The Dynamics of Antibody Titres Against SARS-CoV-2 in Vaccinated Healthcare Workers: A Systemic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
- The study population consisted of healthcare workers.
- The study population had been vaccinated with one of the following COVID-19 vaccines: Pfizer-BioNTech, Oxford–AstraZeneca, Moderna, or Janssen.
- The study population was periodically tested for antibodies against SARS-CoV-2 following vaccination.
- Antibody levels were measured at intervals over a minimum duration of 3 months.
- The study was published in English.
- The study was quantitative in nature.
- The research was conducted in Europe.
- The research publication was accessible via the Vilnius University intranet.
- The study population was tested for cellular immunity.
- The study population was assessed for the effects of combining COVID-19 vaccines with other vaccines.
- The study was a clinical trial, literature review, or pre-print.
3. Results
3.1. Antibody Dynamics After Primary Vaccination
3.1.1. Period of 3 Months
3.1.2. Period of 4–5 Months
3.1.3. Period of 6 Months
3.1.4. Period of 7–8 Months
3.1.5. Summary of Antibody Dynamics After Primary Vaccination
3.2. The Effect of Booster Doses
4. Discussion
5. Perspectives for Future Research
6. Limitations of the Review
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Overview. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 15 September 2024).
- CDC COVID-19 Response Team. Characteristics of Health Care Personnel with COVID-19—United States, February 12–April 9, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 477–481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, D.; Hu, C.; Su, F.; Song, Q.; Wang, Z. Exposure to SARS-CoV-2 in a high transmission setting increases the risk of severe COVID-19 compared with exposure to a low transmission setting? J. Travel. Med. 2020, 27, taaa094. [Google Scholar] [CrossRef] [PubMed]
- Abo-Leyah, H.; Gallant, S.; Cassidy, D.; Giam, Y.H.; Killick, J.; Marshall, B.; Hay, G.; Snowdon, C.; Hothersall, E.J.; Pembridge, T.; et al. The protective effect of SARS-CoV-2 antibodies in Scottish healthcare workers. ERJ Open Res. 2021, 7, 00080–2021. [Google Scholar] [CrossRef] [PubMed]
- Sabetian, G.; Moghadami, M.; Hashemizadeh Fard Haghighi, L.; Shahriarirad, R.; Fallahi, M.J.; Asmarian, N.; Moeini, Y.S. COVID-19 infection among healthcare workers: A cross-sectional study in southwest Iran. Virol. J. 2021, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.; Faustini, S.E.; Perez-Toledo, M.; Jossi, S.; Aldera, E.; Allen, J.D.; Al-Taei, S.; Backhouse, C.; Bosworth, A.; Dunbar, L.A.; et al. SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: A cross-sectional study. Thorax. 2020, 75, 1089–1094. [Google Scholar] [CrossRef]
- Al Maskari, Z.; Al Blushi, A.; Khamis, F.; Al Tai, A.; Al Salmi, I.; Al Harthi, H.; Al Saadi, M.; Al Mughairy, A.; Gutierrez, R.; Al Blushi, Z. Characteristics of healthcare workers infected with COVID-19: A cross-sectional observational study. Int. J. Infect. Dis. 2021, 102, 32–36. [Google Scholar] [CrossRef]
- Gómez-Ochoa, S.A.; Franco, O.H.; Rojas, L.Z.; Raguindin, P.F.; Roa-Díaz, Z.M.; Wyssmann, B.M.; Romero Guevara, S.L.; Echeverria, L.E.; Glisic, M.; Muka, T. COVID-19 in Health-Care Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am. J. Epidemiol. 2021, 190, 161–175. [Google Scholar] [CrossRef]
- Coronavirus Disease (COVID-19): Vaccine Access and Allocation. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(COVID-19)-vaccine-access-and-allocation (accessed on 26 September 2024).
- Hall, V.J.; Foulkes, S.; Saei, A.; Andrews, N.; Oguti, B.; Charlett, A.; Wellington, E.; Stowe, J.; Gillson, N.; Atti, A.; et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): A prospective, multicentre, cohort study. Lancet 2021, 397, 1725–1735. [Google Scholar] [CrossRef]
- Association Between Vaccination with BNT162b2 and Incidence of Symptomatic and Asymptomatic SARS-CoV-2 Infections Among Health Care Workers. Available online: https://pubmed.ncbi.nlm.nih.gov/33956048/ (accessed on 26 September 2024).
- Bouton, T.C.; Lodi, S.; Turcinovic, J.; Schaeffer, B.; Weber, S.E.; Quinn, E.; Korn, C.; Steiner, J.; Schechter-Perkins, E.M.; Duffy, E.; et al. Coronavirus Disease 2019 Vaccine Impact on Rates of Severe Acute Respiratory Syndrome Coronavirus 2 Cases and Postvaccination Strain Sequences Among Health Care Workers at an Urban Academic Medical Center: A Prospective Cohort Study. Open Forum Infect. Dis. 2021, 8, ofab465. [Google Scholar] [CrossRef]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Levin, E.G.; Rubin, C.; Indenbaum, V.; et al. COVID-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef]
- Patel, R.; Kaki, M.; Potluri, V.S.; Kahar, P.; Khanna, D. A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. Hum. Vaccines Immunother. 2022, 18, 2002083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cegolon, L.; Magnano, G.; Negro, C.; Larese Filon, F.; ORCHESTRA Working Group. SARS-CoV-2 Reinfections in Health-Care Workers, 1 March 2020–31 January 2023. Viruses 2023, 15, 1551. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janke, C.; Rubio-Acero, R.; Weigert, M.; Reinkemeyer, C.; Khazaei, Y.; Kleinlein, L.; Le Gleut, R.; Radon, K.; Hannes, M.; Picasso, F.; et al. Understanding the Omicron Variant Impact in Healthcare Workers: Insights from the Prospective COVID-19 Post-Immunization Serological Cohort in Munich (KoCo-Impf) on Risk Factors for Breakthrough and Reinfections. Viruses 2024, 16, 1556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Anastassopoulou, C.; Antoni, D.; Manoussopoulos, Y.; Stefanou, P.; Argyropoulou, S.; Vrioni, G.; Tsakris, A. Age and sex associations of SARS-CoV-2 antibody responses post BNT162b2 vaccination in healthcare workers: A mixed effects model across two vaccination periods. PLoS ONE 2022, 17, e0266958. [Google Scholar] [CrossRef]
- Oliveira-Silva, J.; Reis, T.; Lopes, C.; Batista-Silva, R.; Ribeiro, R.; Marques, G.; Pacheco, V.; Rodrigues, T.; Afonso, A.; Pinheiro, V.; et al. Humoral response to the SARS-CoV-2 BNT162b2 mRNA vaccine: Real-world data from a large cohort of healthcare workers. Vaccine 2022, 40, 650–655. [Google Scholar] [CrossRef]
- Salvagno, G.L.; Henry, B.M.; Pighi, L.; De Nitto, S.; Gianfilippi, G.L.; Lippi, G. Three-month analysis of total humoral response to Pfizer BNT162b2 mRNA COVID-19 vaccination in healthcare workers. J. Infect. 2021, 83, e4–e5. [Google Scholar] [CrossRef]
- Van Elslande, J.; Weemaes, M.; Godderis, L.; Van Pottelbergh, G.; Bossuyt, X.; Vermeersch, P. IgG anti-spike antibody levels in healthcare workers with and without prior COVID-19 up to 3 months after BNT162b2 vaccination. Diagn. Microbiol. Infect. Dis. 2022, 102, 115638. [Google Scholar] [CrossRef]
- Visci, G.; Zunarelli, C.; Mansour, I.; Porru, S.; De Palma, G.; Duval, X.; Monaco, M.G.L.; Spiteri, G.; Carta, A.; Lippi, G.; et al. Serological response after SARS-CoV2 vaccination in healthcare workers: A multicenter study. Med. Lav. 2022, 113, e2022022. [Google Scholar]
- IgG Antibodies Against SARS-CoV-2 Decay But Persist 4 Months After Vaccination in a Cohort of Healthcare Workers. Available online: https://pubmed.ncbi.nlm.nih.gov/34755649/ (accessed on 26 September 2024).
- Cangemi, R.; Di Franco, M.; Angeloni, A.; Zicari, A.; Cardinale, V.; Visentini, M.; Antonelli, G.; Napoli, A.; Anastasi, E.; Romiti, G.F.; et al. Serological Response and Relationship with Gender-Sensitive Variables among Healthcare Workers after SARS-CoV-2 Vaccination. J. Pers. Med. 2022, 12, 994. [Google Scholar] [CrossRef]
- Bayart, J.L.; Douxfils, J.; Gillot, C.; David, C.; Mullier, F.; Elsen, M.; Eucher, C.; Van Eeckhoudt, S.; Roy, T.; Gerin, V.; et al. Waning of IgG, Total and Neutralizing Antibodies 6 Months Post-Vaccination with BNT162b2 in Healthcare Workers. Vaccines 2021, 9, 1092. [Google Scholar] [CrossRef] [PubMed]
- Collatuzzo, G.; Visci, G.; Violante, F.S.; Porru, S.; Spiteri, G.; Monaco, M.G.L.; Fillon, F.L.; Negro, C.; Janke, C.; Castelletti, N.; et al. Determinants of anti-S immune response at 6 months after COVID-19 vaccination in a multicentric European cohort of healthcare workers—ORCHESTRA project. Front. Immunol. 2022, 13, 986085. [Google Scholar] [CrossRef]
- Đaković Rode, O.; Bodulić, K.; Zember, S.; Cetinić Balent, N.; Novokmet, A.; Čulo, M.; Rašić, Ž.; Mikulić, R.; Markotić, A. Decline of Anti-SARS-CoV-2 IgG Antibody Levels 6 Months after Complete BNT162b2 Vaccination in Healthcare Workers to Levels Observed Following the First Vaccine Dose. Vaccines 2022, 10, 153. [Google Scholar] [CrossRef] [PubMed]
- Krintus, M.; Piasecki, M.; Lackowski, P.; Buszko, K.; Kubica, A.; Kosobucka-Ozdoba, A.; Michalski, P.; Pietrzykowski, L.; Stolarek, W.; Wojcik, A.; et al. Determinants of the Level of Anti-SARS-CoV-2 IgG ANTibodiEs after Vaccination (DANTE-SIRIO 7) Study in a Large Cohort of Healthcare Workers. Vaccines 2022, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rivas, G.; Barallat, J.; Quirant-Sánchez, B.; González, V.; Doladé, M.; Martinez-Caceres, E.; Piña, M.; Matllo, J.; Blanco, I.; Cardona, P.J. Follow up of the Humoral Response in Healthcare Workers after the Administration of Two Dose of the Anti SARS-CoV-2 Vaccines-Effectiveness in Delta Variant Breakthrough Infections. Viruses 2022, 14, 1385. [Google Scholar] [CrossRef]
- Infantino, M.; Manfredi, M.; Stacchini, L.; Cosma, C.; Grossi, V.; Lari, B.; Russo, E.; Amedei, A.; Benucci, M.; Veneziani, F.; et al. The role of neutralizing antibodies by sVNT after two doses of BNT162b2 mRNA vaccine in a cohort of Italian healthcare workers. Clin. Chem. Lab. Med. 2022, 60, 934–940. [Google Scholar] [CrossRef]
- Oliveira-Silva, J.; Reis, T.; Lopes, C.; Batista-Silva, R.; Ribeiro, R.; Marques, G.; Pacheco, V.; Rodrigues, T.; Afonso, A.; Pinheiro, V.; et al. Long-term serological SARS-CoV-2 IgG kinetics following mRNA COVID-19 vaccine: Real-world data from a large cohort of healthcare workers. Int. J. Infect. Dis. 2022, 122, 1–7. [Google Scholar] [CrossRef]
- Ramos, A.; Cardoso, M.J.; Ribeiro, L.; Guimarães, J.T. Assessing SARS-CoV-2 Neutralizing Antibodies after BNT162b2 Vaccination and Their Correlation with SARS-CoV-2 IgG Anti-S1, Anti-RBD and Anti-S2 Serological Titers. Diagnostics 2022, 12, 205. [Google Scholar] [CrossRef]
- Mueller, T. Time course of antibody concentrations against the spike protein of SARS-CoV-2 among healthy hospital workers up to 200 days after their first COVID-19 vaccination. J. Clin. Lab. Anal. 2022, 36, e24175. [Google Scholar] [CrossRef]
- Gil-Manso, S.; Alonso, R.; Catalán, P.; Sánchez-Arcilla, I.; Marzola, M.; Correa-Rocha, R.; Pion, M.; Muñoz, P. IgG anti-RBD levels during 8-month follow-up post-vaccination with BNT162b2 and mRNA-1273 vaccines in healthcare workers: A one-center study. Front. Cell. Infect. Microbiol. 2022, 12, 1035155. [Google Scholar] [CrossRef]
- Golec, M.; Fronczek, M.; Zembala-John, J.; Chrapiec, M.; Konka, A.; Wystyrk, K.; Botor, H.; Brzoza, Z.; Kasperczyk, S.; Bułdak, R.J. Early and Longitudinal Humoral Response to the SARS-CoV-2 mRNA BNT162b2 Vaccine in Healthcare Workers: Significance of BMI, Adipose Tissue and Muscle Mass on Long-Lasting Post-Vaccinal Immunity. Viruses 2022, 14, 868. [Google Scholar] [CrossRef]
- Serrano, L.; Algarate, S.; Herrero-Cortina, B.; Bueno, J.; González-Barriga, M.T.; Ducons, M.; Montero-Marco, J.; Acha, B.; Taboada, A.; Sanz-Burillo, P.; et al. Assessment of humoral immune response to two mRNA SARS-CoV-2 vaccines (Moderna and Pfizer) in healthcare workers fully vaccinated with and without a history of previous infection. J. Appl. Microbiol. 2022, 133, 1969–1974. [Google Scholar] [CrossRef]
- Wolszczak-Biedrzycka, B.; Bieńkowska, A.; Dorf, J. Assessment of Post-Vaccination Antibody Response Eight Months after the Administration of BNT1622b2 Vaccine to Healthcare Workers with Particular Emphasis on the Impact of Previous COVID-19 Infection. Vaccines 2021, 9, 1508. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Ceci, S.; Patano, A.; Corriero, A.; Azzollini, D.; Marinelli, G.; Coloccia, G.; Piras, F.; Barile, G.; et al. Antispike Immunoglobulin-G (IgG) Titer Response of SARS-CoV-2 mRNA-Vaccine (BNT162b2): A Monitoring Study on Healthcare Workers. Biomedicines 2022, 10, 2402. [Google Scholar] [CrossRef]
- Collatuzzo, G.; De Palma, G.; Violante, F.S.; Porru, S.; Filon, F.L.; Fabianova, E.; Violan, C.; Vimercati, L.; Leustean, M.; Rodriguez-Suarez, M.M.; et al. Corrigendum: Temporal trends of COVID-19 antibodies in vaccinated healthcare workers undergoing repeated serological sampling: An individual-level analysis within 13 months in the ORCHESTRA cohort. Front. Immunol. 2023, 14, 1197923. [Google Scholar] [CrossRef]
- Lorent, D.; Nowak, R.; Figlerowicz, M.; Handschuh, L.; Zmora, P. Anti-SARS-CoV-2 Antibodies Level and COVID-19 Vaccine Boosters among Healthcare Workers with the Highest SARS-CoV-2 Infection Risk-Follow Up Study. Vaccines 2024, 12, 475. [Google Scholar] [CrossRef]
- Stocchi, M.; Melodia, P.; Lucini, A.; De Lorenzo, R.; Pozzi, C.; Rovere-Querini, P.; Odone, A.; Renzi, C.; Signorelli, C. COVID-19 Immunity in the Cohort of IRCCS San Raffaele Hospital Employees after BNT162b2 Vaccination: A Retrospective Observational Study. Ann. Ig. Med. Prev. E Comunita. 2024, 36, 432–445. [Google Scholar]
- Chivu-Economescu, M.; Vremera, T.; Ruta, S.M.; Grancea, C.; Leustean, M.; Chiriac, D.; David, A.; Matei, L.; Diaconu, C.C.; Gatea, A.; et al. Assessment of the Humoral Immune Response Following COVID-19 Vaccination in Healthcare Workers: A One Year Longitudinal Study. Biomedicines 2022, 10, 1526. [Google Scholar] [CrossRef]
- Long Follow-Up of BNT162b2 mRNA Vaccine in Healthcare Workers (2020–2022): A Retrospective Longitudinal SARS-CoV-2 Serological Surveillance. Available online: https://pubmed.ncbi.nlm.nih.gov/37724517/ (accessed on 26 September 2024).
- Guibert, N.; Trepat, K.; Pozzetto, B.; Josset, L.; Fassier, J.B.; Allatif, O.; Saker, K.; Brengel-Pesce, K.; Walzer, T.; Vanhems, P.; et al. A third vaccine dose equalises the levels of effectiveness and immunogenicity of heterologous or homologous COVID-19 vaccine regimens, Lyon, France, December 2021 to March 2022. Eurosurveillance 2023, 28, 2200746. [Google Scholar] [CrossRef]
- Leomanni, L.; Collatuzzo, G.; Sansone, E.; Sala, E.; De Palma, G.; Porru, S.; Spiteri, G.; Monaco, M.G.L.; Basso, D.; Pavanello, S.; et al. Determinants of Anti-S Immune Response at 12 Months after SARS-CoV-2 Vaccination in a Multicentric European Cohort of Healthcare Workers-ORCHESTRA Project. Vaccines 2023, 11, 1527. [Google Scholar] [CrossRef]
- Padoan, A.; Cosma, C.; Della Rocca, F.; Barbaro, F.; Santarossa, C.; Dall’Olmo, L.; Galla, L.; Cattelan, A.; Cianci, V.; Basso, D.; et al. A cohort analysis of SARS-CoV-2 anti-spike protein receptor binding domain (RBD) IgG levels and neutralizing antibodies in fully vaccinated healthcare workers. Clin. Chem. Lab. Med. 2022, 60, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, G.; Giannoulis, V.; Pirounaki, M.; Lampropoulos, I.C.; Siafi, E.; Nitsa, A.; Pavlou, E.; Xanthaki, A.; Perlepe, G.; Fortis, S.P.; et al. Evaluation of Antibody Kinetics Following COVID-19 Vaccination in Greek SARS-CoV-2 Infected and Naïve Healthcare Workers. J. Pers. Med. 2023, 13, 910. [Google Scholar] [CrossRef] [PubMed]
- Skorupa, M.; Szczepanek, J.; Goroncy, A.; Jarkiewicz-Tretyn, J.; Ptaszyńska, B.; Rajewski, P.; Koper, W.; Pałgan, K.; Tretyn, K. The Dynamics of Changes in the Concentration of IgG against the S1 Subunit in Polish Healthcare Workers in the Period from 1 to 12 Months after Injection, Including Four COVID-19 Vaccines. Vaccines 2022, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Vietri, M.T.; D’Elia, G.; Caliendo, G.; Passariello, L.; Albanese, L.; Molinari, A.M.; Angelillo, I.F. Antibody levels after BNT162b2 vaccine booster and SARS-CoV-2 Omicron infection. Vaccine 2022, 40, 5726–5731. [Google Scholar] [CrossRef]
- Gerhards, C.; Thiaucourt, M.; Hetjens, M.; Haselmann, V.; Neumaier, M.; Kittel, M. Heterologous Vector-mRNA Based SARS-CoV-2 Vaccination Strategy Appears Superior to a Homologous Vector-Based Vaccination Scheme in German Healthcare Workers Regarding Humoral SARS-CoV-2 Response Indicating a High Boosting Effect by mRNA Vaccines. Vaccines 2023, 11, 701. [Google Scholar] [CrossRef]
- Grassi, T.; Lobreglio, G.; Panico, A.; Rosato, C.; Zizza, A.; Lazzari, R.; Chicone, M.; Indino, F.; Bagordo, F. Kinetics of Humoral Immunity against SARS-CoV-2 in Healthcare Workers after the Third Dose of BNT162b2 mRNA Vaccine. Vaccines 2022, 10, 1948. [Google Scholar] [CrossRef]
- Skrzat-Klapaczyńska, A.; Kowalska, J.D.; Paciorek, M.; Puła, J.; Bieńkowski, C.; Krogulec, D.; Stengiel, J.; Pawełczyk, A.; Perlejewski, K.; Osuch, S.; et al. Higher Immunological Response after BNT162b2 Vaccination among COVID-19 Convalescents-The Data from the Study among Healthcare Workers in an Infectious Diseases Center. Vaccines 2022, 10, 2158. [Google Scholar] [CrossRef]
- Consonni, D.; Lombardi, A.; Mangioni, D.; Bono, P.; Oggioni, M.; Uceda Renteria, S.; Valzano, A.; Bordini, L.; Nava, C.D.; Tiwana, N.; et al. Immunogenicity and effectiveness of BNT162b2 COVID-19 vaccine in a cohort of healthcare workers in Milan (Lombardy Region, Northern Italy). Epidemiol. Prev. 2022, 46, 250–258. [Google Scholar]
- Augustinussen, M.H.; Tylden, G.D.; Rinaldo, C.H. Dynamics of SARS-CoV-2 Spike-IgG throughout Three COVID-19 Vaccination Regimens: A 21-Month Longitudinal Study of 82 Norwegian Healthcare Workers. Viruses 2023, 15, 619. [Google Scholar] [CrossRef]
- Łysek-Gładysińska, M.; Starz, M.; Borowiec-Sęk, A.; Sufin, I.; Wieczorek, A.; Chrapek, M.; Zarębska-Michaluk, D.; Sufin, P.; Głuszek, S.; Adamus-Białek, W. The Levels of Anti-SARS-CoV-2 Spike Protein IgG Antibodies Before and After the Third Dose of Vaccination Against COVID-19. J. Inflamm. Res. 2023, 16, 145–160. [Google Scholar] [CrossRef]
- Serra, N.; Andriolo, M.; Butera, I.; Mazzola, G.; Sergi, C.M.; Fasciana, T.M.A.; Giammanco, A.; Gagliano, M.C.; Cascio, A.; Di Carlo, P. A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study. Vaccines 2023, 11, 1136. [Google Scholar] [CrossRef] [PubMed]
- Isgrò, M.A.; Trillò, G.; Russo, L.; Tornesello, A.L.; Buonaguro, L.; Tornesello, M.L.; Miscio, L.; Normanno, N.; Bianchi, A.A.M.; Buonaguro, F.M.; et al. Bimodal antibody-titer decline following BNT162b2 mRNA anti-SARS-CoV-2 vaccination in healthcare workers of the INT—IRCCS “Fondazione Pascale” Cancer Center (Naples, Italy). Infect. Agent. Cancer 2022, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Sarrigeorgiou, I.; Moschandreou, D.; Dimitriadis, A.; Tsinti, G.; Sotiropoulou, E.; Ntoukaki, E.; Eliadis, P.; Backovic, M.; Labropoulou, S.; Escriou, N.; et al. Combined monitoring of IgG and IgA anti-Spike and anti-Receptor binding domain long term responses following BNT162b2 mRNA vaccination in Greek healthcare workers. PLoS ONE 2022, 17, e0277827. [Google Scholar] [CrossRef] [PubMed]
- Zurac, S.; Vladan, C.; Dinca, O.; Constantin, C.; Neagu, M. Immunogenicity evaluation after BNT162b2 booster vaccination in healthcare workers. Sci. Rep. 2022, 12, 12716. [Google Scholar] [CrossRef] [PubMed]
- Szczepanek, J.; Skorupa, M.; Jarkiewicz-Tretyn, J.; Tretyn, A. COVID-19 vaccination in healthcare workers: Long-term benefits and protection. Cent-Eur. J. Immunol. 2023, 48, 311–321. [Google Scholar] [CrossRef]
- Scheiermann, N.; Kuwert, E.K. Uptake and elimination of hepatitis B immunoglobulins after intramuscular application in man. Dev. Biol. Stand. 1983, 54, 347–355. [Google Scholar]
- Hopkins, R.J.; Kramer, W.G.; Blackwelder, W.C.; Ashtekar, M.; Hague, L.; Winker-La Roche, S.D.; Berezuk, G.; Smith, D.; Leese, P.T. Safety and pharmacokinetic evaluation of intravenous vaccinia immune globulin in healthy volunteers. Clin. Infect. Dis. 2004, 39, 759–766. [Google Scholar] [CrossRef]
- Adner, N.; Leibl, H.; Enzersberger, O.; Kirgios, M.; Wahlberg, T. Pharmacokinetics of human tick-borne encephalitis virus antibody levels after injection with human tick-borne encephalitis immunoglobulin, solvent/detergent treated, FSME-BULIN S/D in healthy volunteers. Scand. J. Infect. Dis. 2001, 33, 843–847. [Google Scholar]
- Ghetie, V.; Ward, E.S. Transcytosis and catabolism of antibody. Immunol. Res. 2002, 25, 97–113. [Google Scholar] [CrossRef]
- Amanna, I.J.; Slifka, M.K. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol. Rev. 2010, 236, 125–138. [Google Scholar] [CrossRef]
- Farber, D.L.; Netea, M.G.; Radbruch, A.; Rajewsky, K.; Zinkernagel, R.M. Immunological memory: Lessons from the past and a look to the future. Nat. Rev. Immunol. 2016, 16, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Labrie, J.E.; Sah, A.P.; Allman, D.M.; Cancro, M.P.; Gerstein, R.M. Bone Marrow Microenvironmental Changes Underlie Reduced RAG-mediated Recombination and B Cell Generation in Aged Mice. J. Exp. Med. 2004, 200, 411–423. [Google Scholar] [CrossRef]
- Miller, J.P.; Allman, D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J. Immunol. 2003, 171, 2326–2330. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Landin, A.M.; Blomberg, B.B. Age effects on B cells and humoral immunity in humans. Ageing Res. Rev. 2011, 10, 330–335. [Google Scholar] [CrossRef]
- Shankwitz, K.; Pallikkuth, S.; Sirupangi, T.; Kirk Kvistad, D.; Russel, K.B.; Pahwa, R.; Gama, L.; Koup, R.A.; Pan, L.; Villinger, F.; et al. Compromised steady-state germinal center activity with age in nonhuman primates. Aging Cell 2020, 19, e13087. [Google Scholar] [CrossRef]
- Mogilenko, D.A.; Shchukina, I.; Artyomov, M.N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 2022, 22, 484–498. [Google Scholar] [CrossRef]
- Sohrabi, Y.; Reinecke, H.; Joosten, L.A.B.; Netea, M.G. Deadly COVID-19 among the elderly: Innate immune memory helping those most in need. Med 2021, 2, 378–383. [Google Scholar] [CrossRef]
- Kovats, S.; Carreras, E.; Agrawal, H. Sex Steroid Receptors in Immune Cells. In Sex Hormones and Immunity to Infection; Klein, S.L., Roberts, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 53–91. [Google Scholar] [CrossRef]
- Robinson, D.P.; Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 2012, 62, 263–271. [Google Scholar] [CrossRef]
- Lü, F.X.; Abel, K.; Ma, Z.; Rourke, T.; Lu, D.; Torten, J.; McChesney, M.; Miller, C.J. The strength of B cell immunity in female rhesus macaques is controlled by CD8+ T cells under the influence of ovarian steroid hormones. Clin. Exp. Immunol. 2002, 128, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiébaut, R.; Tibshirani, R.J.; Davis, M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Anticoli, S.; Dorrucci, M.; Iessi, E.; Chiarotti, F.; Di Prinzio, R.R.; Vinci, M.R.; Zaffina, S.; Puro, V.; Colavita, F.; Mizzoni, K. Association between sex hormones and anti-S/RBD antibody responses to COVID-19 vaccines in healthcare workers. Hum. Vaccines Immunother. 2023, 19, 2273697. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zurac, S.; Nichita, L.; Mateescu, B.; Mogodici, C.; Bastian, A.; Popp, C.; Cioplea, M.; Socoliu, C.; Constantin, C.; Neagu, M. COVID-19 vaccination and IgG and IgA antibody dynamics in healthcare workers. Mol. Med. Rep. 2021, 24, 578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ko, D.T.; Chu, A.; Austin, P.C.; Johnston, S.; Nallamothu, B.K.; Roifman, I.; Tusevljak, N.; Udell, J.A.; Frank, E. Comparison of Cardiovascular Risk Factors and Outcomes Among Practicing Physicians vs the General Population in Ontario, Canada. JAMA Netw. Open 2019, 2, e1915983. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Català, M.; Mercadé-Besora, N.; Kolde, R.; Trinh, N.T.H.; Roel, E.; Burn, E.; Rathod-Mistry, T.; Kostka, K.; Man, W.Y.; Delmestri, A. The effectiveness of COVID-19 vaccines to prevent long COVID symptoms: Staggered cohort study of data from the UK, Spain, and Estonia. Lancet Respir. Med. 2024, 12, 225–236. [Google Scholar] [CrossRef] [PubMed]
Population | Healthcare Workers Vaccinated Against SARS-CoV-2 |
---|---|
Intervention | Vaccination |
Comparator | - |
Outcome | Antibody titres |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurkšnienė, V.; Alčauskas, T.; Majauskaitė, F.; Jančorienė, L. The Dynamics of Antibody Titres Against SARS-CoV-2 in Vaccinated Healthcare Workers: A Systemic Literature Review. Vaccines 2024, 12, 1419. https://doi.org/10.3390/vaccines12121419
Gurkšnienė V, Alčauskas T, Majauskaitė F, Jančorienė L. The Dynamics of Antibody Titres Against SARS-CoV-2 in Vaccinated Healthcare Workers: A Systemic Literature Review. Vaccines. 2024; 12(12):1419. https://doi.org/10.3390/vaccines12121419
Chicago/Turabian StyleGurkšnienė, Vilija, Tadas Alčauskas, Fausta Majauskaitė, and Ligita Jančorienė. 2024. "The Dynamics of Antibody Titres Against SARS-CoV-2 in Vaccinated Healthcare Workers: A Systemic Literature Review" Vaccines 12, no. 12: 1419. https://doi.org/10.3390/vaccines12121419
APA StyleGurkšnienė, V., Alčauskas, T., Majauskaitė, F., & Jančorienė, L. (2024). The Dynamics of Antibody Titres Against SARS-CoV-2 in Vaccinated Healthcare Workers: A Systemic Literature Review. Vaccines, 12(12), 1419. https://doi.org/10.3390/vaccines12121419