The Antioxidant Auraptene Improves Aged Oocyte Quality and Embryo Development in Mice
<p>AUR protected the organizational dynamics of spindles and chromosomes during postovulatory aging. (<b>a</b>) A schematic diagram to illustrate the experimental design to investigate how AUR impact postovulatory aged oocytes. (<b>b</b>) Representative images of meiotic spindles and chromosomes in young and aged oocytes with or without AUR administration. Spindles were stained with α-tubulin (a spindle marker, green), and chromosomes were stained with DAPI (DNA, blue); scale bar = 20 μm. (<b>c</b>) Lengths of the spindles in each group of oocytes. Dots of boxplot show individual values of each observation. (<b>d</b>) Percentages of abnormal spindles in oocytes in each group. Data are presented as the means ± SEMs of at least three independent experiments. Significant difference indicated by lowercase letters of the alphabet, <span class="html-italic">p</span> < 0.05, * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 2
<p>AUR affected mitochondrial distribution during postovulatory aging. (<b>a</b>) Representative images of mitochondrial distribution in young and aged oocytes with or without AUR administration. Oocytes were stained with MitoTracker (mitochondria marker, red), and chromosomes were stained with DAPI (DNA, blue); scale bar = 100 μm. (<b>b</b>) Percentages of abnormal mitochondrial distribution in each group of oocytes. Data are presented as the means ± SEMs of at least three independent experiments. Significant difference indicated by lowercase letters of the alphabet, <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>AUR enhanced mitochondrial function by raising ΔΨm during postovulatory aging. (<b>a</b>) Representative images of mitochondrial ΔΨm in young and aged oocytes with or without AUR administration. Oocytes were stained with the cationic dye JC-1, which can selectively enter mitochondria and reversibly turn the emitted green fluorescence into red depending upon the mitochondrial membrane potential (aggregated JC-1: high potential marker, red; monomeric JC-1: low potential marker, green); scale bar = 20 μm. (<b>b</b>) The ratio of red to green fluorescence intensity in each group of oocytes. Data are presented as the means ± SEMs of at least three independent experiments. Significant difference indicated by lowercase letters of the alphabet, <span class="html-italic">p</span> < 0.001.</p> "> Figure 4
<p>AUR decreased intracellular ROS and elevated GSH during postovulatory aging. (<b>a</b>) Representative images of reactive oxygen species (ROS) and glutathione (GSH) distribution in the oocytes in the Young, POA, POA+AUR 1 μM and POA+AUR 10 μM groups. Oocytes were stained with DCFH-DA (green) or CMF2HC (blue), scale bar = 20 μm. (<b>b</b>) Fluorescence intensities denoting intracellular ROS distribution in oocytes in all groups. (<b>c</b>) Fluorescence intensities of intracellular GSH staining distribution in oocytes in all groups. Data are presented as the means ± SEMs of at least three independent experiments. Significant difference indicated by lowercase letters of the alphabet, <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>AUR upregulated the expression of NRF2-related genes during postovulatory aging. (<b>a</b>,<b>b</b>) Expression patterns of NRF2 mRNA and protein in postovulatory aged oocytes. (<b>c</b>–<b>h</b>) Transcription levels of NRF2-related genes (<span class="html-italic">Keap1</span>, <span class="html-italic">Gclc</span>, <span class="html-italic">Gclm</span>, <span class="html-italic">Gpx1</span>, <span class="html-italic">Sod1</span> and <span class="html-italic">Nqo1</span>), <span class="html-italic">p</span> < 0.05. Data are presented as the means ± SEMs of at least three independent experiments. Significant difference indicated by lowercase letters of the alphabet, <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>AUR promoted the fertilization and preimplantation development of postovulatory aged oocytes. (<b>a</b>) Representative images of blastocysts from young, aged and AUR-treated aged oocytes. Scale bar = 100 μm. (<b>b</b>,<b>c</b>) Quantitative analysis of embryo 2-cell and blastocyst formation rates. Data are presented as the means ± SEMs of at least three independent experiments. Significant difference indicated by lowercase letters of the alphabet, <span class="html-italic">p</span> < 0.01.</p> "> Figure 7
<p>AUR advanced the morphokinetics of embryos from postovulatory aged oocytes. (<b>a</b>) Comparison of the morphokinetics of embryos derived from oocytes of the Young, POA, POA+AUR 1 μM and POA+AUR 10 μM groups. (<b>b</b>) Representative images of embryos from aged oocytes that had not reached the blastocyst stage. (<b>c</b>–<b>q</b>) t2, t3, t4, t5, t6, t7, and t8: time in hours post insemination (HPI) required for embryos to reach the 2-, 3-, 4-, 5-, 6-, 7-, and 8-cell stage, respectively; tErB: time to start formation of blastocoel cavity; tBL: half or more of blastocoel cavity had formed; CC: length of the cell cycle; S: synchronicity or round of cleavage division. Dots of boxplot show individual values of each observation. Data are presented as the means ± SEMs of at least three independent experiments, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 8
<p>Auraptene can effectively delay postovulatory oocyte aging in vitro by alleviating oxidative stress. Briefly, we found that AUR inhibited not only spindle defects but also mitochondrial dysfunctions. In addition, the AUR treatment showed exhibit high GSH level and increase expression of antioxidant enzymes (<span class="html-italic">Nrf2</span>, <span class="html-italic">Gclm</span>, <span class="html-italic">Gclc</span>, <span class="html-italic">Gpx1</span> and <span class="html-italic">Sod1</span>) while decreasing the ROS level. Moreover, AUR can improve fertilization and preimplantation embryo development. Thus, we conclude that AUR may be able to provide as a potent antioxidant in clinical.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oocyte Collection and Culture
2.2. Immunofluorescence Staining
2.3. JC-1 Assay for Mitochondrial Activity
2.4. Measurement of Intracellular ROS and Glutathione (GSH) Levels
2.5. Real-Time RT-PCR
2.6. Western Blot
2.7. In Vitro Fertilization
2.8. Time-Lapse Imaging System
2.9. Statistical Analysis
3. Results
3.1. AUR Maintains Spindle Assembly and Chromosome Alignment during Postovulatory Aging
3.2. AUR Recovers Mitochondrial Dysfunction in Postovulatory Aged Oocytes
3.3. AUR Decreases the Intracellular ROS Level and Increases the GSH Level in Aged Oocytes
3.4. AUR Reduces Oxidative Stress by Regulating the NRF2 Pathway in Aged Oocytes
3.5. AUR Improves the Fertilization and Preimplantation Embryo Development Potential of Postovulatory Aged Oocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bibak, B.; Shakeri, F.; Barreto, G.E.; Keshavarzi, Z.; Sathyapalan, T.; Sahebkar, A. A review of the pharmacological and therapeutic effects of auraptene. Biofactors 2019, 45, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Askari, V.R.; Rahimi, V.B.; Rezaee, S.A.; Boskabady, M.H. Auraptene regulates Th1/Th2/TReg balances, NF-kappaB nuclear localization and nitric oxide production in normal and Th2 provoked situations in human isolated lymphocytes. Phytomedicine 2018, 43, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Askari, V.R.; Rahimi, V.B.; Zargarani, R.; Ghodsi, R.; Boskabady, M.; Boskabady, M.H. Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes. Pharmacol. Rep. 2021, 73, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, S.; Epifano, F.; Palumbo, L.; Genovese, S. A novel auraptene-enriched citrus peels-based blend with enhanced antioxidant activity. Plant Foods Hum. Nutr. 2021, 76, 397–398. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, Z.; Amiresmaili, S.; Shahrokhi, N.; Bibak, B.; Shakeri, F. Neuroprotective effects of auraptene following traumatic brain injury in male rats: The role of oxidative stress. Brain Res. Bull. 2021, 177, 203–209. [Google Scholar] [CrossRef]
- Tayarani-Najaran, Z.; Tayarani-Najaran, N.; Eghbali, S. A review of auraptene as an anticancer agent. Front. Pharmacol. 2021, 12, 698352. [Google Scholar] [CrossRef]
- Vakili, T.; Iranshahi, M.; Arab, H.; Riahi, B.; Roshan, N.M.; Karimi, G. Safety evaluation of auraptene in rats in acute and subacute toxicity studies. Regul. Toxicol. Pharmacol. 2017, 91, 159–164. [Google Scholar] [CrossRef]
- Igase, M.; Okada, Y.; Ochi, M.; Igase, K.; Ochi, H.; Okuyama, S.; Furukawa, Y.; Ohyagi, Y. Auraptene in the Peels of Citrus Kawachiensis (Kawachibankan) Contributes to the Preservation of Cognitive Function: A Randomized, Placebo-Controlled, Double-Blind Study in Healthy Volunteers. J. Prev. Alzheimers. Dis. 2018, 5, 197–201. [Google Scholar] [CrossRef]
- Galluzzi, S.; Zanardini, R.; Ferrari, C.; Gipponi, S.; Passeggia, I.; Rampini, M.; Sgro, G.; Genovese, S.; Fiorito, S.; Palumbo, L.; et al. Cognitive and biological effects of citrus phytochemicals in subjective cognitive decline: A 36-week, randomized, placebo-controlled trial. Nutr. J. 2022, 21, 64. [Google Scholar] [CrossRef]
- Miao, Y.L.; Kikuchi, K.; Sun, Q.Y.; Schatten, H. Oocyte aging: Cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 2009, 15, 573–585. [Google Scholar] [CrossRef]
- Prasad, S.; Tiwari, M.; Koch, B.; Chaube, S.K. Morphological, cellular and molecular changes during postovulatory egg aging in mammals. J. Biomed. Sci. 2015, 22, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapphoff, T.; Heiligentag, M.; Dankert, D.; Demond, H.; Deutsch, D.; Frohlich, T.; Arnold, G.J.; Grummer, R.; Horsthemke, B.; Eichenlaub-Ritter, U. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum. Reprod. 2016, 31, 133–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, H.; Takahashi, T.; Abe, H.; Nakano, H.; Nakajima, O.; Nagase, S. Poor embryo development in post-ovulatory in vivo-aged mouse oocytes is associated with mitochondrial dysfunction, but mitochondrial transfer from somatic cells is not sufficient for rejuvenation. Hum. Reprod. 2016, 31, 2331–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.H.; Bromfield, E.G.; Aitken, R.J.; Nixon, B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol. Life Sci. 2017, 74, 469–485. [Google Scholar] [CrossRef]
- Lord, T.; Aitken, R.J. Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction 2013, 146, R217–R227. [Google Scholar] [CrossRef] [Green Version]
- Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [Green Version]
- Di Nisio, V.; Antonouli, S.; Damdimopoulou, P.; Salumets, A.; Cecconi, S.; Sierr. In vivo and in vitro postovulatory aging: When time works against oocyte quality? J. Assist. Reprod. Genet. 2022, 39, 905–918. [Google Scholar] [CrossRef]
- Agarwal, A.; Durairajanayagam, D.; du Plessis, S.S. Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reprod. Biol. Endocrinol. 2014, 12, 112. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Xiao, J.H. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. Oxid. Med. Cell Longev. 2021, 2021, 6635460. [Google Scholar] [CrossRef]
- Zhou, D.; Shen, X.; Gu, Y.; Zhang, N.; Li, T.; Wu, X.; Lei, L. Effects of dimethyl sulfoxide on asymmetric division and cytokinesis in mouse oocytes. BMC Dev Biol. 2014, 14, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Kim, E.Y.; Lee, K.A. GAS6 ameliorates advanced age-associated meiotic defects in mouse oocytes by modulating mitochondrial function. Aging 2021, 13, 18018–18032. [Google Scholar] [CrossRef] [PubMed]
- Almansa-Ordonez, A.; Bellido, R.; Vassena, R.; Barragan, M.; Zambelli, F. Oxidative stress in reproduction: A mitochondrial perspective. Biology 2020, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, M.; Aghaz, F. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. Int. J. Fertil Steril 2017, 11, 63–70. [Google Scholar] [CrossRef]
- Cecchele, A.; Cermisoni, G.C.; Giacomini, E.; Pinna, M.; Vigano, P. Cellular and molecular nature of fragmentation of human embryos. Int. J. Mol. Sci. 2022, 23, 1349. [Google Scholar] [CrossRef]
- Bubols, G.B.; Dda, R.V.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem. 2013, 13, 318–334. [Google Scholar] [CrossRef]
- Abizadeh, M.; Novin, M.G.; Amidi, F.; Ziaei, S.A.; Abdollahifar, M.A.; Nazarian, H. Potential of auraptene in improvement of oocyte maturation, fertilization rate, and inflammation in polycystic ovary syndrome mouse model. Reprod. Sci. 2020, 27, 1742–1751. [Google Scholar] [CrossRef]
- Jang, Y.; Choo, H.; Lee, M.J.; Han, J.; Kim, S.J.; Ju, X.; Cui, J.; Lee, Y.L.; Ryu, M.J.; Oh, E.S.; et al. Auraptene mitigates Parkinson’s disease-like behavior by protecting inhibition of mitochondrial respiration and scavenging reactive oxygen species. Int. J. Mol. Sci. 2019, 20, 3409. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Jang, Y.; Zhu, J.; Namgung, E.; Go, D.; Seo, C.; Ju, X.; Cui, J.; Lee, Y.L.; Kang, H.; et al. Auraptene Enhances Junction Assembly in Cerebrovascular Endothelial Cells by Promoting Resilience to Mitochondrial Stress through Activation of Antioxidant Enzymes and mtUPR. Antioxidants 2021, 10, 475. [Google Scholar] [CrossRef]
- Prince, M.; Li, Y.; Childers, A.; Itoh, K.; Yamamoto, M.; Kleiner, H.E. Comparison of citrus coumarins on carcinogen-detoxifying enzymes in Nrf2 knockout mice. Toxicol. Lett. 2009, 185, 180–186. [Google Scholar] [CrossRef]
- Hassanein, E.H.M.; Sayed, A.M.; Hussein, O.E.; Mahmoud, A.M. Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway. Oxidative Med. Cell Longev. 2020, 2020, 1675957. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.N.; Wason, E.; Edrey, Y.H.; Kristan, D.M.; Nevo, E.; Buffenstein, R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc. Natl. Acad. Sci. USA 2015, 112, 3722–3727. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Liang, W.; Sun, Q.; Qiu, X.; Lin, Y.; Ge, X.; Jueraitetibaike, K.; Xie, M.; Zhou, J.; Huang, X.; et al. Sirt1/Nrf2 pathway is involved in oocyte aging by regulating Cyclin B1. Aging 2018, 10, 2991–3004. [Google Scholar] [CrossRef] [PubMed]
- Akino, N.; Wada-Hiraike, O.; Isono, W.; Terao, H.; Honjo, H.; Miyamoto, Y.; Tanikawa, M.; Sone, K.; Hirano, M.; Harada, M.; et al. Activation of Nrf2/Keap1 pathway by oral Dimethylfumarate administration alleviates oxidative stress and age-associated infertility might be delayed in the mouse ovary. Reprod. Biol. Endocrinol. 2019, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, E.; Marques, C.C.; Pimenta, J.; Jorge, J.; Baptista, M.C.; Goncalves, A.C.; Pereira, R. Anti-aging effect of urolithin a on bovine oocytes in vitro. Animals 2021, 11, 2048. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Hirai, S.; Goto, T.; Sakamoto, T.; Takahashi, N.; Yano, M.; Sasaki, T.; Yu, R.; Kawada, T. Auraptene suppresses inflammatory responses in activated RAW264 macrophages by inhibiting p38 mitogen-activated protein kinase activation. Mol. Nutr. Food Res. 2013, 57, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, Y.; Washimi, Y.S.; Hara, R.I.; Yamaoka, M.; Okuyama, S.; Sawamoto, A.; Nakajima, M. Citrus auraptene induces expression of brain-derived neurotrophic factor in Neuro2a cells. Molecules 2020, 25, 1117. [Google Scholar] [CrossRef] [Green Version]
- Shimoi, G.; Tomita, M.; Kataoka, M.; Kameyama, Y. Destabilization of spindle assembly checkpoint causes aneuploidy during meiosis II in murine post-ovulatory aged oocytes. J. Reprod. Dev. 2019, 65, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Keilty, D.; Zhang, Z.F.; Chian, R.C. Mitochondria in oocyte aging: Current understanding. Facts Views Vis. Obgyn 2017, 9, 29–38. [Google Scholar]
- van der Reest, J.; Cecchino, G.N.; Haigis, M.C.; Kordowitzki, P. Mitochondria: Their relevance during oocyte ageing. Ageing Res. Rev. 2021, 70, 101378. [Google Scholar] [CrossRef]
- Maedomari, N.; Kikuchi, K.; Ozawa, M.; Noguchi, J.; Kaneko, H.; Ohnuma, K.; Nakai, M.; Shino, M.; Nagai, T.; Kashiwazaki, N. Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology 2007, 67, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, A.T.; Greig, M.M.; Sontakke, A.A.; Peloquin, A.S.; McPeek, M.A.; Bickel, S.E. Increased levels of superoxide dismutase suppress meiotic segregation errors in aging oocytes. Chromosoma 2019, 128, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ufer, C.; Wang, C.C. The roles of glutathione peroxidases during embryo development. Front. Mol. Neurosci. 2011, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, B.N.; Fielder, T.J.; Hoang, Y.D.; Lim, J.; McConnachie, L.A.; Kavanagh, T.J.; Luderer, U. Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice. Endocrinology 2011, 152, 2806–2815. [Google Scholar] [CrossRef]
- Armstrong, S.; Bhide, P.; Jordan, V.; Pacey, A.; Marjoribanks, J.; Farquhar, C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 2019, 5, CD011320. [Google Scholar] [CrossRef]
- Wolff, H.S.; Fredrickson, J.R.; Walker, D.L.; Morbeck, D.E. Advances in quality control: Mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum. Reprod. 2013, 28, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, B.; Cruz, M.; Meseguer, M. Is morphokinetic analysis the answer? Reprod. Biomed. Online 2013, 27, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Lagalla, C.; Coticchio, G.; Sciajno, R.; Tarozzi, N.; Zaca, C.; Borini, A. Alternative patterns of partial embryo compaction: Prevalence, morphokinetic history and possible implications. Reprod. Biomed. Online 2020, 40, 347–354. [Google Scholar] [CrossRef]
- Tamura, H.; Jozaki, M.; Tanabe, M.; Shirafuta, Y.; Mihara, Y.; Shinagawa, M.; Tamura, I.; Maekawa, R.; Sato, S.; Taketani, T.; et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int. J. Mol. Sci. 2020, 21, 1135. [Google Scholar] [CrossRef] [Green Version]
- Tamura, H.; Takasaki, A.; Miwa, I.; Taniguchi, K.; Maekawa, R.; Asada, H.; Taketani, T.; Matsuoka, A.; Yamagata, Y.; Shimamura, K.; et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res. 2008, 44, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Yong, W.; Ma, H.; Na, M.; Gao, T.; Zhang, Y.; Hao, L.; Yu, H.; Yang, H.; Deng, X. Roles of melatonin in the field of reproductive medicine. Biomed. Pharmacother. 2021, 144, 112001. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.; Wallace, E.M.; Vollenhoven, B.; Lolatgis, N.; Hope, N.; Wong, M.; Lawrence, M.; Lawrence, A.; Russell, C.; Leong, K.; et al. Melatonin in assisted reproductive technology: A pilot double-blind randomized placebo-controlled clinical trial. Front. Endocrinol. 2018, 9, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Varela, C.; Labarta, E. Does coenzyme Q10 supplementation improve human oocyte quality? Int. J. Mol. Sci. 2021, 22, 9541. [Google Scholar] [CrossRef]
- Gat, I.; Mejia, S.B.; Balakier, H.; Librach, C.L.; Claessens, A.; Ryan, E.A. The use of coenzyme Q10 and DHEA during IUI and IVF cycles in patients with decreased ovarian reserve. Gynecol. Endocrinol. 2016, 32, 534–537. [Google Scholar] [CrossRef]
- Giannubilo, S.R.; Orlando, P.; Silvestri, S.; Cirilli, I.; Marcheggiani, F.; Ciavattini, A.; Tiano, L. CoQ10 supplementation in patients undergoing IVF-ET: The relationship with follicular fluid content and oocyte maturity. Antioxidants 2018, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Nisenblat, V.; Lu, C.; Li, R.; Qiao, J.; Zhen, X.; Wang, S. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: A randomized controlled trial. Reprod. Biol. Endocrinol. 2018, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Cai, L.; Hu, M.; Wang, J.; Xie, J.; Xing, Y.; Shen, J.; Cui, Y.; Liu, X.J.; Liu, J. Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies. Fertil. Steril. 2020, 114, 331–337. [Google Scholar] [CrossRef]
- Al-Zubaidi, U.; Adhikari, D.; Cinar, O.; Zhang, Q.H.; Yuen, W.S.; Murphy, M.P.; Rombauts, L.; Robker, R.L.; Carroll, J. Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. Hum. Reprod. 2021, 36, 771–784. [Google Scholar] [CrossRef]
- Lee, S.; Jin, J.X.; Taweechaipaisankul, A.; Kim, G.A.; Lee, B.C. Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology 2018, 114, 191–198. [Google Scholar] [CrossRef]
- Sun, Y.L.; Tang, S.B.; Shen, W.; Yin, S.; Sun, Q.Y. Roles of resveratrol in improving the quality of postovulatory aging oocytes in vitro. Cells 2019, 8, 1132. [Google Scholar] [CrossRef] [PubMed]
- Bahramrezaie, M.; Amidi, F.; Aleyasin, A.; Saremi, A.; Aghahoseini, M.; Brenjian, S.; Khodarahmian, M.; Pooladi, A. Effects of resveratrol on VEGF & HIF1 genes expression in granulosa cells in the angiogenesis pathway and laboratory parameters of polycystic ovary syndrome: A triple-blind randomized clinical trial. J. Assist. Reprod. Genet. 2019, 36, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, A.; Kuroda, K. Preconception resveratrol intake against infertility: Friend or foe? Reprod. Med. Biol. 2020, 19, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahadori, M.H.; Sharami, S.H.; Fakor, F.; Milani, F.; Pourmarzi, D.; Dalil-Heirati, S.F. Level of vitamin E in follicular fluid and serum and oocyte morphology and embryo quality in patients undergoing IVF treatment. J. Family Reprod. Health 2017, 11, 74–81. [Google Scholar]
- Lu, X.; Wu, Z.; Wang, M.; Cheng, W. Effects of vitamin C on the outcome of in vitro fertilization-embryo transfer in endometriosis: A randomized controlled study. J. Int. Med. Res. 2018, 46, 4624–4633. [Google Scholar] [CrossRef]
Genes | Accession No. | Forward | Reverse | Product Size (bp) |
---|---|---|---|---|
Nrf2 | NM_010902.4 | TGGAGAACATTGTCGAGCTG | TGCTTTTGGGAACAAGGAAC | 237 |
Keap1 | NM_001110307.1 | GGCAGGACCAGTTGAACAGT | ATCACTGTCCGGGTCATAGC | 188 |
Sod1 | NM_011434.2 | TGCTTTTGGGAACAAGGAAC | CACCTTTGCCCAAGTCATCT | 216 |
Cat | NM_009804.2 | CCTGACATGGTCTGGGACTT | CAAGTTTTTGATGCCCTGGT | 201 |
Nqo1 | NM_008706.5 | CAGATCCTGGAAGGATGGAA | TCTGGTTGTCAGCTGGAATG | 202 |
Gpx1 | NM_008160.6 | GTCCACCGTGTATGCCTTCT | TCTGCAGATCGTTCATCTCG | 152 |
Gclc | NM_010295.2 | CAATGGGAAGGAAGGGGTAT | TCAGGATGGTTTGCAATGAA | 186 |
Gclm | NM_008129.4 | TGGAGCAGCTGTATCAGTGG | AGAGCAGTTCTTTCGGGTCA | 150 |
Gapdh | NM_001289726.1 | ACCACAGTCCATGCCATCAC | TCCACCACCCTGTTGCTGTA | 171 |
H1foo | NM_001346702.1 | TCCACCACAAGTACCCGACA | GGCACAGGCTTTCTTTCTCT | 173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-H.; Lee, S.-Y.; Kim, E.-Y.; Kim, K.-H.; Koong, M.-K.; Lee, K.-A. The Antioxidant Auraptene Improves Aged Oocyte Quality and Embryo Development in Mice. Antioxidants 2023, 12, 87. https://doi.org/10.3390/antiox12010087
Kim Y-H, Lee S-Y, Kim E-Y, Kim K-H, Koong M-K, Lee K-A. The Antioxidant Auraptene Improves Aged Oocyte Quality and Embryo Development in Mice. Antioxidants. 2023; 12(1):87. https://doi.org/10.3390/antiox12010087
Chicago/Turabian StyleKim, Yun-Hee, Su-Yeon Lee, Eun-Young Kim, Kyeoung-Hwa Kim, Mi-Kyoung Koong, and Kyung-Ah Lee. 2023. "The Antioxidant Auraptene Improves Aged Oocyte Quality and Embryo Development in Mice" Antioxidants 12, no. 1: 87. https://doi.org/10.3390/antiox12010087
APA StyleKim, Y. -H., Lee, S. -Y., Kim, E. -Y., Kim, K. -H., Koong, M. -K., & Lee, K. -A. (2023). The Antioxidant Auraptene Improves Aged Oocyte Quality and Embryo Development in Mice. Antioxidants, 12(1), 87. https://doi.org/10.3390/antiox12010087