Monte Carlo Study of Imaging Plate Response to Laser-Driven Aluminum Ion Beams
<p>Schematic layout of the experimental setup. An intense laser pulse produces energetic Al ions, which are detected using CR-39 and IP.</p> "> Figure 2
<p>Schematic layout of the CR-39 strips on the IP. The laser-driven Al ions that are deflected inside the TPS leave traces on the CR-39 strips and BAS-TR IP. Calibration regions are marked as purple rectangles in the figure. At each boundary of the calibration region, PSL/ion values are measured by comparing the number of tracks on the CR-39 and the amount of PSL from the IP.</p> "> Figure 3
<p>Stopping power of the 50 μm thick phosphor layer of a BAS-TR IP for 130 MeV and 200 MeV Al ions as functions of the target depth. The area under the curve represents the deposited energy in the phosphor layer.</p> "> Figure 4
<p>(<b>a</b>) IP response of BAS-TR IP is shown as a function of incoming Al ion energy before the filter. (<b>b</b>) Energy loss in the filter is shown as a function of Al ion energy (dashed green line). The incident kinetic energy of Al ions on the phosphor layer after penetrating through the filter is also shown as a function of Al ion energy (solid blue line). (<b>c</b>) IP response of BAS-TR IP is shown as a function of the incident Al ion energy on the phosphor layer.</p> "> Figure 5
<p>Sensitivity of BAS-TR IP is shown as a function of the incident Al ion energy on the IP surface.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
3. Measurement of PSL/Ion
4. Fading Effect
5. Calculation of PSL/Ion from SRIM Data
6. IP Sensitivity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amemiya, Y.; Miyahara, J. Imaging plate illuminates many fields. Nature 1988, 336, 89. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, Y.; Wakabayashi, K.; Tanaka, H.; Ueno, Y.; Miyahara, J. Laser-stimulated luminescence used to measure X-ray diffraction of a contracting striated muscle. Science 1987, 237, 164. [Google Scholar] [CrossRef] [PubMed]
- Cipiccia, S.; Islam, M.R.; Ersfeld, B.; Shanks, R.P.; Brunetti, E.; Vieux, G.; Yang, X.; Issac, R.C.; Wiggins, S.M.; Welsh, G.H.; et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 2011, 7, 867. [Google Scholar] [CrossRef]
- Ta Phuoc, K.; Corde, S.; Thaury, C.; Malka, V.; Tafzi, A.; Goddet, J.P.; Shah, R.C.; Sebban, S.; Rousse, A. All-optical Compton gamma-ray source. Nat. Photonics 2012, 6, 308. [Google Scholar] [CrossRef]
- Singh, S.; Slavicek, T.; Hodak, R.; Versaci, R.; Pridal, P.; Kumar, D. Absolute calibration of imaging plate detectors for electron kinetic energies between 150 keV and 1.75 MeV. Rev. Sci. Instrum. 2017, 88, 075105. [Google Scholar] [CrossRef] [PubMed]
- Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R.J.; Hanton, F.; MacLellan, D.A.; McKenna, P.; et al. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions. Rev. Sci. Instrum. 2015, 86, 123302. [Google Scholar] [CrossRef]
- Boutoux, G.; Rabhi, N.; Batani, D.; Binet, A.; Ducret, J.E.; Jakubowska, K.; Nègre, J.P.; Reverdin, C.; Thfoin, I. Study of imaging plate detector sensitivity to 5-18 MeV electrons. Rev. Sci. Instrum. 2015, 86, 113304. [Google Scholar] [CrossRef]
- Boutoux, G.; Batani, D.; Burgy, F.; Ducret, J.E.; Forestier-Colleoni, P.; Hulin, S.; Rabhi, N.; Duval, A.; Lecherbourg, L.; Reverdin, C.; et al. Validation of modelled imaging plates sensitivity to 1-100 keV X-rays and spatial resolution characterisation for diagnostics for the “PETawatt Aquitaine Laser”. Rev. Sci. Instrum. 2016, 87, 043108. [Google Scholar] [CrossRef]
- Schlenvoigt, H.P.; Haupt, K.; Debus, A.; Budde, F.; Jäckel, O.; Pfotenhauer, S.; Schwoerer, H.; Rohwer, E.; Gallacher, J.G.; Brunetti, E.; et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 2007, 4, 130. [Google Scholar] [CrossRef]
- Yu, C.; Qi, R.; Wang, W.; Liu, J.; Li, W.; Wang, C.; Zhang, Z.; Liu, J.; Qin, Z.; Fang, M.; et al. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering. Sci. Rep. 2016, 6, 29518. [Google Scholar] [CrossRef] [Green Version]
- Ingenito, F.; Andreoli, P.; Batani, D.; Boutoux, G.; Cipriani, M.; Consoli, F.; Cristofari, G.; Curcio, A.; Angelis, R.D.; Giorgio, G.D.; et al. Comparative calibration of IP scanning equipment. Comp. Calibration Ip Scanning Equip. J. Instrum. 2016, 11, C05012. [Google Scholar] [CrossRef]
- Rabhi, N.; Batani, D.; Boutoux, G.; Ducret, J.-E.; Jakubowska, K.; Lantuejoul-Thfoin, I.; Nauraye, C.; Patriarca, A.; Saïd, A.; Semsoum, A.; et al. Calibration of imaging plate detectors to mono-energetic protons in the range 1-200 MeV. Rev. Sci. Instrum. 2017, 88, 113301. [Google Scholar] [CrossRef] [PubMed]
- Zeil, K.; Kraft, S.D.; Jochmann, A.; Kroll, F.; Jahr, W.; Schramm, U.; Karsch, L.; Pawelke, J.; Hidding, B.; Pretzler, G. Absolute response of Fuji imaging plate detectors to picosecond-electron bunches. Rev. Sci. Instrum. 2010, 81, 013307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, T.; Comet, M.; Denis-Petit, D.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Aleonard, M.M. Response functions of Fuji imaging plates to monoenergetic protons in the energy range 0.6–3.2 MeV. Rev. Sci. Instrum. 2013, 84, 013508. [Google Scholar] [CrossRef]
- Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.J.; Ma, Q. High-energy X-ray backlighter spectrum measurements using calibrated image plates. Rev. Sci. Instrum. 2011, 82, 023111. [Google Scholar] [CrossRef]
- Bonnet, T.; Comet, M.; Denis-Petit, D.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Aléonard, M.M. Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 2013, 84, 103510. [Google Scholar] [CrossRef]
- Tanaka, K.A.; Yabuuchi, T.; Sato, T.; Kodama, R.; Kitagawa, Y.; Takahashi, T.; Ikeda, T.; Honda, Y.; Okuda, S. Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 2005, 76, 013507. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Back, N.L.; Bartal, T.; Beg, F.N.; Eder, D.C.; Link, A.J.; MacPhee, A.G.; Ping, Y.; Song, P.M.; Throop, A.; et al. Absolute calibration of image plates for electrons at energy between 100keV and 4MeV. Rev. Sci. Instrum. 2008, 79, 033301. [Google Scholar] [CrossRef]
- Nakanii, N.; Kondo, K.; Yabuuchi, T.; Tsuji, K.; Tanaka, K.A.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.; et al. Absolute calibration of imaging plate for GeV electrons. Rev. Sci. Instrum. 2008, 79, 066102. [Google Scholar] [CrossRef] [Green Version]
- Taniyama, A.; Shindo, D.; Oikawa, T. Sensitivity and Fading Characteristics of the 25 μm Pixel Size Imaging Plate for Transmission Electron Microscopes. J. Electron Microsc. 1996, 45, 232–235. [Google Scholar] [CrossRef]
- Rabhi, N.; Bohacek, K.; Batani, D.; Boutoux, G.; Ducret, J.E.; Guillaume, E.; Jakubowska, K.; Thaury, C.; Thfoin, I. Calibration of imaging plates to electrons between 40 and 180 MeV. Rev. Sci. Instrum. 2016, 87, 053306. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.W.; Kim, C.M.; Sung, J.H.; Kim, I.J.; Yu, T.J.; Lee, S.K.; Jin, Y.Y.; Pae, K.H.; Hafz, N.; Lee, J. Absolute calibration of a time-of-flight spectrometer and imaging plate for the characterization of laser-accelerated protons. Meas. Sci. Technol. 2009, 20, 115112. [Google Scholar] [CrossRef]
- Freeman, C.G.; Fiksel, G.; Stoeckl, C.; Sinenian, N.; Canfield, M.J.; Graeper, G.B.; Lombardo, A.T.; Stillman, C.R.; Padalino, S.J.; Mileham, C.; et al. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles. Rev. Sci. Instrum. 2011, 82, 073301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mančić, A.; Fuchs, J.; Antici, P.; Gaillard, S.A.; Audebert, P. Absolute calibration of photostimulable image plate detectors used as (0.5–20MeV) high-energy proton detectors. Rev. Sci. Instrum. 2008, 79, 073301. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Z.; Xu, M.; Du, Y.; Zhang, C.; Dong, X.; He, Y.; Tan, J.; Zhang, Y.; Zhu, C.; et al. Absolute X-ray calibration of an Amersham imaging plate scanner. Rev. Sci. Instrum. 2020, 91, 033105. [Google Scholar] [CrossRef]
- Alejo, A.; Kar, S.; Ahmed, H.; Krygier, A.G.; Doria, D.; Clarke, R.; Fernandez, J.; Freeman, R.R.; Fuchs, J.; Green, A.; et al. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers. Rev. Sci. Instrum. 2014, 85, 093303. [Google Scholar] [CrossRef] [Green Version]
- Strehlow, J.; Forestier-Colleoni, P.; McGuffey, C.; Bailly-Grandvaux, M.; Daykin, T.S.; McCary, E.; Peebles, J.; Revet, G.; Zhang, S.; Ditmire, T.; et al. The response function of Fujifilm BAS-TR imaging plates to laser-accelerated titanium ions. Rev. Sci. Instrum. 2019, 90, 083302. [Google Scholar] [CrossRef]
- Hidding, B.; Pretzler, G.; Clever, M.; Brandl, F.; Zamponi, F.; Lübcke, A.; Kämpfer, T.; Uschmann, I.; Förster, E.; Schramm, U.; et al. Novel method for characterizing relativistic electron beams in a harsh laser-plasma environment. Rev. Sci. Instrum. 2007, 78, 083301. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, T.; Comet, M.; Denis-Petit, D.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M. Two parameter model of Fuji imaging plate response function to protons. In Proceedings of the SPIE Optics + Optoelectronics, Prague, Czech Republic, 9 May 2013; p. 7. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Paul, H.; Sánchez-Parcerisa, D. A critical overview of recent stopping power programs for positive ions in solid elements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 312, 110–117. [Google Scholar] [CrossRef]
- Evseev, I.G.; Schelin, H.R.; Paschuk, S.A.; Milhoretto, E.; Setti, J.A.P.; Yevseyeva, O.; de Assis, J.T.; Hormaza, J.M.; Díaz, K.S.; Lopes, R.T. Comparison of SRIM, MCNPX and GEANT simulations with experimental data for thick Al absorbers. Appl. Radiat. Isot. 2010, 68, 948–950. [Google Scholar] [CrossRef] [PubMed]
- Palaniyappan, S.; Huang, C.; Gautier, D.C.; Hamilton, C.E.; Santiago, M.A.; Kreuzer, C.; Sefkow, A.B.; Shah, R.C.; Fernández, J.C. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas. Nat. Commun. 2015, 6, 10170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, J.C.; Cort Gautier, D.; Huang, C.; Palaniyappan, S.; Albright, B.J.; Bang, W.; Dyer, G.; Favalli, A.; Hunter, J.F.; Mendez, J.; et al. Laser-plasmas in the relativistic-transparency regime: Science and applications. Phys. Plasmas 2017, 24, 056702. [Google Scholar] [CrossRef] [PubMed]
- Bang, W.; Albright, B.J.; Bradley, P.A.; Gautier, D.C.; Palaniyappan, S.; Vold, E.L.; Cordoba, M.A.S.; Hamilton, C.E.; Fernández, J.C. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams. Sci. Rep. 2015, 5, 14318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, W.; Albright, B.J.; Bradley, P.A.; Vold, E.L.; Boettger, J.C.; Fernández, J.C. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter. Sci. Rep. 2016, 6, 29441. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.; Hörlein, R.; Kiefer, D.; Letzring, S.; Gautier, D.C.; Schramm, U.; Hübsch, C.; Öhm, R.; Albright, B.J.; Fernandez, J.C.; et al. Development of a high resolution and high dispersion Thomson parabola. Rev. Sci. Instrum. 2011, 82, 013306. [Google Scholar] [CrossRef]
- Schiwietz, G.; Grande, P.L. Improved charge-state formulas. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2001, 175–177, 125–131. [Google Scholar] [CrossRef]
- Betz, H.-D. Charge States and Charge-Changing Cross Sections of Fast Heavy Ions Penetrating Through Gaseous and Solid Media. Rev. Mod. Phys. 1972, 44, 465–539. [Google Scholar] [CrossRef]
- Ohuchi, H.; Yamadera, A. Dependence of fading patterns of photo-stimulated luminescence from imaging plates on radiation, energy, and image reader. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2002, 490, 573–582. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, J.; Song, J.; Palaniyappan, S.; Gautier, D.C.; Jeong, W.; Fernández, J.C.; Bang, W. Monte Carlo Study of Imaging Plate Response to Laser-Driven Aluminum Ion Beams. Appl. Sci. 2021, 11, 820. https://doi.org/10.3390/app11020820
Won J, Song J, Palaniyappan S, Gautier DC, Jeong W, Fernández JC, Bang W. Monte Carlo Study of Imaging Plate Response to Laser-Driven Aluminum Ion Beams. Applied Sciences. 2021; 11(2):820. https://doi.org/10.3390/app11020820
Chicago/Turabian StyleWon, Junho, Jaehyeon Song, Sasi Palaniyappan, Donald Cort Gautier, Wonhee Jeong, Juan Carlos Fernández, and Woosuk Bang. 2021. "Monte Carlo Study of Imaging Plate Response to Laser-Driven Aluminum Ion Beams" Applied Sciences 11, no. 2: 820. https://doi.org/10.3390/app11020820
APA StyleWon, J., Song, J., Palaniyappan, S., Gautier, D. C., Jeong, W., Fernández, J. C., & Bang, W. (2021). Monte Carlo Study of Imaging Plate Response to Laser-Driven Aluminum Ion Beams. Applied Sciences, 11(2), 820. https://doi.org/10.3390/app11020820