Assessment of Angular Spectral Distributions of Laser Accelerated Particles for Simulation of Radiation Dose Map in Target Normal Sheath Acceleration Regime of High Power Laser-Thin Solid Target Interaction—Comparison with Experiments
<p>Geometry mesh of the GEANT4 simulation model: 1a—source of electrons; 1b—target; 1c—source of protons; 2—hole; 3—magnetic spectrometer; 4—target holder; 5—detector holder; 6—aluminum cylinder. The structure of the electron, proton sources and target are presented in the right corner of the image.</p> "> Figure 2
<p>(<b>a</b>) Experimental set-up; (<b>b</b>) Detailed of the experimental set-up.</p> "> Figure 3
<p>(<b>a</b>) Pixel values to optical density Rodbard calibration curve. (<b>b</b>) The dependence of optical density on radiation dose.</p> "> Figure 4
<p>Simulated spectra of laser accelerated: (<b>a</b>) protons; (<b>b</b>) electrons beams and (<b>c</b>) emitted photons at different angles within 0–15 degrees range. 0° is considered in forward direction normal to target.</p> "> Figure 5
<p>Simulated spectra of laser accelerated: (<b>a</b>) electron and (<b>b</b>) photon beams at different angles.</p> "> Figure 6
<p>Angular dependence of particle fluencies/cm<sup>2</sup> at 3 cm from the interaction point on logarithmic scale: (<b>a</b>) electrons (<b>b</b>) protons (<b>c</b>) photons and (<b>d</b>) total fluencies.</p> "> Figure 6 Cont.
<p>Angular dependence of particle fluencies/cm<sup>2</sup> at 3 cm from the interaction point on logarithmic scale: (<b>a</b>) electrons (<b>b</b>) protons (<b>c</b>) photons and (<b>d</b>) total fluencies.</p> "> Figure 7
<p>(<b>a</b>) Map of the measured dose (blue dots) inside the target chamber and of the simulated radiation dose (red dots); (<b>b</b>) The fluctuations in the angular distribution of measured and simulated dose.</p> ">
Abstract
:1. Introduction
2. Description of the Simulation Models and Experimental Set up
2.1. Description of the Model for Generation of Angular Spectra of Electrons, Protons and Photons; GEANT4 Model for Compute the Dose Map inside the Interaction Chamber
- (a)
- Description of TNSA Model
- (b)
- Description of Electron and Proton Sources Used for Calculation of Electron, Proton and Photon Spectra and Fluencies, around the High Power Laser—Thin Solid Target Interaction Point
- (c)
- Description of the Geometry Mesh of the Experimental Set-Up Used for Calculation of Radiation Dose Map Inside the Vacuum Chamber
2.2. Experimental Setup Used to Measure Electron and Proton Spectra at 3 cm Distance from Target n
2.3. Calibration of EBT3 Radiochromic Films used for Mapping of the Radiation Field
3. Results and Discussions
- (a)
- Simulation Results on the Angular Spectral Distribution of Electron, Proton and Photon Beams Generated in TNSA Regime
- (b)
- Simulation results on Electron, proton, and Photon Fluencies
- (c)
- Simulated and Experimental Dose Maps
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fuchs, J.; Antici, P.; d’Humieres, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C.A.; Kaluza, M.; Malka, V.; Manclossi, M.; et al. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2006, 2, 48–56. [Google Scholar] [CrossRef]
- Macchi, A.; Borghesi, M.; Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 2013, 85, 751–793. [Google Scholar] [CrossRef] [Green Version]
- Bolton, P.R.; Borghesi, M.; Brenner, C.; Carroll, D.C.; Martinis De, C.; Flacco, A.; Floquet, V.; Fuchs, J.; Gallegos, P.; Giove, D.; et al. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams. Phys. Med. 2014, 30, 255–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledingham, K.W.D.; Galster, W. Laser-driven particle and photon beams and some applications. New J. Phys. 2010, 12, 045005. [Google Scholar] [CrossRef]
- Hidding, B.; Karger, O.; Konigstein, T.; Pretzler, G.; Manahan, G.G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S.M.; Welsh, G.H.; et al. Laser-plasma-based Space Radiation Reproduction in the Laboratory. Sci. Rep. 2017, 7, 42354. [Google Scholar] [CrossRef]
- Zigler, A.; Eisenman, S.; Botton, M.; Nahum, E.; Schleifer, E.; Baspaly, A.; Pomerantz, I.; Abicht, F.; Branzel, J.; Priebe, G.; et al. Enhanced Proton Acceleration by an Ultrashort Laser Interaction with Structured Dynamic Plasma Targets. Phys. Rev. Lett. 2013, 110, 215004. [Google Scholar] [CrossRef]
- Liang, T.T.; Bauer, J.M.; Liu, J.C.; Rokni, S.H. Radiation protection around high-intensity laser interactions with solid targets. Health Phys. 2018, 115, 6. [Google Scholar] [CrossRef]
- Liang, T.; Bauer, J.; Cimeno, M.; Ferrari, A.; Galtier, E.; Granados, E.; Lee, H.J.; Liu, J.; Nagler, B.; Prinz, A.; et al. Radiation dose measurements for high-intensity laser interactions with solid targets at SLAC, Rad. Prot. Dosim. 2016, 172, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Nurnberg, F.; Schollmeier, M.; Brambrink, E.; Blazevic, A.; Carroll, D.C.; Flippo, K.; Gautier, D.C.; Geißel, M.; Harres, K.; Hegelich, B.M.; et al. Radiochromic film imaging spectroscopy of laser accelerated proton beams. Rev. Sci. Instrum. 2009, 80, 033301. [Google Scholar] [CrossRef] [Green Version]
- Jeong, T.W.; Singh, P.K.; Scullion, C.; Ahmed, H.; Hadjisolomou, P.; Jeon, C.; Yun, H.; Kakolee, K.F.; Borghesi, M.; Ter-Avetisyan, S. CR-39 track detector for multi-MeV ion spectroscopy. Sci. Rep. 2017, 7, 2152. [Google Scholar] [CrossRef] [Green Version]
- Jeong, T.W.; Singh, P.K.; Scullion, C.; Ahmed, H.; Kakolee, K.F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies. Rev. Sci. Instrum. 2016, 87, 083301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorini, F.; Neely, D.; Clarke, R.J.; Green, S. Characterization of laser-driven electron and photon beamsusing the Monte Carlo code FLUKA. Laser Part. Beams 2014, 32, 233–241. [Google Scholar] [CrossRef]
- Zell, H. Space Weather. Text. NASA. Available online: http://www.nasa.gov/mission_pages/rbsp/science/rbsp-spaceweather.html (accessed on 1 March 2020).
- Tokumaru, M. Three-dimensional exploration of the solar wind using observations of interplanetary Scintillation. Proc. Jpn. Acad. Ser. B 2013, 89, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, P. Extreme Space Weather: Impacts on Engineered Systems and Infrastructures, in Royal Academy of Engineering. Available online: https://www.raeng.org.uk/publications/reports/space-weather-full-report (accessed on 5 March 2020).
- Delzanno, G.L.; Borovsky, J.E.; Thomsen, M.F.; Moulton, J.D.; Macdonald, E.A. Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft? J. Geophys. Res. Space Phys. 2015, 120, 3647–3664. [Google Scholar] [CrossRef]
- Holly, Z. National Aeronautics and Space Administration. Available online: https://www.nasa.gov/mission_pages/rbsp/science/rbsp-spaceweather-human.html (accessed on 4 August 2017).
- Konigstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J.B.; Hidding, B. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies. J. Plasma Phys. 2012, 78, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Danson, C.; Hillier, D.; Hopps, N.; Neely, D. Petawatt class lasers worldwide. High Power Laser Sci. Eng. 2015, 3, e3. [Google Scholar] [CrossRef]
- Center for Advanced Laser Technologies (CETAL), Ultra-intense Lasers Laboratory. Available online: http://cetal.inflpr.ro/newsite/cetal-pw (accessed on 20 February 2020).
- Asavei, T.; Tomut, M.; Bobeica, M.; Aogaki, S.; Cernaianu, M.O.; Ganciu, M.; Kar, S.; Manda, G.; Mocanu, N.; Neagu, L.; et al. Materials in extreme environments for energy, accelerators and space applications at ELI-NP. Rom. Rep. Phys. 2016, 68, S275–S347. [Google Scholar]
- Ganciu, M.; Groza, A.; Cramariuc, O.; Mihalcea, B.; Serbanescu, M.; Stancu, E.; Surmeian, A.; Butoi, B.; Dreghici, D.; Chirosca, A.; et al. Hardware and software methods for radiation resistance rising of the critical infrastructures. Rom. Cyber Secur. J. 2019, 1, 3–13. [Google Scholar]
- Narici, L.; Casolino, M.; Fino, L.; Di Larosa, M.; Picozza, P.; Rizzo, A.; Zaconte, V. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Groza, A.; Serbanescu, M.; Butoi, B.; Stancu, E.; Straticiuc, M.; Burducea, I.; Balan, A.; Chirosca, A.; Mihalcea, B.; Ganciu, M. Advances in Spectral Distribution Assessment of Laser Accelerated Protons using Multilayer CR-39 Detectors. Appl. Sci. 2019, 9, 2052. [Google Scholar] [CrossRef] [Green Version]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.J.N.I.; et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Python Core Team. Python: A Dynamic, Open Source Programming Language; Python Software Foundation, 2015. Available online: https://www.python.org/ (accessed on 20 May 2020).
- Roth, M.; Schollmeier, M. Ion Acceleration—Target Normal Sheath Acceleration. In Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration Geneva, Geneva, Switzerland, 23–29 November 2014. [Google Scholar]
- Mora, P. Plasma expansion in vacuum. Phys. Rev. Lett. 2003, 90, 185002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tampo, M.; Awano, S.; Bolton, P.R.; Kondo, K.; Mima, K.; Mori, Y.; Kodama, R. Correlation between laser accelerated MeV proton and electron beams using simple fluid model for target normal sheath acceleration. Phys. Plasmas 2010, 17, 7. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.D.; Zhou, C.T.; Jiang, K.; Yang, Y.C.; Li, R.; Zhang, H.; He, X.T. Multidimensional effects on proton acceleration using high-power intense laser pulses. Phys. Plasmas 2018, 25, 2. [Google Scholar] [CrossRef] [Green Version]
- Volpe, L.; Fedosejevs, R.; Gatti, G.; Pérez-Hernández, J.A.; Méndez, C.; Apiñaniz, J.; Roso, L. Generation of high energy laser-driven electron and proton sources with the 200 TW system VEGA 2 at the Centro de Laseres Pulsados. High Power Laser Sci. Eng. 2019, 7, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Morita, T.; Esirkepov, T.Z.; Bulanov, S.V.; Koga, J.; Yamagiwa, M. Tunable High-Energy Ion Source via Oblique Laser Pulse Incident on a Double-Layer Target. Phys. Rev. Lett. 2008, 100, 145001. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 2003, 506, 250–303. [Google Scholar] [CrossRef] [Green Version]
- Allison, J. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Kong, R.; Ambrose, M.; Spanier, J. Efficient, Automated Monte Carlo Methods for Radiation Transport. J. Comput. Phys. 2008, 227, 9463–9476. [Google Scholar] [CrossRef] [Green Version]
- The Jupyter Notebook. Available online: https://jupyter.org/ (accessed on 21 May 2020).
- Giubega, G. Proton Acceleration in Ultra-Intense Laser Interaction with Solid Targets at CETAL-PW Laser, WORKSHOP CETAL 2018. Available online: http://cetal.inflpr.ro/newsite/workshop_abstracts.php (accessed on 15 December 2019).
- Zeil, K.; Kraft, S.D.; Bock, S.; Bussmann, M.; Cowan, T.E.; Kluge, T.; Metzkes, J.; Richter, T.; Sauerbrey, R.; Schramm, U. The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys. 2010, 12, 045015. [Google Scholar] [CrossRef]
- Najafi, M.; Geraily, G.; Shirazi, A.; Esfahani, M.; Teimouri, J. Analysis of Gafchromic EBT3 film calibration irradiated with gamma rays from different systems: Gamma Knife and Cobalt-60 unit. Med. Dosim. 2017, 3, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://tomography.inflpr.ro/ (accessed on 15 March 2020).
- Sorriaux, J.; Kacperek, A.; Rossomme, S.; Lee, J.A.; Bertrand, D.; Vynckier, S.; Sterpin, E. Evaluation of Gafchromic EBT3 films characteristics in therapy photon, electron and proton beams. Phys. Med. 2013, 6, 599–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://imagej.nih.gov/ij/docs/examples/calibration/ (accessed on 30 January 2020).
- Available online: https://imagej.nih.gov/ij/docs/guide/146-30.html#sub:Curve-Fitting (accessed on 30 January 2020).
- DeLean, A.; Munson, P.J.; Rodbard, D. Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay, and physiological dose-response curves. Am. J. Physiol. 1978, 235, E97–E102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatchett, S.P.; Brown, C.G.; Cowan, T.E.; Henry, E.A.; Johnson, J.S.; Key, M.H.; Koch, J.A.; Langdon, A.B.; Lasinski, B.F.; Lee, R.W.; et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 2000, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Cowan, T.E.; Fuchs, J.; Ruhl, H.; Kemp, A.; Audebert, P.; Roth, M.; Stephens, R.; Barton, I.; Blazevic, A.; Brambrink, E.; et al. Renard-Le Galloudec, N.; Ultralow Emittance, Multi-MeV Proton Beams from a Laser Virtual-Cathode Plasma Accelerator. Phys. Rev. Lett. 2004, 92, 20. [Google Scholar] [CrossRef]
- Carroll, D.C.; McKenna, P.; Lundh, O.; Lindau, F.; Wahlström, C.G.; Bandyopadhyay, S.; Pepler, D.; Neely, D.; Kar, S.; Simpson, P.T.; et al. Active manipulation of the spatial energy distribution of laser-accelerated proton beams. Phys. Rev. E 2007, 76, 065401R. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F.; Biersack, J.P. The Stopping and Range of Ions in Matter; Bromley, D., Ed.; Treatise on Heavy-Ion Science, Volume 6: Astrophysics, Chemistry, and Condensed Matter; Springer: Boston, MA, USA, 1985; pp. 93–129. [Google Scholar]
Source of Radiation | Electrons (Source 1) | Protons (Source 2) |
---|---|---|
Laser intensity (W/cm2) | 5 × 1019 | 5 × 1019 |
Laser pulse duration (fs) | 40 | 40 |
Laser spot area (µm2) | 207 | 207 |
Source radius (µm) | 9 | 9 |
Source position | ahead | behind |
Angular distribution | 4π | 25° half angle |
Number of events | 1.97 × 1012 | 1.29 × 109 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groza, A.; Chirosca, A.; Stancu, E.; Butoi, B.; Serbanescu, M.; Dreghici, D.B.; Ganciu, M. Assessment of Angular Spectral Distributions of Laser Accelerated Particles for Simulation of Radiation Dose Map in Target Normal Sheath Acceleration Regime of High Power Laser-Thin Solid Target Interaction—Comparison with Experiments. Appl. Sci. 2020, 10, 4390. https://doi.org/10.3390/app10124390
Groza A, Chirosca A, Stancu E, Butoi B, Serbanescu M, Dreghici DB, Ganciu M. Assessment of Angular Spectral Distributions of Laser Accelerated Particles for Simulation of Radiation Dose Map in Target Normal Sheath Acceleration Regime of High Power Laser-Thin Solid Target Interaction—Comparison with Experiments. Applied Sciences. 2020; 10(12):4390. https://doi.org/10.3390/app10124390
Chicago/Turabian StyleGroza, Andreea, Alecsandru Chirosca, Elena Stancu, Bogdan Butoi, Mihai Serbanescu, Dragana B. Dreghici, and Mihai Ganciu. 2020. "Assessment of Angular Spectral Distributions of Laser Accelerated Particles for Simulation of Radiation Dose Map in Target Normal Sheath Acceleration Regime of High Power Laser-Thin Solid Target Interaction—Comparison with Experiments" Applied Sciences 10, no. 12: 4390. https://doi.org/10.3390/app10124390
APA StyleGroza, A., Chirosca, A., Stancu, E., Butoi, B., Serbanescu, M., Dreghici, D. B., & Ganciu, M. (2020). Assessment of Angular Spectral Distributions of Laser Accelerated Particles for Simulation of Radiation Dose Map in Target Normal Sheath Acceleration Regime of High Power Laser-Thin Solid Target Interaction—Comparison with Experiments. Applied Sciences, 10(12), 4390. https://doi.org/10.3390/app10124390