The Effect of Bilateral, Two-Level Cervical Sympathetic Chain Blocks on Specific Symptom Clusters for Traumatic Brain Injury, Independent of Concomitant PTSD Symptoms
<p>Decrease in patient NSI scores following 2LCSB intervention at baseline, one week, and one month. Total scores decreased by nearly 50%, while male patients improved by nearly 10% more than female patients.</p> "> Figure 2
<p>Decrease in patient NSI sub-scores for TBI symptoms following 2LCSB intervention at baseline, one week, and one month. Total scores decreased by nearly 50%, while male patients improved by nearly 4% more than female patients.</p> "> Figure 3
<p>Decrease in patient PCL-5 scores for TBI symptoms following 2LCSB intervention at baseline, one week, and one month. Total scores decreased by over 50%, while female patients improved by nearly 7% more than male patients.</p> "> Figure 4
<p>Overlap between TBI and PTSD symptoms as derived from the NSI and PCL-5.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
Per published guidelines, all patients had a bilateral 2LCSB at the 4th cervical vertebra and 6th cervical vertebra, with the right side performed on day 1, and the left side performed on day 2 [50]. The blocks were performed on subsequent days to eliminate the risk of inadvertent bilateral blockade of the recurrent laryngeal nerve and subsequent potential airway compromise. A Doppler ultrasound scan was utilized prior to every procedure to clearly identify the vertebral artery and vein, as well as other vasculature. A 50-mm 25-gauge needle was utilized under ultrasound-guidance (General Electric Logic e with an 8–12 MHz broadband linear transducer) using a lateral, in-plane approach at both the 6th cervical vertebra level (using 6–8 mL of 0.5% ropivacaine) and the 4th cervical vertebra level (using 1.5–2 mL of 0.5% ropivacaine). All procedures were performed at an established musculoskeletal practice by pain and sports medicine fellowship-trained physicians who have collectively performed more than 5000 SGBs. Horner’s syndrome, a sign of a successful blockade of the stellate ganglion, is characterized by ptosis, miosis, and scleral injection and was scored by two independent observers at 5 min post-block per published guidelines [47]. All patients met the minimum clinical threshold for an acceptable Horner’s syndrome of 4 out of 6 points by both observers.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DOD TBI Worldwide Numbers [Internet]. Military Health System. 2018. Available online: https://www.health.mil/Military-Health-Topics/Centers-of-Excellence/Traumatic-Brain-Injury-Center-of-Excellence/DOD-TBI-Worldwide-Numbers (accessed on 4 September 2024).
- Cassidy, J.D.; Carroll, L.; Peloso, P.; Borg, J.; von Holst, H.; Holm, L.; Kraus, J.; Coronado, V. Incidence, risk factors and prevention of mild traumatic brain injury: Results of the who collaborating centre task force on mild traumatic brain injury. J. Rehabil. Med. 2004, 36, 28–60. [Google Scholar] [CrossRef] [PubMed]
- Haarbauer-Krupa, J.; Pugh, M.J.; Prager, E.M.; Harmon, N.; Wolfe, J.; Yaffe, K. Epidemiology of Chronic Effects of Traumatic Brain Injury. J. Neurotrauma 2021, 38, 3235–3247. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R.; Abbasi, N.; Abdulkader, R.; Abraha, H.N.; Adsuar, J.C.; et al. Global, regional, and National Burden of Traumatic Brain Injury and Spinal Cord injury, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef]
- Riggio, S. Traumatic Brain Injury and Its Neurobehavioral Sequelae. Psychiatr. Clin. N. Am. 2010, 33, 807–819. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Neurological Disorders and Stroke Traumatic Brain Injury (TBI). Available online: https://www.ninds.nih.gov/health-information/disorders/traumatic-brain-injury-tbi (accessed on 4 September 2024).
- McCrea, M.; Hammeke, T.; Olsen, G.; Leo, P.; Guskiewicz, K. Unreported Concussion in High School Football Players. Clin. J. Sport Med. 2004, 14, 13–17. [Google Scholar] [CrossRef]
- Reger, M.A.; Brenner, L.A.; du Pont, A. Traumatic Brain Injury and Veteran Mortality After the War in Afghanistan. JAMA Netw. Open 2022, 5, e2148158. [Google Scholar] [CrossRef]
- Stewart, I.J.; Howard, J.T.; Poltavskiy, E.; Dore, M.; Amuan, M.E.; Ocier, K.; Walker, L.E.; Alcover, K.C.; Jo Pugh, M. Traumatic Brain Injury and Subsequent Risk of Brain Cancer in US Veterans of the Iraq and Afghanistan Wars. JAMA Netw. Open 2024, 7, e2354588. [Google Scholar] [CrossRef]
- Brenner, L.A.; Forster, J.E.; Gradus, J.L.; Hostetter, T.A.; Hoffmire, C.A.; Walsh, C.G.; Mary Jo Larson Stearns-Yoder, K.A.; Adams, R.S. Associations of Military-Related Traumatic Brain Injury with New-Onset Mental Health Conditions and Suicide Risk. JAMA Netw. Open 2023, 6, e2326296. [Google Scholar] [CrossRef]
- Hoge, C.W.; McGurk, D.; Thomas, J.L.; Cox, A.L.; Engel, C.C.; Castro, C.A. Mild Traumatic Brain Injury in U.S. Soldiers Returning from Iraq. N. Engl. J. Med. 2008, 358, 453–463. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef]
- Laskowitz, D.; Grant, G. Translational Research in Traumatic Brain Injury; CRC Press: Boca Raton, FL, USA, 2016; Chapter 3; ISBN 9781466584914. [Google Scholar]
- Tang-Schomer, M.D.; Patel, A.R.; Baas, P.W.; Smith, D.H. Mechanical Breaking of Microtubules in Axons during Dynamic Stretch Injury Underlies Delayed Elasticity, Microtubule Disassembly, and Axon Degeneration. FASEB J. 2010, 24, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.H.; Stewart, W. Tackling Concussion, beyond Hollywood. Lancet Neurol. 2016, 15, 662–663. [Google Scholar] [CrossRef] [PubMed]
- Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Mudher, A.; Colin, M.; Dujardin, S.; Medina, M.; Dewachter, I.; Alavi Naini, S.M.; Mandelkow, E.-M.; Mandelkow, E.; Buée, L.; Goedert, M.; et al. What Is the Evidence That Tau Pathology Spreads through Prion-like Propagation? Acta Neuropathol. Commun. 2017, 5, 99. [Google Scholar] [CrossRef]
- Marklund, N.; Vedung, F.; Lubberink, M.; Tegner, Y.; Johansson, J.; Blennow, K.; Zetterberg, H.; Fahlström, M.; Haller, S.; Stenson, S.; et al. Tau Aggregation and Increased Neuroinflammation in Athletes after Sports-Related Concussions and in Traumatic Brain Injury Patients—A PET/MR Study. NeuroImage Clin. 2021, 30, 102665. [Google Scholar] [CrossRef]
- McKee, A.C.; Cairns, N.J.; Dickson, D.W.; Folkerth, R.D.; Dirk Keene, C.; Litvan, I.; Perl, D.P.; Stein, T.D.; Vonsattel, J.-P.; Stewart, W.; et al. The First NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. Acta Neuropathol. 2015, 131, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Black, K.L.; Hanks, R.A.; Wood, D.L.; Zafonte, R.D.; Cullen, N.; Cifu, D.X.; Englander, J.; Francisco, G.E. Blunt versus Penetrating Violent Traumatic Brain Injury. J. Head Trauma Rehabil. 2002, 17, 489–496. [Google Scholar] [CrossRef]
- Warden, D. Military TBI during the Iraq and Afghanistan Wars. J. Head Trauma Rehabil. 2006, 21, 398–402. [Google Scholar] [CrossRef]
- Risdall, J.E.; Menon, D.K. Traumatic Brain Injury. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 241–250. [Google Scholar] [CrossRef]
- Cernak, I.; Noble-Haeusslein, L.J. Traumatic Brain Injury: An Overview of Pathobiology with Emphasis on Military Populations. J. Cereb. Blood Flow Metab. 2009, 30, 255–266. [Google Scholar] [CrossRef]
- Ling, G.S.; Ecklund, J.M. Traumatic Brain Injury in Modern War. Curr. Opin. Anaesthesiol. 2011, 24, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Faden, A.; Demediuk, P.; Panter, S.; Vink, R. The Role of Excitatory Amino Acids and NMDA Receptors in Traumatic Brain Injury. Science 1989, 244, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Gentleman, S.M.; Leclercq, P.D.; Moyes, L.; Graham, D.I.; Smith, C.; Griffin, W.S.T.; Nicoll, J.a.R. Long-Term Intracerebral Inflammatory Response after Traumatic Brain Injury. Forensic Sci. Int. 2004, 146, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Stewart, J.E.; Begbie, F.D.; Trojanowski, J.Q.; Smith, D.H.; Stewart, W. Inflammation and White Matter Degeneration Persist for Years after a Single Traumatic Brain Injury. Brain 2013, 136, 28–42. [Google Scholar] [CrossRef]
- Xiong, Y.; Gu, Q.; Peterson, P.L.; Muizelaar, J.P.; Lee, C.P. Mitochondrial Dysfunction and Calcium Perturbation Induced by Traumatic Brain Injury. J. Neurotrauma 1997, 14, 23–34. [Google Scholar] [CrossRef]
- Bruns, J.; Hauser, W.A. The Epidemiology of Traumatic Brain Injury: A Review. Epilepsia 2003, 44, 2–10. [Google Scholar] [CrossRef]
- Andriessen, T.M.J.C.; Jacobs, B.; Vos, P.E. Clinical Characteristics and Pathophysiological Mechanisms of Focal and Diffuse Traumatic Brain Injury. J. Cell. Mol. Med. 2010, 14, 2381–2392. [Google Scholar] [CrossRef]
- Mulvaney, S.W.; Lynch, J.H.; Rae, K.L.; Mahadevan, S.; Dineen, K.J. The Successful Use of Bilateral 2-Level Ultrasound-Guided Stellate Ganglion Block to Improve Traumatic Brain Injury Symptoms: A Retrospective Analysis of 23 Patients. Mil. Med. 2024, 10, e2573–e2577. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR) [Internet]. Psychiatry.org. American Psychiatric Association. 2013. Available online: https://www.psychiatry.org/psychiatrists/practice/dsm (accessed on 4 September 2024).
- Kaplan, G.B.; Leite-Morris, K.A.; Wang, L.; Rumbika, K.K.; Heinrichs, S.C.; Zeng, X.; Wu, L.; Arena, D.T.; Teng, Y.D. Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. J. Neurotrauma 2018, 35, 210–225. [Google Scholar] [CrossRef]
- van Amelsvoort, T.; Hernaus, D. Effect of Pharmacological Interventions on the Fronto-Cingulo-Parietal Cognitive Control Network in Psychiatric Disorders: A Transdiagnostic Systematic Review of fMRI Studies. Front. Psychiatry 2016, 7, 82. [Google Scholar] [CrossRef]
- Monsour, M.; Ebedes, D.; Borlongan, C.V. A review of the pathology and treatment of TBI and PTSD. Exp. Neurol. 2022, 351, 114009. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, M.; Reddy, V.; Singh, P. Neuroanatomy, Stellate Ganglion [Internet]; StatPearls Publishing: Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539807/ (accessed on 4 September 2024).
- Lebovits, A.H.; Yarmush, J.; Lefkowitz, M. Reflex Sympathetic Dystrophy and Posttraumatic Stress Disorder. Clin. J. Pain 1990, 6, 153–157. [Google Scholar] [CrossRef]
- Mulvaney, S.W.; Lynch, J.H.; de Leeuw, J.; Schroeder, M.; Kane, S. Neurocognitive Performance is Not Degraded After Stellate Ganglion Block Treatment for Post-Traumatic Stress Disorder: A Case Series. Mil. Med. 2015, 180, e601–e604. [Google Scholar] [CrossRef]
- Moore, D.C. Stellate Ganglion Block; Thomas: Springfield, IL, USA, 1954. [Google Scholar]
- Baek, J.H. Characteristics of the Middle Cervical Sympathetic Ganglion: A Systematic Review and Meta-Analysis. Pain Physician 2018, 1, 9–18. [Google Scholar] [CrossRef]
- Mulvaney, S.; Curtis, K.; Ibrahim, T. Comparison C6 Stellate Ganglion versus C6 and C4 Cervical Sympathetic Chain Blocks for Treatment of Posttraumatic Stress Disorder (PTSD): Analysis of 147 Patients. J. Neurol. Disord. Stroke 2020, 7, 1163. [Google Scholar]
- Lipov, E.G.; Jacobs, R.; Springer, S.; Candido, K.D.; Knezevic, N.N. Utility of Cervical Sympathetic Block in Treating Post-Traumatic Stress Disorder in Multiple Cohorts: A Retrospective Analysis. Pain Physician 2022, 25, 77–85. [Google Scholar] [PubMed]
- Mulvaney, S.W.; McLean, B.; De Leeuw, J. The Use of Stellate Ganglion Block in the Treatment of Panic/Anxiety Symptoms with Combat-Related Post-Traumatic Stress Disorder; Preliminary Results of Long-Term Follow-Up: A Case Series. Pain Pract. 2010, 10, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, S.W.; Lynch, J.H.; Hickey, M.J.; Rahman-Rawlins, T.; Schroeder, M.; Kane, S.; Lipov, E. Stellate Ganglion Block Used to Treat Symptoms Associated with Combat-Related Post-Traumatic Stress Disorder: A Case Series of 166 Patients. Mil. Med. 2014, 179, 1133–1140. [Google Scholar] [CrossRef]
- Schore, A.N. Dysregulation of the Right Brain: A Fundamental Mechanism of Traumatic Attachment and the Psychopathogenesis of Posttraumatic Stress Disorder. Aust. N. Z. J. Psychiatry 2002, 36, 9–30. [Google Scholar] [CrossRef]
- Wittling, W. The right hemisphere and the human stress response. Acta Physiol. Scand. 1997, 640, 55–59. [Google Scholar]
- Mulvaney, S.W.; Lynch, J.H.; Kotwal, R.S. Clinical Guidelines for Stellate Ganglion Block to Treat Anxiety Associated with Posttraumatic Stress Disorder. J. Spec. Oper. Med. 2015, 15, 79. [Google Scholar] [CrossRef] [PubMed]
- Rae Olmsted, K.L.; Bartoszek, M.; Mulvaney, S.; McLean, B.; Turabi, A.; Young, R.; Kim, E.; Vandermaas-Peeler, R.; Morgan, J.K.; Constantinescu, O.; et al. Effect of Stellate Ganglion Block Treatment on Posttraumatic Stress Disorder Symptoms. JAMA Psychiatry 2020, 77, 130. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.H.; Muench, P.D.; Okiishi, J.C.; Means, G.E.; Mulvaney, S.W. Behavioral health clinicians endorse stellate ganglion block as a valuable intervention in the treatment of trauma-related disorders. J. Investig. Med. 2021, 69, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, S.W.; Lynch, J.H.; Curtis, K.E.; Ibrahim, T.S. The Successful Use of Left-sided Stellate Ganglion Block in Patients That Fail to Respond to Right-sided Stellate Ganglion Block for the Treatment of Post-traumatic Stress Disorder Symptoms: A Retrospective Analysis of 205 Patients. Mil. Med. 2021, 187, e826–e829. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. Generalized Anxiety Disorder 7; PsycTESTS Dataset; APA PsycTests: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Lynch, J.H.; Mulvaney, S.W.; Bryan, C.J.; Hernandez, D. Stellate Ganglion Block Reduces Anxiety Symptoms by Half: A Case Series of 285 Patients. J. Pers. Med. 2023, 13, 958. [Google Scholar] [CrossRef]
- Meyers, J.E.; English, J.; Miller, R.M.; Lee, A.J. Normative Data for the Neurobehavioral Symptom Inventory. Appl. Neuropsychol. Adult 2015, 22, 427–434. [Google Scholar] [CrossRef]
- Weathers, F.W.; Litz, B.T.; Keane, T.M.; Palmieri, P.A.; Marx, B.P.; Schnurr, P.P. The PTSD Checklist for DSM-5 (PCL-5)—Standard [Internet]. 2023. Available online: https://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.asp (accessed on 4 September 2024).
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A brief measure for assessing generalized anxiety disorder. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Andrews, R.J.; Fonda, J.R.; Levin, L.K.; McGlinchey, R.E.; Milberg, W.P. Comprehensive analysis of the predictors of neurobehavioral symptom reporting in veterans. Neurology 2018, 91, e732–e745. [Google Scholar] [CrossRef]
- Silva, M.A. Review of the Neurobehavioral Symptom Inventory. Rehabil. Psychol. 2020, 66, 170–182. [Google Scholar] [CrossRef]
- Yang, X.; Shi, Z.; Li, X.; Li, J. Impacts of stellate ganglion block on plasma NF-κB and inflammatory factors of TBI patients. Int. J. Clin. Exp. Med. 2015, 8, 15630–15638. [Google Scholar]
- Kim, D.H. The Effect of Oxygen Administration on Regional Cerebral Oxygen Saturation after Stellate Ganglion Block on the Non-Blocked Side. Pain Physician 2013, 16, 117–124. [Google Scholar] [CrossRef] [PubMed]
- ter Laan, M.; van Dijk, J.M.C.; Elting, J.W.J.; Staal, M.J.; Absalom, A.R. Sympathetic regulation of cerebral blood flow in humans: A review. Br. J. Anaesth. 2013, 111, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Blevins, C.A.; Weathers, F.W.; Davis, M.T.; Witte, T.K.; Domino, J.L. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): Development and Initial Psychometric Evaluation. J. Trauma. Stress 2015, 28, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Bovin, M.J.; Marx, B.P.; Weathers, F.W.; Gallagher, M.W.; Rodriguez, P.; Schnurr, P.P.; Keane, T.M. Psychometric properties of the PTSD Checklist for Diagnostic and Statistical Manual of Mental Disorders–Fifth Edition (PCL-5) in veterans. Psychol. Assess. 2016, 28, 1379–1391. [Google Scholar] [CrossRef]
- Marx, B.P.; Lee, D.J.; Norman, S.B.; Bovin, M.J.; Sloan, D.M.; Weathers, F.W.; Keane, T.M.; Schnurr, P.P. Reliable and clinically significant change in the clinician-administered PTSD Scale for DSM-5 and PTSD Checklist for DSM-5 among male veterans. Psychol. Assess. 2021, 34, 197–203. [Google Scholar] [CrossRef]
- Wortmann, J.H.; Jordan, A.H.; Weathers, F.W.; Resick, P.A.; Dondanville, K.A.; Hall-Clark, B.; Foa, E.B.; Young-McCaughan, S.; Yarvis, J.S.; Hembree, E.A.; et al. Psychometric analysis of the PTSD Checklist-5 (PCL-5) among treatment-seeking military service members. Psychol. Assess. 2016, 28, 1392–1403. [Google Scholar] [CrossRef]
Male | Female | Total | |
---|---|---|---|
Avg. NSI at Baseline | 41.54 | 50.00 | 44.50 |
Avg. NSI at 1 Month | 18.85 | 29.00 | 22.40 |
Avg. NSI % Improvement | 54.63% | 42.00% | 49.66% |
Avg. TBI Sub-Score at Baseline | 11.77 | 22.29 | 15.45 |
Avg. TBI Sub-Score at 1 Month | 5.69 | 11.71 | 7.80 |
Avg. TBI Sub-Score % Improvement | 51.63% | 47.44% | 49.51% |
Avg. PCL-5 at Baseline | 52.00 | 57.29 | 53.85 |
Avg. PCL-5 at 1 Month | 25.92 | 24.14 | 25.30 |
Avg. PCL-5 % Improvement | 50.15% | 57.86% | 53.02% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulvaney, S.W.; Lynch, J.H.; Mahadevan, S.; Dineen, K.J.; Rae Olmsted, K.L. The Effect of Bilateral, Two-Level Cervical Sympathetic Chain Blocks on Specific Symptom Clusters for Traumatic Brain Injury, Independent of Concomitant PTSD Symptoms. Brain Sci. 2024, 14, 1193. https://doi.org/10.3390/brainsci14121193
Mulvaney SW, Lynch JH, Mahadevan S, Dineen KJ, Rae Olmsted KL. The Effect of Bilateral, Two-Level Cervical Sympathetic Chain Blocks on Specific Symptom Clusters for Traumatic Brain Injury, Independent of Concomitant PTSD Symptoms. Brain Sciences. 2024; 14(12):1193. https://doi.org/10.3390/brainsci14121193
Chicago/Turabian StyleMulvaney, Sean W., James H. Lynch, Sanjay Mahadevan, Kyle J. Dineen, and Kristine L. Rae Olmsted. 2024. "The Effect of Bilateral, Two-Level Cervical Sympathetic Chain Blocks on Specific Symptom Clusters for Traumatic Brain Injury, Independent of Concomitant PTSD Symptoms" Brain Sciences 14, no. 12: 1193. https://doi.org/10.3390/brainsci14121193
APA StyleMulvaney, S. W., Lynch, J. H., Mahadevan, S., Dineen, K. J., & Rae Olmsted, K. L. (2024). The Effect of Bilateral, Two-Level Cervical Sympathetic Chain Blocks on Specific Symptom Clusters for Traumatic Brain Injury, Independent of Concomitant PTSD Symptoms. Brain Sciences, 14(12), 1193. https://doi.org/10.3390/brainsci14121193