The Consumption of Beeswax Alcohol (BWA, Raydel®) Improved Zebrafish Motion and Swimming Endurance by Protecting the Brain and Liver from Oxidative Stress Induced by 24 Weeks of Supplementation with High-Cholesterol and D-Galactose Diets: A Comparative Analysis Between BWA and Coenzyme Q10
<p>The experimental layout involves feeding zebrafish with different diets. The abbreviations: ND represent normal diet; HC represents high-cholesterol diet (final 4%, <span class="html-italic">wt</span>/<span class="html-italic">wt</span>); and BWA and CoQ<sub>10</sub> represent beeswax alcohol and coenzyme Q<sub>10</sub>, respectively.</p> "> Figure 2
<p>Zebrafish survivability and body weight across the different groups. (<b>A</b>) Survival probability across different groups during 24 weeks of consumption of the respective diets. The Kaplan–Meier survival analysis followed by log-rank test was used to determine the statistical difference in the survival probability curve. *, <span class="html-italic">p <</span> 0.05 (log-rank: <span class="html-italic">χ</span><sup>2</sup> = 13.5). (<b>B</b>) Body weight of zebrafish at the beginning (week 0) and after 24 weeks of consumption of the different diets. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. ** (<span class="html-italic">p</span> < 0.01) and *** (<span class="html-italic">p</span> < 0.001) depict the statistical difference in the body weight measured at 24 weeks of consumption of different diets with respect to the HC+Gal group. “ns” represents the non-significant difference between the specified group concerning the HC+Gal+1.0% BWA group.</p> "> Figure 3
<p>A representative image of the swimming trajectories and swimming behavior of zebrafish across different groups. (<b>A</b>) Heat map of zebrafish swimming trajectory for 60 s following 22 weeks consumption of different diets. (<b>B</b>) Swimming trajectory of zebrafish motion (60 s) across different groups after 24 weeks of consumption of different diets. (<b>C</b>) The vertical movement trajectories of zebrafish across different groups. The blue dotted line inside the images represents the middle line segregating the upper and lower halves of the water tank. (<b>D</b>) The latency time of movement (represents the average time zebrafish took to transition from the lower to the upper half) in 60 s. (<b>E</b>) Time of stay in the top half of the tank and (<b>F</b>) total swimming distance during 60 s. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. * (<span class="html-italic">p</span> < 0.01), ** (<span class="html-italic">p</span> < 0.01) and *** (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal group, while <sup>†</sup> (<span class="html-italic">p</span> < 0.05), <sup>††</sup> (<span class="html-italic">p</span> < 0.01), and <sup>†††</sup> (<span class="html-italic">p</span> < 0.01) depict the statistical difference with respect to the HC+Gal+1.0% BWA group. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group.</p> "> Figure 4
<p>Blood lipid profile, blood glucose level, and antioxidant status of zebrafish (in different groups) consuming the specified diets for 24 weeks. (<b>A</b>) Total cholesterol (TC), (<b>B</b>) triglycerides (TG), (<b>C</b>) high-density lipoprotein cholesterol (HDL-C), (<b>D</b>) blood glucose level, (<b>E</b>) ferric ion reduction assay (FRA), and (<b>F</b>) paraoxonase (PON) activity. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. * (<span class="html-italic">p</span> < 0.05), ** (<span class="html-italic">p</span> < 0.01) and *** (<span class="html-italic">p</span> < 0.001) depicts the statistical difference with respect to the HC+Gal group, while <sup>†</sup> (<span class="html-italic">p</span> < 0.001) and <sup>†††</sup> (<span class="html-italic">p</span> < 0.001) depicts the statistical difference with respect to the HC+Gal+1.0% BWA group. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group or HC+Gal+1.0% BWA group.</p> "> Figure 5
<p>Pictorial view of representative morphological images of (<b>A</b>) zebrafish and (<b>B</b>) whole brain, with the red arrow depicting shrinkage of the cerebellum of the brain; (<b>C</b>) liver segregated from the different groups at 24 weeks of consumption of the designated diets. Percentage average weight (n = 15) of (<b>D</b>) brain and (<b>E</b>) liver with respect to body weight across the different groups consuming specified diets. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. * (<span class="html-italic">p</span> < 0.01), ** (<span class="html-italic">p</span> < 0.01), and *** (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal group, while <sup>†</sup> (<span class="html-italic">p</span> < 0.05) and <sup>††</sup> (<span class="html-italic">p</span> < 0.01) depict the statistical difference with respect to the HC+Gal+1.0% BWA group. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group.</p> "> Figure 6
<p>Brain histology of zebrafish at 24 weeks of consumption of the specified diets. (<b>A</b>) Images of hematoxylin and eosin (H&E) staining captured at 40× magnification, [scale bar, 0.5 mm]. (<b>B</b>) The digitally magnified images of the section inside the black box (as mentioned in (<b>A</b>)). (<b>C</b>) Immunohistochemical (IHC) images of myelin sheath in the brain section captured at 40× magnification. The yellow arrows highlight the myelin sheath in the lateral recess of the diencephalic ventricle (LR) region of the brain. (<b>D</b>) Image J software (version 1.53, <a href="https://imagej.net/ij" target="_blank">https://imagej.net/ij</a>; accessed on 16 June 2023) quantification of myelin fluorescent intensity. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. ** (<span class="html-italic">p</span> < 0.01), and *** (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal group, while <sup>†</sup> (<span class="html-italic">p</span> < 0.05) depict the statistical difference with respect to the HC+Gal+1.0% BWA group. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group.</p> "> Figure 7
<p>Fluorescent staining: (<b>A</b>) dihydroethidium (DHE), (<b>B</b>) acridine orange (AO), (<b>C</b>) merged images of DHE and AO captured at 40× magnification. (<b>D</b>) Cellular senescence-associated-β-galactose (SA-β-gal) staining at 40× magnification. (<b>E</b>) The 400× magnified images of the SA-β-gal-stained section inside the red box (as mentioned in (<b>D</b>)). The yellow arrow represents the periventricular gray zone of the optic tectum. The white arrow depicts the valvular cerebelli while the red arrow highlights the SA-β-gal positive cells around the vascular lacuna of the postrema and below the tectal ventricle region. (<b>F</b>) Red conversion of the (400× magnified) blue-colored SA-β-gal-positive cells. The red conversion was performed with Image J software (version 1.53) at the blue color threshold value (0–120) to enhance the visibility of the SA-β-gal-stained area. (<b>G</b>) and (<b>H</b>) Quantification of DHE and AO fluorescent intensity, respectively. (<b>I</b>) Quantification of the SA-β-gal-stained area. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. ** (<span class="html-italic">p</span> < 0.01) and *** (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal group, while <sup>†</sup> (<span class="html-italic">p</span> < 0.05) and <sup>†††</sup> (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal+1.0% BWA group. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group.</p> "> Figure 7 Cont.
<p>Fluorescent staining: (<b>A</b>) dihydroethidium (DHE), (<b>B</b>) acridine orange (AO), (<b>C</b>) merged images of DHE and AO captured at 40× magnification. (<b>D</b>) Cellular senescence-associated-β-galactose (SA-β-gal) staining at 40× magnification. (<b>E</b>) The 400× magnified images of the SA-β-gal-stained section inside the red box (as mentioned in (<b>D</b>)). The yellow arrow represents the periventricular gray zone of the optic tectum. The white arrow depicts the valvular cerebelli while the red arrow highlights the SA-β-gal positive cells around the vascular lacuna of the postrema and below the tectal ventricle region. (<b>F</b>) Red conversion of the (400× magnified) blue-colored SA-β-gal-positive cells. The red conversion was performed with Image J software (version 1.53) at the blue color threshold value (0–120) to enhance the visibility of the SA-β-gal-stained area. (<b>G</b>) and (<b>H</b>) Quantification of DHE and AO fluorescent intensity, respectively. (<b>I</b>) Quantification of the SA-β-gal-stained area. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. ** (<span class="html-italic">p</span> < 0.01) and *** (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal group, while <sup>†</sup> (<span class="html-italic">p</span> < 0.05) and <sup>†††</sup> (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal+1.0% BWA group. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group.</p> "> Figure 8
<p>Hepatic histology of zebrafish across different groups consuming the specified diets for 24 weeks. (<b>A</b>) Hematoxylin and eosin (H&E) staining at 400× magnifications. (<b>B</b>) A 1000× magnified view of the H&E-stained section inside the black box (as mentioned in (<b>A</b>)). The red and blue arrows indicate neutrophil and lipid accumulation. (<b>C</b>) Interleukin (IL)-6-stained area examined by immunohistochemistry (IHC). (<b>D</b>) Brown-colored (IL-6 stained) area interchanged with red at the brown color threshold value 20–120 to enhance visibility. [Scale bar, 0.1 mm]. (<b>E</b>) Quantification of H&E-stained area and the number of neutrophils. (<b>F</b>) Percentage quantification of the IL-6-stained area. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. *** (<span class="html-italic">p</span> < 0.001) (for H&E stained and IL-6-stained area), <sup>##</sup> (<span class="html-italic">p</span> < 0.01), and <sup>###</sup> (<span class="html-italic">p</span> < 0.001) (for neutrophil counts) depict the statistical difference with respect to the HC+Gal group. <sup>†</sup> (<span class="html-italic">p</span> < 0.05), <sup>††</sup> (<span class="html-italic">p</span> < 0.01), and <sup>†††</sup> (<span class="html-italic">p</span> < 0.001) (for H&E stained and IL-6-stained area), and <sup>‡</sup> (<span class="html-italic">p</span> < 0.05) and <sup>‡‡</sup> (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal+1.0% BWA group, respectively. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group.</p> "> Figure 9
<p>Evaluation of (<b>A</b>) oil red O (ORO) staining, (<b>B</b>,<b>C</b>) dihydroethidium (DHE) and acridine orange (AO) fluorescent staining, and (<b>D</b>) senescence associated-βgalactose (SA-β-gal) staining in hepatic tissue following 24 weeks of consumption of the specified diets. (<b>E</b>) Quantification of the ORO-stained area. (<b>F</b>) and (<b>G</b>) DHE and AO fluorescent intensity quantification, respectively. (<b>H</b>) Quantification of SA-β-gal-stained areas. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol+galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. * (<span class="html-italic">p</span> < 0.05), ** (<span class="html-italic">p</span> < 0.01), and *** (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal group. <sup>†</sup> (<span class="html-italic">p</span> < 0.05) and <sup>†††</sup> (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal+1.0% BWA group, respectively. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group.</p> "> Figure 10
<p>Plasma hepatic function biomarkers—(<b>A</b>) aspartate aminotransferase (AST) and (<b>B</b>) alanine aminotransferase (ALT)—in different groups consuming the specified diets for 24 weeks. ND represents the normal diet; HC represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; HC+Gal represents the high-cholesterol (final 4%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) with galactose (final 30%, <span class="html-italic">w</span>/<span class="html-italic">w</span>) diet; and HC+Gal+BWA (0.5%/1.0%) or CoQ<sub>10</sub> (0.5%/1.0%) represents the high-cholesterol + galactose diet supplemented with beeswax alcohol (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>) or coenzyme Q<sub>10</sub> (final 0.5% or 1.0% <span class="html-italic">w</span>/<span class="html-italic">w</span>), respectively. ** (<span class="html-italic">p</span> < 0.01) and *** (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal group, while <sup>††</sup> (<span class="html-italic">p</span> < 0.01) and <sup>†††</sup> (<span class="html-italic">p</span> < 0.001) depict the statistical difference with respect to the HC+Gal+1.0% BWA group. “ns” represents the non-significant difference between the specified group concerning the HC+Gal group.</p> "> Figure 11
<p>A summary of the protective effect exerted by beeswax alcohol (BWA) consumption to mitigate high-cholesterol + galactose (HC+Gal)-induced adversity in hyperlipidemic zebrafish.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation of Different Diets
2.3. Zebrafish Husbandry and Consumption of Different Diets
2.4. Behavioral Analysis of Zebrafish
2.5. Collection of Blood and Organs
2.6. Estimation of Blood Glucose, Ferric Ion Reduction (FRA), and Paraoxonase (PON) Activity
2.7. Histological Analysis
2.8. Immunohistology (IHC)
2.9. Fluorescent Staining for Reactive Oxygen Species (ROS) Production and Apoptosis
2.10. Statistical Analysis
3. Results
3.1. Change in Survivability and Body Weight During Galactose Consumption
3.2. Swimming Behavioral Analysis of Zebrafish
3.3. Lipid Profile, Glucose Level, and Antioxidant Status of Blood
3.4. Morphological Changes in Brain and Liver
3.5. Histological Analysis of Brain Tissue
3.6. Reactive Oxygen Species (ROS) Production, Apoptosis, and Senescence in Brain
3.7. H&E Staining and Interleukin (IL)-6 Production in Liver Tissue
3.8. Fatty Liver Change, ROS Production, Apoptosis, and Cellular Senescence
3.9. Plasma Parameters of Hepatic Damage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azman, K.F.; Safdar, A.; Zakaria, R. D-galactose-induced liver aging model: Its underlying mechanisms and potential therapeutic interventions. Exp. Gerontol. 2021, 150, 111372. [Google Scholar] [CrossRef] [PubMed]
- Bo-Htay, C.; Palee, S.; Apaijai, N.; Chattipakorn, S.C.; Chattipakorn, N. Effects of d-galactose-induced ageing on the heart and its potential interventions. J. Cell. Mol. Med. 2018, 22, 1392–1410. [Google Scholar] [CrossRef] [PubMed]
- Sadigh-Eteghad, S.; Majdi, A.; McCann, S.K.; Mahmoudi, J.; Vafaee, M.S.; Macleod, M.R. D-galactose-induced brain ageing model: A systematic review and meta-analysis on cognitive outcomes and oxidative stress indices. PLoS ONE 2017, 12, e0184122. [Google Scholar]
- Umbayev, B.; Askarova, S.; Almabayeva, A.; Saliev, T.; Masoud, A.R.; Bulanin, D. Galactose-Induced Skin Aging: The Role of Oxidative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 7145656. [Google Scholar] [CrossRef] [PubMed]
- Azman, K.F.; Zakaria, R. D-Galactose-induced accelerated aging model: An overview. Biogerontology 2019, 20, 763–782. [Google Scholar] [CrossRef]
- Haider, S.; Liaquat, L.; Shahzad, S.; Sadir, S.; Madiha, S.; Batool, Z.; Tabassum, S.; Saleem, S.; Naqvi, F.; Perveen, T. A high dose of short-term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process. Life Sci. 2015, 124, 110–119. [Google Scholar] [CrossRef]
- Ross, K.S.; Smith, C. D-galactose: A model of accelerated ageing sufficiently sensitive to reflect preventative efficacy of an antioxidant treatment. Biogerontology 2020, 21, 745–761. [Google Scholar] [CrossRef]
- Babic Perhoc, A.; Osmanovic Barilar, J.; Knezovic, A.; Farkas, V.; Bagaric, R.; Svarc, A.; Grünblatt, E.; Riederer, P.; Salkovic-Petrisic, M. Cognitive, Behavioral and Metabolic Effects of Oral Galactose Treatment in the Transgenic Tg2576 Mice. Neuropharmacology 2019, 148, 50–67. [Google Scholar] [CrossRef]
- Meydani, M.; Martin, A.; Sastre, J.; Smith, D.; Dallal, G.; Taylor, A.; Blumberg, J. Dose-response characteristics of galactose-induced cataract in the rat. Ophthalmic Res. 1994, 26, 368–374. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, T.; Wang, T.; Chen, H.; Deng, J.; Ye, H.; Li, W.; Ling, S. Characterization of an i.p. D-galactose-induced cataract model in rats. J. Pharmacol. Toxicol. Methods 2021, 107, 106891. [Google Scholar] [CrossRef]
- Du, Z.; Yang, Y.; Hu, Y.; Sun, Y.; Zhang, S.; Peng, W.; Zhong, Y.; Huang, X.; Kong, W. A long-term high-fat diet increases oxidative stress, mitochondrial damage and apoptosis in the inner ear of D-galactose-induced aging rats. Hear. Res. 2012, 287, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.C.; Johnson, K.M. Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J. Biol. Chem. 2008, 283, 15521–15525. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Deng, Y.; Deng, G.; Chen, P.; Wang, Y.; Wu, H.; Ji, Z.; Yao, Z.; Zhang, X.; Yu, B.; et al. High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells. Stem Cell Res. 2020, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Más, R. D-002: Beeswax alcohols. Drugs Future 2001, 26, 731–744. [Google Scholar] [CrossRef]
- Zamora, Z.; Molina, V.; Mas, R.; Ravelo, Y.; Perez, Y.; Oyarzabal, A. Protective effects of D-002 on experimentally induced gastroesophageal reflux in rats. World J. Gastroenterol. 2014, 20, 2085–2090. [Google Scholar] [CrossRef]
- Carbajal, D.; Molina, V.; Noa, M.; Valdes, S.; Arruzazabala, M.L.; Aguiar, M.; Mas, R. Effects of D-002 on gastric mucus composition in ethanol induced ulcer. Pharmacol. Res. 2000, 42, 329–332. [Google Scholar] [CrossRef]
- Puente, R.; Illnait, J.; Mas, R.; Carbajal, D.; Mendoza, S.; Fernández, J.C.; Mesa, M.; Gámez, R.; Reyes, P. Evaluation of the effect of D-002, a mixture of beeswax alcohols, on osteoarthritis symptoms. Korean J. Intern. Med. 2014, 29, 191–202. [Google Scholar] [CrossRef]
- Korean Food and Drug Administration (KFDA). Available online: https://www.foodsafetykorea.go.kr/portal/healthyfoodlife/searchHomeHFDetail.do?prdlstReportLedgNo=2023021000330706 (accessed on 16 May 2023).
- Jorat, M.V.; Tabrizi, R.; Mirhosseini, N.; Lankarani, K.B.; Akbari, M.; Heydari, S.T.; Mottaghi, R.; Asemi, Z. The effects of coenzyme Q10 supplementation on lipid profiles among patients with coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2018, 17, 230. [Google Scholar] [CrossRef]
- Jorat, M.V.; Tabrizi, R.; Kolahdooz, F.; Akbari, M.; Salami, M.; Heydari, S.T.; Asemi, Z. The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 2019, 27, 233–248. [Google Scholar] [CrossRef]
- Cho, K.-H.; Baek, S.-H.; Nam, H.-S.; Bahuguna, A. Enhancement of antioxidant and anti-glycation properties of beeswax alcohol in reconstituted high-density lipoprotein: Safeguarding against carboxymethyllysine toxicity in zebrafish. Antioxidants 2023, 12, 2116. [Google Scholar] [CrossRef]
- Cho, K.-H.; Baek, S.-H.; Nam, H.-S.; Bahuguna, A.; López-González, L.E.; Rodríguez-Cortina, I.; Illnait-Ferrer, J.; Fernández-Travieso, J.C.; Molina-Cuevas, V.; Pérez-Guerra, Y.; et al. Beeswax alcohol prevents low-density lipoprotein oxidation and demonstrates antioxidant activities in zebrafish embryos and human subjects: A clinical study. Curr. Issues Mol. Biol. 2024, 46, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-H.; Bahuguna, A.; Lee, Y.; Lee, S.H.; Kim, J.-E. Twenty-week dietary supplementation with Beeswax alcohol (BWA.; Raydel®) ameliorates high-cholesterol-induced long-term dyslipidemia and organ damage in hyperlipidemic zebrafish in a dose-dependent manner: A comparative analysis between BWA and coenzyme Q10. Pharmaceuticals 2024, 17, 1434. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-H.; Bahuguna, A.; Kim, J.-E.; Lee, Y.; Lee, S.H. Comparative assessment of Beeswax alcohol and coenzyme Q10 (CoQ10) to prevent liver aging, organ damage, and oxidative stress in hyperlipidemic zebrafish exposed to D-galactose: A 12-Week dietary intervention. Pharmaceuticals 2024, 17, 1250. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-H.; Kim, J.-E.; Bahuguna, A.; Kang, D.-J. Long-term supplementation of ozonated sunflower oil improves dyslipidemia and hepatic inflammation in hyperlipidemic zebrafish: Suppression of oxidative stress and inflammation against carboxymethyllysine toxicity. Antioxidants 2023, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-H.; Kim, J.-E.; Lee, M.-S.; Bahuguna, A. Oral Supplementation of Ozonated Sunflower Oil Augments Plasma Antioxidant and Anti-Inflammatory Abilities with Enhancement of High-Density Lipoproteins Functionality in Rats. Antioxidants 2024, 13, 529. [Google Scholar] [CrossRef]
- Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. Protoc. 2008, 2008, prot4986. [Google Scholar] [CrossRef]
- Cho, K.-H.; Bahuguna, A.; Kang, D.-J.; Kim, J.-E. Prolonged supplementation of ozonated sunflower oil bestows an antiaging effect, improves blood lipid profile and spinal deformities, and protects vital organs of zebrafish (Danio rerio) against age-related degeneration: Two-years consumption study. Antioxidants 2024, 13, 123. [Google Scholar] [CrossRef]
- Al-Ghamdi, T.H.; Atta, I.S. Efficacy of interleukin-6 in the induction of liver cell proliferation after hemi-hepatectomy: Histopathologic and immunohistochemical study. Int. J. Clin. Exp. Pathol. 2020, 13, 1540–1549. [Google Scholar]
- Owusu-Ansah, E.; Yavari, A.; Mandal, S.; Banerjee, U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet. 2008, 40, 356–361. [Google Scholar] [CrossRef]
- Umali, J.; Hawkey-Noble, A.; French, C.R. Loss of foxc1 in zebrafish reduces optic nerve size and cell number in the retinal ganglion cell layer. Vision Res. 2019, 156, 66–72. [Google Scholar] [CrossRef]
- Han, Y.; Zee, S.; Cho, K.-H. Beeswax alcohol and fermented black rice bran synergistically ameliorated hepatic injury and dyslipidemia to exert antioxidant and anti-inflammatory activity in ethanol-supplemented zebrafish. Biomolecules 2023, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Udomkasemsab, A.; Prangthip, P. High fat diet for induced dyslipidemia and cardiac pathological alterations in Wistar rats compared to Sprague Dawley rats. Clin. Investig. Arterioscler. 2019, 31, 56–62. [Google Scholar]
- Puska, L.G.; Nagy, Z.B.; Giricz, Z.; Onody, A.; Csonka, C.; Kitajka, K.; Hackler, L., Jr.; Zvara, A.; Ferdinandy, P. Cholesterol diet- induced hyperlipidemia influences gene expression pattern of rat hearts: A DNA microarray study. FEBS Lett. 2004, 562, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Nan, F.; Liang, H.; Shu, P.; Fan, X.; Song, X.; Hou, Y.; Zhang, D. Excessive intake of sugar: An accomplice of inflammation. Front. Immunol. 2022, 13, 988481. [Google Scholar] [CrossRef] [PubMed]
- Haworth, J.C.; Ford, J.D.; Younoszai, M.K. Effect of galactose toxicity on growth of the rat fetus and brain. Pediatr. Res. 1969, 3, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Aragno, M.; Mastrocola, R. Dietary sugars and endogenous formation of advanced glycation end products: Emerging mechanisms of disease. Nutrients 2017, 9, 385. [Google Scholar] [CrossRef]
- Bala, S.; Ganz, M.; Babuta, M.; Zhuang, Y.; Csak, T.; Calenda, C.D.; Szabo, G. Steatosis, inflammasome upregulation, and fibrosis are attenuated in miR-155 deficient mice in a high fat-cholesterol-sugar diet-induced model of NASH. Lab. Investig. 2021, 101, 1540–1549. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, J.; Yang, H.; Huo, L.; Gao, J.; Chen, H.; Gao, W. Protective effect of tetrahydropalmatine against d-galactose induced memory impairment in rat. Physiol. Behav. 2016, 154, 114–125. [Google Scholar] [CrossRef]
- Budni, J.; Pacheco, R.; da Silva, S.; Garcez, M.L.; Mina, F.; Bellettini-Santos, T.; de Medeiros, J.; Voss, B.C.; Steckert, A.V.; Valvassori, S.d.S.; et al. Oral administration of d-galactose induces cognitive impairments and oxidative damage in rats. Behav. Brain Res. 2016, 302, 35–43. [Google Scholar] [CrossRef]
- Cui, X.; Zuo, P.; Zhang, Q.; Li, X.; Hu, Y.; Long, J.; Packer, L.; Liu, J. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: Protective effects of R-α-lipoic acid. J. Neurosci. Res. 2006, 84, 647–654. [Google Scholar] [CrossRef]
- Lei, M.; Su, Y.; Hua, X.; Ding, J.; Han, Q.; Hu, G.; Xiao, M. Chronic systemic injection of D-galactose impairs the septohippocampal cholinergic system in rats. Neuroreport 2008, 19, 1611–1615. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.-M.; WA, W.-M.; Hu, M.-L. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem. Toxicol. 2009, 47, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Pérez, Y.; Oyárzabal, A.; Mas, R.; Molina, V.; Jiménez, S. Protective effect of D-002, a mixture of beeswax alcohols, against indomethacin-induced gastric ulcers and mechanism of action. J. Nat. Med. 2013, 67, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Molina, V.; Ledón, T.; Ravelo, Y.; Zamora, Z.; Mena, L. Effects of D-002 (Beeswax alcohols) on concentrations of prostaglandin E2 in rat gastric mucosa. J. Pharm. Pharm. Res. 2017, 1, 2. [Google Scholar]
- Münch, G.; Westcott, B.; Menini, T.; Gugliucci, A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 2012, 42, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, K.; Lindquist, K.; Schwartz, A.V.; Vitartas, C.; Vittinghoff, E.; Satterfield, S.; Simonsick, E.M.; Launer, L.; Rosano, C.; Cauley, J.A.; et al. Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology 2011, 77, 1351–1356. [Google Scholar] [CrossRef]
- D’Cunha, N.M.; Sergi, D.; Lane, M.M.; Naumovski, N.; Gamage, E.; Rajendran, A.; Kouvari, M.; Gauci, S.; Dissanayka, T.; Marx, W.; et al. The effects of dietary advanced glycation end-products on neurocognitive and mental disorders. Nutrients 2022, 14, 2421. [Google Scholar] [CrossRef]
- Shwe, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp. Gerontol. 2018, 101, 13–36. [Google Scholar] [CrossRef]
- Khelfaoui, H.; Ibaceta-Gonzalez, C.; Angulo, M.C. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol. Life Sci. 2024, 81, 1–14. [Google Scholar] [CrossRef]
- O’Sullivan, S.A.; Velasco-Estevez, M.; Dev, K.K. Demyelination Induced by Oxidative Stress Is Regulated by Sphingosine 1-Phosphate Receptors. Glia 2017, 65, 1119–1136. [Google Scholar] [CrossRef]
- Jang, G.; Lee, E.M.; Kim, H.J.; Park, Y.; Bang, N.H.; Kang, J.L.; Park, E.M. Visceral adiposity is associated with iron deposition and myelin loss in the brains of aged mice. Neurochem. Int. 2024, 179, 105833. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, R.; Más, R.; Amor, A.M.; Pérez, Y.; González, R.M.; Fernández, J.; Molina, V.; Jiménez, S. Antioxidant effects of D002 on the in vitro susceptibility of whole plasma in healthy volunteers. Arch. Med. Res. 2001, 32, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Lopez, E.; Illnait, J.; Molina, V.; Oyarzabal, A.; Fernandez, L.; Perez, Y.; Mas, R.; Mesa, M.; Fernandez, J.; Mendoza, S. Effects of D-002 (beeswax alcohol) on lipid peroxidation in middle-aged and older subjects. Lat. Am. J. Pharm. 2008, 27, 695–703. [Google Scholar]
- Liu, Z.; Tian, Z.; Zhao, D.; Liang, Y.; Dai, S.; Liu, M.; Hou, S.; Dong, X.; Zhaxinima; Yang, Y. Effects of coenzyme Q10 supplementation on lipid profiles in adults: A meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2023, 108, 232–249. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Li, L.; Porter, T.D. Policosanol inhibits cholesterol synthesis in hepatoma cells by activation of AMP-kinase. J. Pharmacol. Exp. Ther. 2006, 318, 1020–1026. [Google Scholar] [CrossRef]
- Lee, J.H.; Jia, Y.; Thach, T.T.; Han, Y.; Kim, B.; Wu, C.; Kim, Y.; Seo, W.D.; Lee, S.J. Hexacosanol reduces plasma and hepatic cholesterol by activation of AMP-activated protein kinase and suppression of sterol regulatory element-binding protein-2 in HepG2 and C57BL/6J mice. Nutr. Res. 2017, 43, 89–99. [Google Scholar] [CrossRef]
- Taylor, J.C.; Rapport, L.; Lockwood, G.B. Octacosanol in human health. Nutrition 2003, 19, 192–195. [Google Scholar] [CrossRef]
- Bai, J.; Yang, T.; Zhou, Y.; Xu, W.; Han, S.; Guo, T.; Zhu, L.; Qin, D.; Luo, Y.; Hu, Z.; et al. Octacosanol modifies obesity, expression profile and inflammation response of hepatic tissues in high-fat diet mice. Foods 2022, 11, 1606. [Google Scholar] [CrossRef]
- Imerb, N.; Thonusin, C.; Pratchayasakul, W.; Arunsak, B.; Nawara, W.; Ongnok, B.; Aeimlapa, R.; Charoenphandhu, N.; Chattipakorn, N.; Chattipakorn, S.C. D-galactose-induced aging aggravates obesity-induced bone dyshomeostasis. Sci. Rep. 2022, 12, 8580. [Google Scholar] [CrossRef]
- Bajaj, S.; Khan, A. Antioxidants and diabetes. Indian J. Endocrinol. Metab. 2012, 16, S267–S271. [Google Scholar] [CrossRef]
- Fernandez-Travieso, J.C.; Rodriguez-Perez, I.; Ruenes-Domech, C.; Fernandez-Dorta, L.; Mendoza-Castano, S. Benefits of the therapy with abexol in patients with non-alcoholic fatty liver disease. Gastroenterol. Res. 2020, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.R.; Kazeminejad, S.; Jalalzadeh, M.; Majd, S.S.; Kavyani, Z.; Askari, G.; Hekmatdoost, A. The effects of policosanol supplementation on blood glucose: A systematic review and dose-response meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2024, 212, 111709. [Google Scholar] [CrossRef] [PubMed]
- Esteghamati, A.; Jamali, A.; Khalilzadeh, O.; Noshad, S.; Khalili, M.; Zandieh, A.; Morteza, A.; Nakhjavani, M. Metabolic syndrome is linked to a mild elevation in liver aminotransferases in diabetic patients with undetectable non-alcoholic fatty liver disease by ultrasound. Diabetol. Metab. Syndr. 2010, 2, 65. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Puthanveetil, P.; Sakharkar, P. A population-based cross-sectional study of the association between liver enzymes and lipid levels. Int. J. Hepatol. 2018, 2018, 1286170. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; Sacco, J.; Adeli, K. Autophagy: Emerging roles in lipid homeostasis and metabolic control. Biochim. Biophys. Acta 2013, 1831, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Puig, M.N.; Castaño, S.M.; Ferreiro, R.M.; Clara, M.V.; Hernansez, N.M. Effects of oral administration of D-002 (Beeswax alcohols) on histological and functional outcomes in a rat model of antigen-induced arthritis: Preliminary study. Int. J. Pharmacol. Phytochem. Ethnomed. 2016, 5, 60–68. [Google Scholar]
- Tan, S.-N.; Sim, S.-P.; Khoo, A.S. Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma. Cell Biosci. 2016, 6, 35. [Google Scholar] [CrossRef]
- Khosla, S.; Farr, J.N.; Tchkonia, T.; Kirkland, J.L. The role of cellular senescence in ageing and endocrine disease. Nat. Rev. Endocrinol. 2020, 16, 263–275. [Google Scholar] [CrossRef]
- Flensted-Jensen, M.; Oró, D.; Rørbeck, E.A.; Zhang, C.; Madsen, M.R.; Madsen, A.N.; Norlin, J.; Feigh, M.; Larsen, S.; Hansen, H.H. Dietary intervention reverses molecular markers of hepatocellular senescence in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH. BMC Gastroenterol. 2024, 24, 59. [Google Scholar] [CrossRef]
- Yan, M.; Man, S.; Sun, B.; Ma, L.; Guo, L.; Huang, L.; Gao, W. Gut liver brain axis in diseases: The implications for therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 443. [Google Scholar] [CrossRef] [PubMed]
- Mandiga, P.; Foris, L.A.; Kassim, G.; Bollu, P.C. Hepatic Encephalopathy; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- How Does the Liver Affect Brain Health? Available online: https://www.alzdiscovery.org/cognitive-vitality/blog/how-does-the-liver-affect-brain-health#ref-4 (accessed on 11 November 2024).
Diet (mg) | ND | HC | HC+30% Gal | HC+30% Gal+0.5% BWA | HC+30% Gal+1.0% BWA | HC+30% Gal+0.5% CoQ10 | HC+30% Gal+1.0% CoQ10 |
---|---|---|---|---|---|---|---|
Tetrabits 1 | 10 | 9.6 | 6.6 | 6.55 | 6.5 | 6.55 | 6.5 |
Galactose | 0 | 0 | 3 | 3 | 3 | 3 | 3 |
Cholesterol | 0 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
BWA | 0 | 0 | 0 | 0.05 | 0.1 | 0 | 0 |
CoQ10 | 0 | 0 | 0 | 0 | 0 | 0.05 | 0.1 |
Total (mg) | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Dietary Efficiency | ND | HC | HC+30% Gal | HC+30% Gal+0.5% BWA | HC+30% Gal+1.0% BWA | HC+30% Gal+0.5% CoQ10 | HC+30% Gal+1.0% CoQ10 |
---|---|---|---|---|---|---|---|
Food consumption (%) 1 | 95–100 | 95–100 | 95–100 | 95–100 | 95–100 | 95–100 | 95–100 |
Food efficiency (%) 2 | 6.3 | 9.8 | 14.6 | 7.4 | 6.8 | 8.3 | 8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, K.-H.; Lee, Y.; Bahuguna, A.; Lee, S.H.; Yang, C.-E.; Kim, J.-E.; Kwon, H.-S. The Consumption of Beeswax Alcohol (BWA, Raydel®) Improved Zebrafish Motion and Swimming Endurance by Protecting the Brain and Liver from Oxidative Stress Induced by 24 Weeks of Supplementation with High-Cholesterol and D-Galactose Diets: A Comparative Analysis Between BWA and Coenzyme Q10. Antioxidants 2024, 13, 1488. https://doi.org/10.3390/antiox13121488
Cho K-H, Lee Y, Bahuguna A, Lee SH, Yang C-E, Kim J-E, Kwon H-S. The Consumption of Beeswax Alcohol (BWA, Raydel®) Improved Zebrafish Motion and Swimming Endurance by Protecting the Brain and Liver from Oxidative Stress Induced by 24 Weeks of Supplementation with High-Cholesterol and D-Galactose Diets: A Comparative Analysis Between BWA and Coenzyme Q10. Antioxidants. 2024; 13(12):1488. https://doi.org/10.3390/antiox13121488
Chicago/Turabian StyleCho, Kyung-Hyun, Yunki Lee, Ashutosh Bahuguna, Sang Hyuk Lee, Chae-Eun Yang, Ji-Eun Kim, and Hyo-Shin Kwon. 2024. "The Consumption of Beeswax Alcohol (BWA, Raydel®) Improved Zebrafish Motion and Swimming Endurance by Protecting the Brain and Liver from Oxidative Stress Induced by 24 Weeks of Supplementation with High-Cholesterol and D-Galactose Diets: A Comparative Analysis Between BWA and Coenzyme Q10" Antioxidants 13, no. 12: 1488. https://doi.org/10.3390/antiox13121488
APA StyleCho, K. -H., Lee, Y., Bahuguna, A., Lee, S. H., Yang, C. -E., Kim, J. -E., & Kwon, H. -S. (2024). The Consumption of Beeswax Alcohol (BWA, Raydel®) Improved Zebrafish Motion and Swimming Endurance by Protecting the Brain and Liver from Oxidative Stress Induced by 24 Weeks of Supplementation with High-Cholesterol and D-Galactose Diets: A Comparative Analysis Between BWA and Coenzyme Q10. Antioxidants, 13(12), 1488. https://doi.org/10.3390/antiox13121488