID-19 against SARS-CoV-2 Wild Type and Delta Variant. Vaccines. 2021; 9(12):1442. https://doi.org/10.3390/vaccines9121442
Chicago/Turabian StyleZhang, Ruiqi, Ka-Wa Khong, Ka-Yi Leung, Danlei Liu, Yujing Fan, Lu Lu, Pui-Chun Chan, Linlei Chen, Kelvin Kai-Wang To, Honglin Chen, and et al. 2021. "Antibody Response of BNT162b2 and CoronaVac Platforms in Recovered Individuals Previously Infected by COVID-19 against SARS-CoV-2 Wild Type and Delta Variant" Vaccines 9, no. 12: 1442. https://doi.org/10.3390/vaccines9121442
APA StyleZhang, R., Khong, K.-W., Leung, K.-Y., Liu, D., Fan, Y., Lu, L., Chan, P.-C., Chen, L., To, K. K.-W., Chen, H., Yuen, K.-Y., Chan, K.-H., & Hung, I. F.-N. (2021). Antibody Response of BNT162b2 and CoronaVac Platforms in Recovered Individuals Previously Infected by COVID-19 against SARS-CoV-2 Wild Type and Delta Variant. Vaccines, 9(12), 1442. https://doi.org/10.3390/vaccines9121442