Early and Late Induction of KRAS and HRAS Proto-Oncogenes by Reactive Oxygen Species in Primary Astrocytes
<p>Reactive oxygen species (ROS) selectively induce K-Ras and H-Ras protein levels in primary astrocytes. The direct effects of hydrogen peroxide addition in regulating the protein levels of K-Ras and H-Ras in cultured astrocytes were measured by western blot analysis. The kinetics of total p21<sup>Ras</sup> expression and K-Ras isoform in cultured astrocytes subjected to H<sub>2</sub>O<sub>2</sub> treatment is shown in (<b>Panel A</b>). The growth medium (high-serum 20%) was switched into a low-serum (2%) medium containing or not H<sub>2</sub>O<sub>2</sub> and western blot analyses were performed on Radioimmunoprecipitation (RIPA) buffer extracts. Total p21<sup>Ras</sup> protein shows constitutive low levels in untreated astrocytes and increases upon oxidative stimulation (<b>Panel D</b>). K-Ras (sc-521) levels increased in 5 min and rapidly decreased, reaching the basal levels at 60 min of stimulation (<b>Panel C</b>). Conversely, H-Ras protein levels peaked at 60 min and remained high for up to 120 min (<b>Panel B</b>); representative immunoblots with antibodies against H-Ras (sc-520) and pan-Ras (H259) show the same immune-reactivity pattern with differences in sensitivity. Monoclonal anti-β actin was used as loading control. Experiments were carried out in triplicates and statistical significance obtained by Student’s <span class="html-italic">t</span>-test. * <span class="html-italic">p</span> < 0.01 as compared with the untreated normal astrocytes (Student’s unpaired test); ° <span class="html-italic">p</span> < 0.02 as compared with the untreated sample (Student’s matched pairs test).</p> "> Figure 2
<p>Post-transcriptional regulation of K-Ras and H-Ras proteins by H<sub>2</sub>O<sub>2</sub>-induced oxidative stress. Western Blot analysis was performed on Y13-259 from astrocytes RIPA extracts that were cycloheximide (CHX) pre-treated or proteasomal inhibitor MG132 pre-treated and quickly subjected to H<sub>2</sub>O<sub>2</sub> exogenous administration in complete medium or low-serum medium. In (<b>Panel A</b>), cultured astrocytes were pre-treated with the drug (CHX, 20 µg/mL) and the decay of the target protein over time was determined by western blot analysis with specific antibodies against H-Ras and K-Ras (<b>left and right panel A, respectively</b>). The addition of H<sub>2</sub>O<sub>2</sub> shortened the expression of H-Ras (t<sub>1/2</sub> values 1 h); conversely, H<sub>2</sub>O<sub>2</sub> was able to induce K-Ras protein levels even in the absence of mRNA translation. Western blot analysis of total Ras (pan-Ras Ab-3) and monoclonal β-actin was performed in the same experiment and used as loading control (bottom panel). (<b>Panel B</b>) shows immunoblot analysis of H- and K- isoforms from immunoprecipitates of astrocytes pre-treated with the proteasome inhibitor, MG132, in the presence or absence of H<sub>2</sub>O<sub>2</sub>. Proteasomal inhibition prevented the reduction of K-Ras at 30 min, which maintained at high levels for up to 60 min. K-Ras protein also increased in cells treated with MG132, without H<sub>2</sub>O<sub>2</sub>, with kinetics mirroring mRNA accumulation. Total kinetics of K- and H- protein levels are shown in the bottom graph. All data derive from three independent experiments performed in triplicate (mean ± SD; <span class="html-italic">n</span> = 9).</p> "> Figure 3
<p>Proto-oncogene K-Ras is transcriptionally induced by H<sub>2</sub>O<sub>2</sub>-induced oxidative stress in primary astrocytes. Quantitative polymerase chain reaction (qRT-PCR) analysis of <span class="html-italic">KRAS</span>, <span class="html-italic">HRAS</span>, and <span class="html-italic">iNOS</span> in cultured astrocytes subjected to H<sub>2</sub>O<sub>2</sub>-induced oxidative stress or untreated (low-serum lacking H<sub>2</sub>O<sub>2</sub> exogenous administration). The <b>Panel A</b> graph summarizes differences in total kinetics of K-Ras and H-Ras mRNA induction by H<sub>2</sub>O<sub>2</sub> treatment in cultured astrocytes. <b>Panel B</b>, <b>C</b>, and <b>D</b> show mRNA fold induction of K-Ras, iNOS, and H-Ras, respectively, in primary astrocytes in presence or absence of N-Acetyl-cysteine (NAC) and in presence or absence of H<sub>2</sub>O<sub>2</sub>. To examine whether Reactive Oxygen Species (ROS) formation was causally related to the mRNA increase, cultures were pre-treated with 5 mM N-acetylcysteine for 5 h prior to the medium switch. This pre-treatment dampened the mRNA induction in both conditions. <b>Panel E</b> summarizes translational and transcriptional K-Ras kinetics in astrocytes exposed to ROS. All experiments were carried out in triplicates and statistical significance obtained by one-way ANOVA analysis with Dunn’s post hoc * <span class="html-italic">p</span> < 0.01 and ° <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Experimental Procedures
3. Results
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leon, J.; Guerrero, I.; Pellicer, A. Differential expression of the Ras gene family in mice. Mol. Cell Biol. 1987, 4, 1535–1540. [Google Scholar] [CrossRef]
- Rubio, N. Interferon-gamma protects astrocytes from apoptosis and increases the formation of Ras-GTP complex through Ras oncogene family overexpression. Glia 2001, 33, 151–159. [Google Scholar] [CrossRef]
- Messina, S.; Frati, L.; Porcellini, A. Oxidative stress posttraslationally regulates the expression of Ha-Ras and Ki-Ras in cultured astrocytes. Oxid. Med. Cell. Longev. 2012, 2012, 792705. [Google Scholar] [CrossRef] [PubMed]
- Messina, S.; Molinaro, G.; Bruno, V.; Battaglia, G.; Spinsanti, P.; Di Pardo, A.; Nicoletti, F.; Frati, L.; Porcellini, A. Enhanced expression of Harvery Ras induced by serum deprivation in cultured astrocytes. J. Neurochem. 2008, 106, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.F. Ras proteins: Different signals from different locations. Nat. Rev. Mol. Cell Biol. 2003, 4, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Campbell, S.L. Ras regulation by reactive oxygen and nitrogen species. Biochemistry 2006, 7, 2200–2210. [Google Scholar] [CrossRef] [PubMed]
- Lander, H.M.; Ogiste, J.S.; Teng, K.K.; Novogrodsky, A. P21Ras as a common signaling target of reactive free radicals and cellular redox stress. J. Biol. Chem. 1995, 270, 21195–21198. [Google Scholar] [CrossRef] [PubMed]
- Cassano, S.; Agnese, S.; D’Amato, V.; Papale, M.; Garbi, C.; Castagnola, P.; Ruocco, M.R.; Castellano, I.; De Vendittis, E.; Santillo, M.; et al. Reactive oxygen species, Ki-Ras, and mitochondrial superoxide dismutase cooperate in nerve growth factor-induced differentiation of PC12 cells. J. Biol. Chem. 2010, 31, 24141–24153. [Google Scholar] [CrossRef] [PubMed]
- Cuda, G.; Paterno, R.; Ceravolo, R.; Candigliota, M.; Perrotti, N.; Perticone, F.; Faniello, M.C.; Schepis, F.; Ruocco, A.; Mele, E.; et al. Protection of human endothelial cells from oxidative stress: Role of Ras-ERK1/2 signalling. Circulation 2002, 105, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Santillo, M.; Mondola, P.; Seru, R.; Annella, T.; Cassano, S.; Ciullo, I.; Tecce, M.F.; Iacomino, G.; Damiano, S.; Cuda, G.; et al. Opposing functions of Ki-Ras and Ha-Ras genes in the regulation of redox signals. Curr. Biol. 2001, 11, 614–619. [Google Scholar] [CrossRef]
- Serù, R.; Mondola, P.; Damiano, S.; Svegliati, S.; Agnese, S.; Avvedimento, E.V.; Santillo, M. Ha-Ras activates the NADPH-oxidase complex in human neuroblastoma cells via extracellular signal-regulated kinase 1/2 pathway. J. Neurochem. 2004, 91, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Svegliati, S.; Cancello, R.; Sambo, P.; Luchetti, M.; Paroncini, P.; Orlandini, G.; Discepoli, G.; Paterno, R.; Santillo, M.; Cuozzo, C.; et al. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts. J. Biol. Chem. 2005, 280, 36474–36482. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.; Tamgüney, T.M.; Collisson, E.A.; Lin, L.J.; Pitt, C.; Galeas, J.; Lewis, S.; Gray, J.W.; McCormick, F.; Chu, S. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc. Natl. Acad. Sci. USA 2015, 112, 7996–8001. [Google Scholar] [CrossRef] [PubMed]
- Augsten, M.; Pusch, R.; Biskup, C.; Rennert, K.; Wittig, U.; Beyer, K.; Blume, A.; Wetzker, R.; Friedrich, K.; Rubio, I. Live-cell imaging of endogenous Ras-GTP illustrates predominant Ras activation at the plasma membrane. EMBO Rep. 2006, 7, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Biskup, C.; Rubio, I. Real-time visualization and quantification of native Ras activation in single living cells. Methods Mol. Biol. 2014, 1120, 285–305. [Google Scholar] [PubMed]
- Andersen, J.K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004, 10, S18–S25. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, J.; Toku, K.; Zhang, B.; Ishihara, K.; Sakanaka, M.; Maeda, N. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia 1999, 28, 85–96. [Google Scholar] [CrossRef]
- Takuma, K.; Baba, A.; Matsuda, T. Astrocyte apoptosis: implications for neuroprotection. Prog. Neurobiol. 2004, 72, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Watts, L.T.; Rathinam, M.L.; Schenker, S.; Henderson, G.I. Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. J. Neurosci. Res. 2005, 80, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Desagher, S.; Glowinski, J.; Premont, J. Astrocytes protect neurons from hydrogen peroxide toxicity. J. Neurosci. 1996, 16, 2553–2562. [Google Scholar] [PubMed]
- Makar, T.K.; Nedergaard, M.; Preuss, A.; Gelbard, A.S.; Perumal, A.S.; Cooper, A.J.; Vitamin, E. Ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: Evidence that astrocytes play an important role in antioxidative processes in the brain. J. Neurochem. 1994, 62, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, J.; Petrovics, G.; Buzas, B. Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kappaB. J. Neurochem. 2001, 79, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Tournier, C.; Thomas, G.; Pierre, J.; Jacquemin, C.; Pierre, M.; Saunier, B. Mediation by arachidonic acid metabolites of the H2O2-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2-terminal kinase). Eur. J. Biochem. 1997, 244, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.M.; Sasaki, M.; Gonzalez-Zulueta, M.; Dawson, V.L. Regulation of neuronal nitric oxide synthase and identification of novel nitric oxide signaling pathways. Prog. Brain Res. 1998, 118, 3–11. [Google Scholar] [PubMed]
- Gonzalez-Zulueta, M.; Feldman, A.B.; Klesse, L.J.; Kalb, R.G.; Dillman, J.F.; Parada, L.F.; Dawson, T.M.; Dawson, V.L. Requirement for nitric oxide activation of p21Ras/extracellular regulated kinase in neuronal ischemic preconditioning. Proc. Natl. Acad. Sci. USA 2000, 97, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Richter-Landsberg, C.; Vollgraf, U. Mode of cell injury and death after hydrogen peroxide exposure in cultured oligodendroglia cells. Exp. Cell Res. 1998, 244, 218–229. [Google Scholar]
- Herrmann, C.; Martin, G.A.; Wittinghofer, A. Quantitative analysis of the complex between p21Ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 1995, 270, 2901–2905. [Google Scholar] [CrossRef] [PubMed]
- Hyslop, P.A.; Zhang, Z.; Pearson, D.V.; Phebus, L.A. Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: Correlation with the cytotoxic potential of H2O2 in vitro. Brain Res. 1995, 671, 181–186. [Google Scholar] [CrossRef]
- Yu, A.L.; Moriniere, J.; Welge-Lussen, U. TGF-β2- and H2O2-induced biological changes in optic nerve head astrocytes are reduced by the antioxidant alpha-lipoic acid. Ophthalmic Res. 2012, 48, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.L.; Fuchshofer, R.; Birke, M.; Kampik, A.; Bloemendal, H.; Welge-Lussen, U. Oxidative stress and TGF-β2 increase heat shock protein 27 expression in human optic nerve head astrocytes. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5403–5411. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Delgado-Esteban, M.; Bolaños, J.P.; Medina, J.M. Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J. Neurochem. 2002, 81, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Pahan, K.; Liu, X.; McKinney, M.J.; Wood, C.; Sheikh, F.G.; Raymond, J.R. Expression of a dominant-negative mutant of p21Ras inhibits induction of nitric oxide synthase and activation of nuclear factor-κB in primary astrocytes. J. Neurochem. 2000, 74, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Mense, S.M.; Sengupta, A.; Zhou, M.; Lan, C.; Bentsman, G.; Volsky, D.J.; Zhang, L. Gene expression profiling reveals the profound upregulation of hypoxia-responsive genes in primary human astrocytes. Physiol. Genom. 2006, 25, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Greenbaum, D.; Cichowski, K.; Mercer, K.; Murphy, E.; Schmitt, E.; Bronson, R.T.; Umanoff, H.; Edelmann, W.; Kucherlapati, R.; et al. K-Ras is an essential gene in the mouse with partial functional overlap with N-Ras. Genes Dev. 1997, 11, 2468–2481. [Google Scholar] [CrossRef] [PubMed]
- Holstein, S.A.; Wohlford-Lenane, C.L.; Hohl, R.J. Consequences of mevalonate depletion. Differential transcriptional, translational, and post-translational up-regulation of Ras, Rap1a, RhoA, AND RhoB. J. Biol. Chem. 2002, 277, 10678–10682. [Google Scholar] [CrossRef] [PubMed]
- Aiken, C.T.; Kaake, R.M.; Wang, X.; Huang, L. Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell. Proteom. 2011, 10, R110.006924. [Google Scholar] [CrossRef] [PubMed]
- Nabhan, J.F.; Ribeiro, P. The 19 S proteasomal subunit POH1 contributes to the regulation of c-Jun ubiquitination, stability, and subcellular localization. J. Biol. Chem. 2006, 281, 16099–16107. [Google Scholar] [CrossRef] [PubMed]
- Apolloni, A.; Prior, I.A.; Lindsay, M.; Parton, R.G.; Hancock, J.F. H-Ras but not K-Ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell. Biol. 2000, 20, 2475–2487. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.T.; Carracedo, A.; Locasale, J.W.; Anastasiou, D.; Takeuchi, K.; Kahoud, E.R.; Haviv, S.; Asara, J.M.; Pandolfi, P.P.; Cantley, L.C.; et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci. Signal. 2011, 4, ra13. [Google Scholar] [CrossRef] [PubMed]
- Irani, K.; Xia, Y.; Zweier, J.L.; Sollott, S.J.; Der, C.J.; Fearon, E.R.; Sundaresan, M.; Finkel, T.; Goldschmidt-Clermont, P.J. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997, 275, 1649–1652. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.J.; Liu, Y.; Zhong, X.; Du, J.; Peterson, N.; Kong, G.; Li, H.; Wang, J.; Salamat, S.; Chang, Q.; Zhang, J. Oncogenic KRas expression in postmitotic neurons leads to S100A8-S100A9 protein overexpression and gliosis. J. Biol. Chem. 2012, 287, 22948–22958. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messina, S.; Di Zazzo, E.; Moncharmont, B. Early and Late Induction of KRAS and HRAS Proto-Oncogenes by Reactive Oxygen Species in Primary Astrocytes. Antioxidants 2017, 6, 48. https://doi.org/10.3390/antiox6030048
Messina S, Di Zazzo E, Moncharmont B. Early and Late Induction of KRAS and HRAS Proto-Oncogenes by Reactive Oxygen Species in Primary Astrocytes. Antioxidants. 2017; 6(3):48. https://doi.org/10.3390/antiox6030048
Chicago/Turabian StyleMessina, Samantha, Erika Di Zazzo, and Bruno Moncharmont. 2017. "Early and Late Induction of KRAS and HRAS Proto-Oncogenes by Reactive Oxygen Species in Primary Astrocytes" Antioxidants 6, no. 3: 48. https://doi.org/10.3390/antiox6030048
APA StyleMessina, S., Di Zazzo, E., & Moncharmont, B. (2017). Early and Late Induction of KRAS and HRAS Proto-Oncogenes by Reactive Oxygen Species in Primary Astrocytes. Antioxidants, 6(3), 48. https://doi.org/10.3390/antiox6030048