Antioxidant, Anti-α-Glucosidase, Anti-Tyrosinase, and Anti-Acetylcholinesterase Components from Stem of Rhamnus formosana with Molecular Docking Study
"> Figure 1
<p>Extraction and isolation of active ingredients from <span class="html-italic">Rhamnus formosana</span>.</p> "> Figure 2
<p>Chemical structures of kaempferol (<b>1</b>), quercetin (<b>2</b>), emodin (<b>3</b>), chrysophanol (<b>4</b>), and physcion (<b>5</b>) from <span class="html-italic">Rhamnus formosana</span>.</p> "> Figure 3
<p>Interactions of kaempferol (<b>1</b>) with α-glucosidase active binding site.</p> "> Figure 4
<p>Interaction of quercetin (<b>2</b>) with α-glucosidase active binding site.</p> "> Figure 5
<p>Interaction of emodin (<b>3</b>) with α-glucosidase active binding site.</p> "> Figure 6
<p>Interaction of acarbose with α-glucosidase active binding site.</p> "> Figure 7
<p>Interactions of emodin (<b>3</b>) with AChE active binding site.</p> "> Figure 8
<p>Interactions of physcion (<b>5</b>) with AChE active binding site.</p> "> Figure 9
<p>Interactions of quercetin (<b>2</b>) with AChE active binding site.</p> "> Figure 10
<p>Interaction of chlorogenic acid with AChE active binding site.</p> "> Figure 11
<p>Interaction of kaempferol (<b>1</b>) with tyrosinase active binding site.</p> "> Figure 12
<p>Interaction of quercetin (<b>2</b>) with tyrosinase active binding site.</p> "> Figure 13
<p>Interaction of arbutin with tyrosinase active binding site.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Chemicals
2.2. Crude Extract of Rhamnus formosana
2.3. Preparation of Active Components of Rhamnus formosana
2.4. Quantification of Total Phenolic Content
2.5. Quantification of Total Flavonoid Content
2.6. Scavenging Activity of DPPH Free Radical
2.7. Scavenging Activity of ABTS Radical
2.8. Scavenging Activity of Superoxide Radical
2.9. Ferric Reducing Antioxidant Power (FRAP)
2.10. α-Glucosidase Inhibitory Activity Assessment
2.11. Tyrosinase Inhibitory Activity Analysis
2.12. Acetylcholinesterase Inhibitory Activity Analysis
2.13. Molecular Docking Studies
2.14. Statistical Analysis System
3. Results
3.1. Quantification of TPC, TFC, and Extraction Yields per Solvent of Rhamnus formosana
3.2. Scavenging Activity of DPPH
3.3. Scavenging Activity of ABTS
3.4. Scavenging Activity of Superoxide Radical
3.5. Ferric Reducing Antioxidant Power
3.6. Determination of Inhibitory Activity Against α-Glucosidase
3.7. Determination of the Inhibitory Activity Against Acetylcholinesterase (AChE)
3.8. Determination of Inhibitory Activity Against Tyrosinase
3.9. Antioxidative Inhibitory Activities of Isolated Components
3.10. α-Glucosidase Inhibitory Activity of Isolated Fractions
3.11. Acetylcholinesterase (AChE) Inhibitory Activity of Isolated Compounds
3.12. Tyrosinase Inhibitory Activities of Isolated Components
3.13. Molecular Modeling Docking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amtaghri, S.; Farid, O.; Lahrach, N.; Slaoui, M.; Eddouks, M. Antihyperglycemic effect of Rhamnus alaternus L. aqueous extract in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets 2023, 22, 245–255. [Google Scholar] [PubMed]
- Lin, C.-N.; Chung, M.-I.; Gan, K.-H.; Lu, C.-M. Flavonol and anthraquinone glycosides from Rhamnus formosana. Phytochemistry 1991, 30, 3103–3106. [Google Scholar] [CrossRef]
- Preiser, J.C. Oxidative stress. J. Parenter. Enteral. Nutr. 2012, 36, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Crowch, C.M.; Okello, E.J. Kinetics of acetylcholinesterase inhibitory activities by aqueous extracts of Acacia nilotica (L.) and Rhamnus prinoides (L’Hér.). Afr. J. Pharm. Pharmacol. 2009, 3, 469–475. [Google Scholar]
- Bouhlel Chatti, I.; Krichen, Y.; Horchani, M.; Maatouk, M.; Trabelsi, A.; Lassoued, M.A.; Ben Jannet, H.; Ghédira, L.C. Anthraquinones from Rhamnus alaternus L.: A Phytocosmetic Ingredient with Photoprotective and Antimelanogenesis Properties. Chem. Biodivers. 2024, 21, e202300876. [Google Scholar] [CrossRef]
- Locatelli, M.; Genovese, S.; Carlucci, G.; Kremer, D.; Randic, M.; Epifano, F. Development and application of high-performance liquid chromatography for the study of two new oxyprenylated anthraquinones produced by Rhamnus species. J. Chromatogr. A 2012, 1225, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-S.; Chen, J.-J.; Duh, C.-Y.; Tsai, I.-L. Cytotoxic lignans from formosan Hernandia nymphaeifolia. Phytochemistry 1997, 45, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Yang, C.-S.; Peng, C.-F.; Chen, I.-S.; Miaw, C.-L. Dihydroagarofuranoid sesquiterpenes, a lignan derivative, a benzenoid, and antitubercular constituents from the stem of Microtropis japonica. J. Nat. Prod. 2008, 71, 1016–1021. [Google Scholar] [CrossRef]
- Chen, J.-J.; Chen, I.-S.; Duh, C.-Y. Cytotoxic xanthones and biphenyls from the root of Garcinia linii. Planta Med. 2004, 70, 1195–1200. [Google Scholar] [CrossRef]
- Chen, J.-J.; Chang, Y.-L.; Teng, C.-M.; Lin, W.-Y.; Chen, Y.-C.; Chen, I.-S. A new tetrahydroprotoberberine N-oxide alkaloid and anti-platelet aggregation constituents of Corydalis tashiroi. Planta Med. 2001, 67, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Duh, C.-Y.; Chen, I.-S. New tetrahydroprotoberberine N-oxide alkaloids and cytotoxic constituents of Corydalis tashiroi. Planta Med. 1999, 65, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.P.; Chen, Y.C.; Chen, J.J.; Tsai, I.L.; Chen, I.S. Cyclobutanoid amides from Piper arborescens. Helv. Chim. Acta 2004, 87, 463–468. [Google Scholar] [CrossRef]
- Djordjevic, T.M.; Šiler-Marinkovic, S.S.; Dimitrijevic-Brankovic, S.I. Antioxidant activity and total phenolic content in some cereals and legumes. Int. J. Food Prop. 2011, 14, 175–184. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, A.P. In vitro antioxidant and free radical scavenging activity of Nardostachys jatamansi DC. J. Acupunct. Meridian Stud. 2012, 5, 112–118. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Sivasothy, Y.; Loo, K.Y.; Leong, K.H.; Litaudon, M.; Awang, K. A potent alpha-glucosidase inhibitor from Myristica cinnamomea King. Phytochemistry 2016, 112, 265–269. [Google Scholar] [CrossRef] [PubMed]
- No, J.K.; Soung, D.Y.; Kim, Y.J.; Shim, K.H.; Jun, Y.S.; Rhee, S.H.; Yokozawa, T.; Chung, H.Y. Inhibition of tyrosinase by green tea components. Life Sci. 1999, 65, PL241–PL246. [Google Scholar] [CrossRef]
- Tran, T.-D.; Nguyen, T.-C.-V.; Nguyen, N.-S.; Nguyen, D.-M.; Nguyen, T.-T.-H.; Le, M.-T.; Thai, K.-M. Synthesis of novel chalcones as acetylcholinesterase inhibitors. Appl. Sci. 2016, 6, 198. [Google Scholar] [CrossRef]
- BIOVIA; Dassault Systèmes. Discovery Studio Client 2021, v.21.1.0; Dassault Systèmes: San Diego, CA, USA, 2021.
- Tagami, T.; Yamashita, K.; Okuyama, M.; Mori, H.; Yao, M.; Kimura, A. Molecular basis for the recognition of long-chain substrates by plant α-glucosidase. J. Biol. Chem. 2013, 288, 19296–19303. [Google Scholar] [CrossRef] [PubMed]
- Sakayanathan, P.; Loganathan, C.; Iruthayaraj, A.; Periyasamy, P.; Poomani, K.; Periasamy, V.; Thayumanavan, P. Biological interaction of newly synthesized astaxanthin-S-allyl cysteine biconjugate with Saccharomyces cerevisiae and mammalian α-glucosidase: In vitro kinetics and in silico docking analysis. Int. J. Biol. Macromol. 2018, 118, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Wan, G.-Z.; Xu, F.-C.; Guo, Z.-H.; Chen, J. Screening and identification of α-glucosidase inhibitors from Cyclocarya paliurus leaves by ultrafiltration coupled with liquid chromatography-mass spectrometry and molecular docking. J. Chromatogr. A. 2022, 1675, 463160. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.H.; Yang, C.S.; Chen, J.J. Antioxidant, anti-α-glucosidase, anti-tyrosinase, and anti-inflammatory activities of bioactive components from Morus alba. Antioxidants 2022, 11, 2222. [Google Scholar] [CrossRef]
- Jia, X.; Hu, J.; He, M.; Zhang, Q.; Li, P.; Wan, J.; He, C. α-Glucosidase inhibitory activity and structural characterization of polysaccharide fraction from Rhynchosia minima root. J. Funct. Foods 2017, 28, 76–82. [Google Scholar] [CrossRef]
- Bourne, Y.; Grassi, J.; Bougis, P.E.; Marchot, P. Conformational flexibility of the acetylcholinesterase tetramer suggested by X-ray crystallography. J. Biol. Chem 1999, 274, 30370–30376. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.-Y.; Wei, W.-C.; Jian, F.-Y.; Yang, N.-S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based. Complement. Alternat. Med. 2013, 2013, 302426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Mbeunkui, F.; Grace, M.H.; Lategan, C.; Smith, P.J.; Raskin, I.; Lila, M.A. Isolation and identification of antiplasmodial N-alkylamides from Spilanthes acmella flowers using centrifugal partition chromatography and ESI-ITTOF-MS. J. Chromatogr. B 2011, 879, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, X.; Meng, S.; Ma, T.; Wan, L.; Xu, S. Chlorogenic acid alleviates Aβ25-35-induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway. Drug Des. Dev. Ther. 2020, 14, 1705. [Google Scholar] [CrossRef]
- Lin, A.H.-M.; Lee, B.-H.; Chang, W.-J. Small intestine mucosal α-glucosidase: A missing feature of in vitro starch digestibility. Food Hydrocoll. 2016, 53, 163–171. [Google Scholar] [CrossRef]
- Xu, Y.; Rashwan, A.K.; Ge, Z.; Li, Y.; Ge, H.; Li, J.; Xie, J.; Liu, S.; Fang, J.; Cheng, K. Identification of a novel α-glucosidase inhibitor from Melastoma dodecandrum Lour. fruits and its effect on regulating postprandial blood glucose. Food Chem. 2023, 399, 133999. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.; Joubert, E. Critical assessment of in vitro screening of α-glucosidase inhibitors from plants with acarbose as a reference standard. Planta Med. 2022, 88, 1078–1091. [Google Scholar] [CrossRef]
- An, Y.; Li, Y.; Bian, N.; Ding, X.; Chang, X.; Liu, J.; Wang, G. Different interactive effects of metformin and acarbose with dietary macronutrient intakes on patients with type 2 diabetes mellitus: Novel findings from the MARCH randomized trial in China. Front. Nutr. 2022, 9, 861750. [Google Scholar] [CrossRef] [PubMed]
- Botella Lucena, P.; Heneka, M.T. Inflammatory aspects of Alzheimer’s disease. Acta Neuropathol. 2024, 148, 31. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Ahmed, H.I.; Zaky, H.S.; Badr, A.M. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J. Ethnopharmacol. 2021, 267, 113468. [Google Scholar] [CrossRef]
- Gonneaud, J.; Baria, A.T.; Pichet Binette, A.; Gordon, B.A.; Chhatwal, J.P.; Cruchaga, C.; Jucker, M.; Levin, J.; Salloway, S.; Farlow, M. Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease. Nat. Commun. 2021, 12, 5346. [Google Scholar] [CrossRef]
- Yang, Q.; Kang, Z.; Zhang, J.; Qu, F.; Song, B. Neuroprotective effects of isoquercetin: An in vitro and in vivo study. Cell J. 2021, 23, 355. [Google Scholar]
- Logesh, R.; Prasad, S.R.; Chipurupalli, S.; Robinson, N.; Mohankumar, S.K. Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochim. Biophys. Acta - Rev. Cancer 2023, 1878, 188968. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, B.; Xing, S.; Chen, Y.; Liao, Q.; Mo, J.; Chen, Y.; Li, Q.; Sun, H. Medicinal prospects of targeting tyrosinase: A feature review. Curr. Med. Chem. 2023, 30, 2638–2671. [Google Scholar] [CrossRef] [PubMed]
Extracting Solvents | Relative Polarity | TPC (mg/g) a (GAE) | TFC (mg/g) b (QE) | Yields (%) c |
---|---|---|---|---|
n-Hexane | 0.009 | <1 | 20.67 ± 3.13 ** | 0.23 |
Ethyl acetate | 0.269 | 58.64 ± 4.39 * | 25.07 ± 0.99 *** | 1.54 |
Acetone | 0.288 | 64.42 ± 0.41 *** | 17.60 ± 3.12 * | 2.79 |
Ethanol | 0.355 | 59.98 ± 3.87 * | 14.71 ± 1.66 ** | 2.91 |
Methanol | 0.654 | 58.09 ± 4.69 * | 8.82 ± 3.21 * | 7.51 |
Water | 0.762 | 41.44 ± 5.23 | 12.09 ± 2.93 * | 4.09 |
100 °C Water | 1.000 | 53.27 ± 1.44 *** | 12.87 ± 3.12 * | 9.85 |
Extracting Solvents | SC50 (μg/mL) a | TE (mM/g) b | ||
---|---|---|---|---|
DPPH | ABTS | Superoxide | FRAP | |
n-Hexane | >400 | >400 | >400 | 19.82 ± 4.91 |
Ethyl acetate | 34.91 ± 6.43 | 13.94 ± 3.26 | 169.88 ± 21.02 ** | 1096.56 ± 100.09 |
Acetone | 39.76 ± 1.58 | 14.51 ± 1.19 * | 50.26 ± 6.85 ** | 1252.35 ± 121.86 |
Ethanol | 46.62 ± 9.48 | 14.52 ± 0.83 * | 75.98 ± 1.93 *** | 1463.77 ± 25.30 *** |
Methanol | 68.97 ± 8.89 ** | 18.35 ± 0.67 ** | 89.68 ± 1.79 *** | 1273.00 ± 26.26 *** |
Water | 26.03 ± 1.95 | 21.25 ± 2.6 1 ** | 28.92 ± 2.37 * | 1229.73 ± 80.01 ** |
100 °C Water | 21.34 ± 0.52 | 13.63 ± 2.31 | 41.84 ± 1.40 ** | 1307.21 ± 4.19 *** |
BHT c | 156.04 ± 14.31 | 9.12 ± 1.85 | – | 3196.39 ± 115.26 *** |
Cynaroside d | – | – | 12.03 ± 4.20 | – |
Compounds | IC50 (μg/mL) a | |
---|---|---|
α-Glucosidase | AChE | |
n-Hexane | 36.35 ± 6.00 ** | 181.86 ± 13.60 |
Ethyl acetate | 3.19 ± 0.40 ** | 90.36 ± 7.28 ** |
Acetone | 4.13 ± 0.53 ** | 84.66 ± 4.18 ** |
Ethanol | 3.88 ± 1.06 ** | 63.23 ± 3.97 ** |
Methanol | 2.51 ± 0.81 ** | 179.01 ± 12.89 |
Water | 8.04 ± 1.72 ** | 169.66 ± 8.85 |
100 °C Water | 7.88 ± 0.38 ** | 190.17 ± 11.26 |
Acarbose b | 523.62 ± 76.25 | – |
Chlorogenic acid b | – | 175.89 ± 12.33 |
Extracting Solvents | Tyrosinase IC50 (μg/mL) a |
---|---|
n-Hexane | >400 |
Ethyl acetate | 381.65 ± 10.57 *** |
Acetone | 310.16 ± 10.79 ** |
Ethanol | 426.93 ± 14.86 * |
Methanol | 718.73 ± 54.07 ** |
Water | >400 |
100 °C Water | >400 |
Arbutin b | 162.42 ± 2.77 |
Compounds | SC50 (μM) a | TE (mM/g) b | ||
---|---|---|---|---|
DPPH | ABTS | Superoxide | FRAP | |
Kaempferol (1) | 61.74 ± 7.36 ** | 15.32 ± 0.94 * | 271.18 ± 20.69 ** | 1046.16 ± 23.78 *** |
Quercetin (2) | 16.05 ± 2.62 ** | 5.70 ± 0.92 ** | 85.80 ± 4.76 *** | 1026.73 ± 16.69 *** |
Emodin (3) | >200 | >200 | 231.61 ± 15.91 ** | <1 |
Chrysophanol (4) | >200 | >200 | >200 | <1 |
Physcion (5) | >200 | >200 | >200 | <1 |
Cynaroside c | – | – | 19.99 ± 1.70 | – |
BHT d | 708.15 ± 10.82 | 37.50 ± 4.31 | – | 5712.61 ± 176.27 *** |
Compounds | IC50 (μM) a | |
---|---|---|
α-Glucosidase | AChE | |
Kaempferol (1) | 45.54 ± 3.20 *** | 86.86 ± 4.62 ** |
Quercetin (2) | 78.03 ± 8.69 *** | 78.11 ± 2.87 ** |
Emodin (3) | 58.85 ± 3.39 *** | 77.56 ± 6.28 ** |
Chrysophanol (4) | 604.33 ± 44.82 * | >400 |
Physcion (5) | >800 | 75.97 ± 1.34 ** |
Acarbose b | 406.91 ± 14.48 | – |
Chlorogenic acid b | – | 302.83 ± 25.24 |
Compounds | Tyrosinase IC50 (μM) a |
---|---|
Kaempferol (1) | 19.45 ± 1.82 ** |
Quercetin (2) | 12.71 ± 1.96 ** |
Emodin (3) | >800 |
Chrysophanol (4) | >800 |
Physcion (5) | >800 |
Arbutin b | 638.73 ± 54.96 |
Compounds | Affinity (kcal/mol) |
---|---|
Kaempferol (1) | –8.6 |
Quercetin (2) | –6.9 |
Emodin (3) | –7.7 |
Chrysophanol (4) | –3.8 |
Acarbose a | –4.8 |
Compounds | Affinity (kcal/mol) |
---|---|
Kaempferol (1) | –8.5 |
Quercetin (2) | –8.6 |
Emodin (3) | –9.4 |
Physcion (5) | –9.4 |
Chlorogenic acid a | –7.3 |
Compounds | Affinity (kcal/mol) |
---|---|
Kaempferol (1) | –7.8 |
Quercetin (2) | –8.0 |
Arbutin a | –6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-H.; Liou, Y.-L.; Li, S.-M.; Liao, H.-R.; Chen, J.-J. Antioxidant, Anti-α-Glucosidase, Anti-Tyrosinase, and Anti-Acetylcholinesterase Components from Stem of Rhamnus formosana with Molecular Docking Study. Antioxidants 2025, 14, 8. https://doi.org/10.3390/antiox14010008
Tsai C-H, Liou Y-L, Li S-M, Liao H-R, Chen J-J. Antioxidant, Anti-α-Glucosidase, Anti-Tyrosinase, and Anti-Acetylcholinesterase Components from Stem of Rhamnus formosana with Molecular Docking Study. Antioxidants. 2025; 14(1):8. https://doi.org/10.3390/antiox14010008
Chicago/Turabian StyleTsai, Chia-Hsuan, Ya-Lun Liou, Sin-Min Li, Hsiang-Ruei Liao, and Jih-Jung Chen. 2025. "Antioxidant, Anti-α-Glucosidase, Anti-Tyrosinase, and Anti-Acetylcholinesterase Components from Stem of Rhamnus formosana with Molecular Docking Study" Antioxidants 14, no. 1: 8. https://doi.org/10.3390/antiox14010008
APA StyleTsai, C. -H., Liou, Y. -L., Li, S. -M., Liao, H. -R., & Chen, J. -J. (2025). Antioxidant, Anti-α-Glucosidase, Anti-Tyrosinase, and Anti-Acetylcholinesterase Components from Stem of Rhamnus formosana with Molecular Docking Study. Antioxidants, 14(1), 8. https://doi.org/10.3390/antiox14010008