Assessing the Wind Energy Potential: A Case Study in Fort Hare, South Africa, Using Six Statistical Distribution Models
<p>Wind farms in South Africa and their capacity (MW) [<a href="#B11-applsci-15-02778" class="html-bibr">11</a>].</p> "> Figure 2
<p>Location of study area.</p> "> Figure 3
<p>Monthly average wind speed at 10m AGL for the University of Fort Hare.</p> "> Figure 4
<p>Comparison of statistical metrics for the six distributions.</p> "> Figure 5
<p>Diurnal variation in mean wind speed at the University of Fort Hare.</p> "> Figure 6
<p>Weibull distributions fitted to the observed data histogram for 2021–2023.</p> "> Figure 7
<p>Histograms with fitted distributions for seasonal wind speed data.</p> "> Figure 8
<p>Contributions of normalized KSS, AD, and WPDE to TE for each distribution in <a href="#applsci-15-02778-t013" class="html-table">Table 13</a>.</p> "> Figure 9
<p>Wind rose diagram for overall wind direction for the 2021–2023 period.</p> "> Figure 10
<p>Wind rose diagram for seasonal wind direction variations for the 2021–2023 period.</p> ">
Abstract
:1. Introduction
1.1. An Overview of Wind Energy Utilization in South Africa
1.2. Related Literature on Wind Potential Assessment
2. Materials and Methods
2.1. Site Description and Wind Speed Data
2.2. Statistical Probability Distribution Models
2.2.1. Two-Parameter Weibull (WEI) Distribution
2.2.2. Rayleigh (RAY) Distribution
SP | Expression |
---|---|
2.2.3. Two-Parameter Gamma (GAM) Distribution
2.2.4. Generalized Extreme Value (GEV) Distribution
SP | Expression |
---|---|
2.2.5. Two-Parameter Inverse Gaussian (IGA) Distribution
SP | Expression |
---|---|
2.2.6. Gumbel Distribution (GUM)
SP | Expression |
---|---|
is the Euler–Mascheroni constant = 0.577215 | |
where is the Riemann zeta function at 3 = 1.202057 | |
2.3. Methods for Estimating Distribution Parameters
Maximum Likelihood Method (MLM)
2.4. Goodness-of-Fit Test of Stastical Distributions
2.4.1. Kolmogorov–Smirnov (KSS) Test
2.4.2. Anderson–Darling (AD) Test
2.4.3. Wind Power Density Error (WPDE)
2.4.4. Total Error (TE)
2.5. Wind Direction Analysis
2.6. Wind Power Density Calculations
3. Results and Discussion
3.1. Descriptive Statistics of the Wind Speed
3.2. Analysis of Probability Distribution Functions
3.3. Analysis of the Wind Power Density
3.4. Wind Direction Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shambira, N.; Makaka, G.; Mukumba, P.; Lesala, M.; Roro, K.; Julies, J.; Tazvinga, H. Wind Resource Assessment in the Upper Blinkwater Area in the Province of Eastern Cape, South Africa. Int. J. Eng. Res. Technol. 2020, 9, 387–402. [Google Scholar]
- Ravanbach, B.; Kuhnel, M.; Hanke, B.; Von Maydell, K.; Van Dyk, E.E.; Vumbugwa, M.; Makaka, G.; Lesala, M.E.; Shambira, N.; Roro, K. Development of a Smart Monitoring and Evaluation Framework for Hybrid Renewable Mini-Grids. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies, EVER 2020, Monte-Carlo, Monaco, 10–12 September 2020. [Google Scholar]
- Lesala, M.E.; Shambira, N.; Makaka, G.; Mukumba, P. Exploring Energy Poverty among Off-Grid Households in the Upper Blinkwater Community, South Africa. Sustainability 2024, 16, 4627. [Google Scholar] [CrossRef]
- Shambira, N.; Makaka, G.; Mukumba, P. Velocity Augmentation Model for an Empty Concentrator-Diffuser-Augmented Wind Turbine and Optimisation of Geometrical Parameters Using Surface Response Methodology. Sustainability 2024, 16, 1707. [Google Scholar] [CrossRef]
- Lesala, M.E.; Shambira, N.; Makaka, G.; Mukumba, P. The Energy Poverty Status of Off-Grid Rural Households: A Case of the Upper Blinkwater Community in the Eastern Cape Province, South Africa. Energies 2023, 16, 7772. [Google Scholar] [CrossRef]
- Mukumba, P.; Chivanga, S.Y. An Overview of Renewable Energy Technologies in the Eastern Cape Province in South Africa and the Rural Households’ Energy Poverty Coping Strategies. Challenges 2023, 14, 19. [Google Scholar] [CrossRef]
- Tshimbiluni, H.C.; Tabakov, P.Y. Wind Energy Potential for Small-Scale WEC Systems in Port Elizabeth. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 342. [Google Scholar]
- Zhu, H.; Sueyoshi, M.; Hu, C.; Yoshida, S. A Study on a Floating Type Shrouded Wind Turbine: Design, Modeling and Analysis. Renew. Energy 2019, 134, 1099–1113. [Google Scholar] [CrossRef]
- Singh, U.; Rizwan, M.; Malik, H.; Márquez, F.P.G. Wind Energy Scenario, Success and Initiatives towards Renewable Energy in India—A Review. Energies 2022, 15, 2291. [Google Scholar] [CrossRef]
- Shambira, N.; Makaka, G.; Mukumba, P.; Shonhiwa, C. Comparative Analysis of Numerical Methods for Assessing Wind Potential in Fort Beaufort, South Africa, Using Two- Parameter Weibull Distribution Model. In Proceedings of the SAIP2023, the 67th Annual Conference of the South African Institute of Physics, Richards Bay, South Africa, 3–7 July 2023; Prinsloo, P.A., Ed.; South African Institute of Physics, University of Zululand: Richards Bay, South Africa, 2023; pp. 428–436. [Google Scholar]
- Akinbami, O.M.; Oke, S.R.; Bodunrin, M.O. The State of Renewable Energy Development in South Africa: An Overview. Alex. Eng. J. 2021, 60, 5077–5093. [Google Scholar] [CrossRef]
- Asamoah, J. Greening Electricity Generation in South Africa through Wind Energy. In Proceedings of the Greenhouse Gas Control Technologies—6th International Conference, Kyoto, Japan, 1–4 October 2002; Volume II, pp. 1349–1352. [Google Scholar]
- Merem, E.C.; Twumasi, Y.; Wesley, J.; Olagbegi, D.; Crisler, M.; Romorno, C.; Alsarari, M.; Isokpehi, P.; Hines, A.; Hirse, G.; et al. The Evaluation of Wind Energy Potentials in South Africa. Energy Power 2022, 12, 9–25. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Sedaghat, A.; Dehghan-Niri, A.A.; Kalantar, V. Wind Energy Feasibility Study for City of Shahrbabak in Iran. Renew. Sustain. Energy Rev. 2011, 15, 2545–2556. [Google Scholar] [CrossRef]
- Spiru, P.; Simona, P.L. Wind Energy Resource Assessment and Wind Turbine Selection Analysis for Sustainable Energy Production. Sci. Rep. 2024, 14, 10708. [Google Scholar] [CrossRef] [PubMed]
- McKenna, R.; Pfenninger, S.; Heinrichs, H.; Schmidt, J.; Staffell, I.; Bauer, C.; Gruber, K.; Hahmann, A.N.; Jansen, M.; Klingler, M.; et al. High-Resolution Large-Scale Onshore Wind Energy Assessments: A Review of Potential Definitions, Methodologies and Future Research Needs. Renew. Energy 2022, 182, 659–684. [Google Scholar] [CrossRef]
- Macingwane, Z.N. Wave Energy a New Energy Mix to Produce Green Hydrogen: A Potential Future Maritime Shipping Fuel: A Study on the Port of Ngqura, Southern Africa’s “Green Status Port”. Master’s Thesis, World Maritime University, Malmö, Sweden, 2021. [Google Scholar]
- Mukonza, C.; Nhamo, G. Wind Energy in South Africa: A Review of Policies, Institutions and Programmes. J. Energy S. Afr. 2018, 29, 21–28. [Google Scholar] [CrossRef]
- Gugliani, G.K.; Ley, C.; Nakhaei Rad, N.; Bekker, A. Comparison of Probability Distributions Used for Harnessing the Wind Energy Potential: A Case Study from India. Stoch. Environ. Res. Risk Assess. 2024, 38, 2213–2230. [Google Scholar] [CrossRef]
- Tizgui, I.; El Guezar, F.; Bouzahir, H.; Benaid, B. Wind Speed Distribution Modeling for Wind Power Estimation: Case of Agadir in Morocco. Wind Eng. 2019, 43, 190–200. [Google Scholar] [CrossRef]
- Wadi, M.; Elmasry, W. A Comparative Assessment of Five Different Distributions Based on Five Different Optimization Methods for Modeling Wind Speed Distribution. Gazi Univ. J. Sci. 2023, 36, 1096–1120. [Google Scholar] [CrossRef]
- Okakwu, I.K.; Olabode, O.E.; Akinyele, D.O.; Ajewole, T.O. Evaluation of Wind Speed Probability Distribution Model and Sensitivity Analysis of Wind Energy Conversion System in Nigeria. Iran. J. Electr. Electron. Eng. 2023, 19, 1–15. [Google Scholar]
- Esmaeili, L.; Naserpour, S.; Nadarajah, S. Wind Energy Potential Modeling in Northern Iran. Stoch. Environ. Res. Risk Assess. 2023, 37, 3205–3219. [Google Scholar] [CrossRef]
- Kassem, Y.; Gökçekuş, H.; Essayah, A.M.S. Wind Power Potential Assessment at Different Locations in Lebanon: Best–Fit Probability Distribution Model and Techno-Economic Feasibility. Eng. Technol. Appl. Sci. Res. 2023, 13, 10578–10587. [Google Scholar] [CrossRef]
- Masseran, N. Integrated Approach for the Determination of an Accurate Wind-Speed Distribution Model. Energy Convers. Manag. 2018, 173, 56–64. [Google Scholar] [CrossRef]
- Alayat, M.M.; Kassem, Y.; Camur, H. Assessment of Wind Energy Potential as a Power Generation Source: A Case Study of Eight Selected Locations in Northern Cyprus. Energies 2018, 11, 2697. [Google Scholar] [CrossRef]
- Wadi, M.; Elmasry, W.; Colak, I.; Jouda, M.; Kucuk, I. Utilizing Metaheuristics to Estimate Wind Energy Integration in Smart Grids with a Comparative Analysis of Ten Distributions. Electr. Power Components Syst. 2024, 1–36. [Google Scholar] [CrossRef]
- Filom, S.; Radfar, S.; Panahi, R.; Amini, E.; Neshat, M. Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model. Sustainability 2021, 13, 7702. [Google Scholar] [CrossRef]
- Nymphas, E.F.; Teliat, R.O. Evaluation of the Performance of Five Distribution Functions for Estimating Weibull Parameters for Wind Energy Potential in Nigeria. Sci. Afr. 2024, 23, e02037. [Google Scholar] [CrossRef]
- Akgül, F.G.; Şenoğlu, B. Comparison of Wind Speed Distributions: A Case Study for Aegean Coast of Turkey. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 2453–2470. [Google Scholar] [CrossRef]
- Hussin, N.H.; Yusof, F. Analysis of Wind Speed Characteristics Using Probability Distribution in Johor. Environ. Ecol. Res. 2022, 10, 95–106. [Google Scholar] [CrossRef]
- Natarajan, N.; Vasudevan, M.; Rehman, S. Evaluation of Suitability of Wind Speed Probability Distribution Models: A Case Study from Tamil Nadu, India. Environ. Sci. Pollut. Res. 2022, 29, 85855–85868. [Google Scholar] [CrossRef]
- Atasha, N.; Norrulashikin, S.M. Fitting of Statistical Distributions to Wind Speed Data in Malaysia. Eur. J. Sci. Res. 2021, 3, 73–81. [Google Scholar]
- Shonhiwa, C.; Makaka, G.; Mukumba, P.; Shambira, N. Investigation of Wind Power Potential in Mthatha, Eastern Cape Province, South Africa. Appl. Sci. 2023, 13, 12237. [Google Scholar] [CrossRef]
- Khan, A.; Shafi, A. Investigation of Seasonal and Annual Wind Speed Distribution of Tarnab Based on Weibull and Rayleigh Distribution Models. Indones. J. Earth Sci. 2024, 4, A1037. [Google Scholar] [CrossRef]
- Al-Mhairat, B.; Al-Quraan, A. Assessment of Wind Energy Resources in Jordan Using Different Optimization Techniques. Processes 2022, 10, 105. [Google Scholar] [CrossRef]
- Komolafe, C.A.; Fadare, D.A.; Oladeji, L.B.; Gbadamosi, A.A. Evaluation of Wind Energy Potential in Omu Aran, Nigeria Using Weibull and Rayleigh Models. Green Low-Carbon Econ. 2023, 2, 131–141. [Google Scholar] [CrossRef]
- Khan, M.A.; Zhang, Y.; Wang, J.; Wei, J.; Raza, M.A.; Ahmad, A.; Yuan, Y. Determination of Optimal Parametric Distribution and Technical Evaluation of Wind Resource Characteristics for Wind Power Potential at Jhimpir, Pakistan. IEEE Access 2021, 9, 70118–70141. [Google Scholar] [CrossRef]
- Ali, B.; Abbas, G.; Memon, A.; Mirsaeidi, S.; Koondhar, M.A.; Chandio, S.; Channa, I.A. A Comparative Study to Analyze Wind Potential of Different Wind Corridors. Energy Rep. 2023, 9, 1157–1170. [Google Scholar] [CrossRef]
- Saputra, H.; Sara, D.; Yanis, M. Weibull Distribution Analysis of Wind Power- Generating Potential on the Southwest Coast of Aceh, Indonesia. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2023; Volume 2613, p. 020013. [Google Scholar]
- Younis, A.; Elshiekh, H.; Osama, D.; Shaikh-eldeen, G.; Elamir, A.; Yassin, Y.; Omer, A.; Biraima, E. Wind Speed Forecast for Sudan Using the Two-Parameter Weibull Distribution: The Case of Khartoum City. Wind 2023, 3, 213–231. [Google Scholar] [CrossRef]
- Rehman, S.U.; Sadiq, N.; Tariq, I.; Khan, M.M.; Zahid, M.M.; Rajput, A.A.; Uddin, Z. A New Mathematical Technique and Its Python Program to Assess Wind Potential. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 61. [Google Scholar] [CrossRef]
- Aries, N.; Boudia, S.M.; Ounis, H. Deep Assessment of Wind Speed Distribution Models: A Case Study of Four Sites in Algeria. Energy Convers. Manag. 2018, 155, 78–90. [Google Scholar] [CrossRef]
- Kolesnik, S.; Rabinovitz, Y.; Byalsky, M.; Yahalom, A.; Kuperman, A. Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production. Energies 2023, 16, 3892. [Google Scholar] [CrossRef]
- Lins, D.R.; Guedes, K.S.; Pitombeira-Neto, A.R.; Rocha, P.A.C.; de Andrade, C.F. Comparison of the Performance of Different Wind Speed Distribution Models Applied to Onshore and Offshore Wind Speed Data in the Northeast Brazil. Energy 2023, 278, 127787. [Google Scholar] [CrossRef]
- Khan, T.; Ahmad, I.; Wang, Y.; Salam, M.; Shahzadi, A.; Batool, M. Comparison Approach for Wind Resource Assessment to Determine the Most Precise Approach. Energy Environ. 2022, 35, 1315–1338. [Google Scholar] [CrossRef]
- Phoophiwfa, T.; Laosuwan, T.; Volodin, A.; Papukdee, N.; Suraphee, S.; Busababodhin, P. Adaptive Parameter Estimation of the Generalized Extreme Value Distribution Using Artificial Neural Network Approach. Atmosphere 2023, 14, 1197. [Google Scholar] [CrossRef]
- Alavi, O.; Mohammadi, K.; Mostafaeipour, A. Evaluating the Suitability of Wind Speed Probability Distribution Models: A Case of Study of East and Southeast Parts of Iran. Energy Convers. Manag. 2016, 119, 101–108. [Google Scholar] [CrossRef]
- Ahmad, Z.; Mahmoudi, E.; Alizadeh, M.; Roozegar, R.; Afify, A.Z. The Exponential T-X Family of Distributions: Properties and an Application to Insurance Data. J. Math. 2021, 2021, 3058170. [Google Scholar] [CrossRef]
- Hellalbi, M.A.; Bouabdallah, A. Elaboration of a Generalized Mixed Model for the Wind Speed Distribution and an Assessment of Wind Energy in Algerian Coastal Regions and at the Capes. Energy Convers. Manag. 2024, 305, 118265. [Google Scholar] [CrossRef]
- He, J.Y.; Chan, P.W.; Li, Q.S.; Huang, T.; Yim, S.H.L. Assessment of Urban Wind Energy Resource in Hong Kong Based on Multi-Instrument Observations. Renew. Sustain. Energy Rev. 2024, 191, 114123. [Google Scholar] [CrossRef]
- Kantar, Y.M.; Usta, I.; Arik, I.; Yenilmez, I. Wind Speed Analysis Using the Extended Generalized Lindley Distribution. Renew. Energy 2018, 118, 1024–1030. [Google Scholar] [CrossRef]
- Ali, S.; Park, H.; Noon, A.A.; Sharif, A.; Lee, D. Accuracy Testing of Different Methods for Estimating Weibull Parameters of Wind Energy at Various Heights above Sea Level. Energies 2024, 17, 2173. [Google Scholar] [CrossRef]
- Allouhi, A.; Zamzoum, O.; Islam, M.R.; Saidur, R.; Kousksou, T.; Jamil, A.; Derouich, A. Evaluation of Wind Energy Potential in Morocco’s Coastal Regions. Renew. Sustain. Energy Rev. 2017, 72, 311–324. [Google Scholar] [CrossRef]
- Tahir, Z.U.R.; Kanwal, A.; Afzal, S.; Ali, S.; Hayat, N.; Abdullah, M.; Bin Saeed, U. Wind Energy Potential and Economic Assessment of Southeast of Pakistan. Int. J. Green Energy 2021, 18, 1–16. [Google Scholar] [CrossRef]
- Hussain, I.; Haider, A.; Ullah, Z.; Russo, M.; Casolino, G.M.; Azeem, B. Comparative Analysis of Eight Numerical Methods Using Weibull Distribution to Estimate Wind Power Density for Coastal Areas in Pakistan. Energies 2023, 16, 1515. [Google Scholar] [CrossRef]
- Gul, M.; Tai, N.; Huang, W.; Nadeem, M.H.; Yu, M. Evaluation of Wind Energy Potential Using an Optimum Approach Based on Maximum Distance Metric. Sustainability 2020, 12, 1999. [Google Scholar] [CrossRef]
- El Kihel, B.; El Kadri Elyamani, N.E.; Chillali, A. Evaluation of Wind Energy Utilisation and Analysis of Turbines in the Fes Meknes Region, Kingdom of Morocco. E3S Web Conf. 2023, 469, 00025. [Google Scholar] [CrossRef]
- Patidar, H.; Shende, V.; Baredar, P.; Soni, A. Comparative Evaluation of Optimal Weibull Parameters for Wind Power Predictions Using Numerical and Metaheuristic Optimization Methods for Different Indian Terrains. Environ. Sci. Pollut. Res. 2023, 30, 30874–30891. [Google Scholar] [CrossRef] [PubMed]
- Amrani, F.Z.B.; Marih, S.; Missoum, I.; Boutlilis, F.; Bekkouche, B. Site Suitability Analysis of Wind Energy Resources in Different Regions of Algeria’s Southwestern Highland. Int. J. Renew. Energy Dev. 2024, 13, 62–70. [Google Scholar] [CrossRef]
- Kassem, Y.; Camur, H.; Mosbah, A.A.S. Wind Resource Evaluation in Libya: A Comparative Study of Ten Numerical Methods for the Estimation of Weibull Parameters Using Multiple Datasets. Eng. Technol. Appl. Sci. Res. 2024, 14, 13388–13397. [Google Scholar] [CrossRef]
- Irwanto, M.; Gomesh, N.; Mamat, M.R.; Yusoff, Y.M. Assessment of Wind Power Generation Potential in Perlis, Malaysia. Renew. Sustain. Energy Rev. 2014, 38, 296–308. [Google Scholar] [CrossRef]
- NREL. National Renewable Energy Laboratory—Wind. Available online: http://www.nrel.gov (accessed on 27 February 2025).
- Pobočíková, I.; Michalková, M.; Sedliačková, Z.; Jurášová, D. Modelling the Wind Speed Using Exponentiated Weibull Distribution: Case Study of Poprad-Tatry, Slovakia. Appl. Sci. 2023, 13, 4031. [Google Scholar] [CrossRef]
- Shonhiwa, C.; Makaka, G.; Mukumba, P.; Shambira, N. Determination of Optimal Geometry for an Empty Concentrator Augmented Wind Turbine. Phys. Sci. Int. J. 2023, 27, 75–90. [Google Scholar] [CrossRef]
Distribution | Wind Power Density for Each Distribution |
---|---|
WEI | |
RAY | |
GAM | |
GEV | |
IGA | |
GUM | where is the Riemann zeta function at 3 = 1.202057 |
Wind Power Class | Mean Wind Speed (m/s) | Wind Power Density (W/m2) |
---|---|---|
1 (Poor) | 0–4.4 | 0–100 |
2 (Marginal) | 4.4–5.1 | 100–500 |
3 (Moderate) | 5.1–5.6 | 200–250 |
4 (Good) | 5.6–6.0 | 200–250 |
5 (Excellent) | 6.0–6.4 | 250–300 |
6 (Excellent) | 6.4–7.0 | 300–400 |
7 (Excellent) | 7.0–9.4 | 400–1000 |
Month | N | R | CoV(%) | S | K | Min | Max | |||
---|---|---|---|---|---|---|---|---|---|---|
Jan | 2232 | 9.5 | 2.756 | 3.04 | 1.74 | 63 | 0.59 | −0.04 | 0 | 9.5 |
Feb | 2016 | 8.3 | 2.481 | 3.12 | 1.77 | 71 | 0.71 | 0.09 | 0 | 8.3 |
Mar | 2232 | 9.5 | 2.456 | 2.94 | 1.72 | 70 | 0.87 | 0.63 | 0 | 9.5 |
Apr | 2160 | 9.6 | 2.234 | 2.48 | 1.57 | 70 | 1.12 | 1.61 | 0 | 9.6 |
May | 2232 | 11.5 | 2.119 | 2.44 | 1.56 | 74 | 1.52 | 3.69 | 0 | 11.5 |
Jun | 2160 | 11.1 | 2.653 | 3.57 | 1.89 | 71 | 1.39 | 2.09 | 0 | 11.1 |
Jul | 2232 | 13.8 | 2.848 | 4.83 | 2.20 | 77 | 1.58 | 2.61 | 0 | 13.8 |
Aug | 2232 | 12.0 | 2.710 | 3.97 | 1.99 | 74 | 1.36 | 2.10 | 0 | 12.0 |
Sept | 2160 | 10.6 | 2.872 | 3.67 | 1.92 | 67 | 1.15 | 1.48 | 0 | 10.6 |
Oct | 2232 | 10.9 | 2.762 | 3.61 | 1.90 | 69 | 0.76 | 0.43 | 0 | 10.9 |
Nov | 2160 | 9.4 | 2.669 | 3.32 | 1.82 | 68 | 0.63 | 0.05 | 0 | 9.4 |
Dec | 2232 | 10.2 | 2.670 | 3.46 | 1.86 | 70 | 0.74 | 0.32 | 0 | 10.2 |
Annual | 26,280 | 13.8 | 2.603 | 3.42 | 1.85 | 71 | 1.12 | 1.56 | 0 | 13.8 |
Season | N | R | CoV | S | K | Min | Max | |||
---|---|---|---|---|---|---|---|---|---|---|
Summer | 6480 | 10.2 | 2.641 | 3.22 | 1.79 | 0.68 | 0.68 | 0.14 | 0 | 10.2 |
Autumn | 6624 | 11.5 | 2.270 | 2.64 | 1.62 | 0.72 | 1.15 | 1.77 | 0 | 11.5 |
Winter | 6624 | 13.8 | 2.738 | 4.14 | 2.03 | 0.74 | 1.48 | 2.47 | 0 | 13.8 |
Spring | 6552 | 10.9 | 2.768 | 3.54 | 1.88 | 0.68 | 0.86 | 0.74 | 0 | 10.9 |
Season | Distribution | Parameters |
---|---|---|
Summer | GAM | = 3.87196207204796 = 0.77507456427451 |
GEV | k = −0.056960272557 σ = 1.4972487444338 μ = 1.848955588234 | |
GUM | = 1.4709535966597 μ = 1.8035050553625 | |
IGA | λ = 9.9954369211484 μ = 3.0010579509349 | |
RAY | σ = 2.4065996370416 | |
WEI | = 2.0109418096457 = 3.4078140596928 | |
Autumn | GAM | = 3.9885106615485 = 0.6490508105913 |
GEV | k = 0.0092984086461 σ = 1.2467280783248 μ = 1.5389917873736 | |
GUM | = 1.2502151454179 μ = 1.5383209018954 | |
IGA | λ = 9.6627572702393 μ = 2.5888085399449 | |
RAY | σ = 2.1079513803782 | |
WEI | α = 1.9027909814916 = 2.9407369404527 | |
Winter | GAM | = 3.16024334329771 = 0.9410806487361 |
GEV | k = 0.0992291628189 σ = 1.3671470841441 μ = 1.7981664820307 | |
GUM | = 1.4179032191099 μ = 1.8725161930694 | |
IGA | λ = 8.5461048436524 μ = 2.9740444076619 | |
RAY | σ = 2.5135424855173 | |
WEI | = 1.6904507406495 = 3.3661889532314 | |
Spring | GAM | = 3.7247001946047 = 0.8304135151953 |
GEV | k = -0.023269024722 σ = 1.5140912691744 μ = 1.9235752478768 | |
GUM | = 1.5031457206771 μ = 1.9046835216656 | |
IGA | λ = 9.9870434393496 μ = 3.0930411052362 | |
RAY | σ = 2.5016406862587 | |
WEI | = 1.9406039977847 = 3.5111781389429 | |
Overall | GAM | = 3.5927533461899 = 0.8113562688486 |
GEV | k = 0.0226298979109 σ = 1.4040697074707 μ = 1.7591867818483 | |
GUM | = 1.4442754819722 μ = 1.7706426185743 | |
IGA | λ = 9.3517654063929 μ = 2.9150050416826 | |
RAY | σ = 2.3898368796538 | |
WEI | = 1.8510621376527 = 3.3081271593922 |
Distribution | KSS | Rank | AD | Rank | WPDE | Rank | TE | Overall Rank | |
---|---|---|---|---|---|---|---|---|---|
Summer | GAM | 0.160 | 6 | 1304.12 | 5 | 0.078 | 2 | 0.752 | 5 |
GEV | 0.083 | 1 | 49.31 | 1 | 0.012 | 1 | 0.000 | 1 | |
GUM | 0.087 | 2 | 53.63 | 2 | 0.264 | 6 | 0.351 | 2 | |
IGA | 0.149 | 3 | 1310.79 | 6 | 0.226 | 5 | 0.901 | 6 | |
RAY | 0.151 | 4 | 1250.36 | 3 | 0.095 | 4 | 0.723 | 3 | |
WEI | 0.153 | 5 | 1258.62 | 4 | 0.093 | 3 | 0.732 | 4 | |
Autumn | GAM | 0.192 | 5 | 1404.10 | 5 | 0.059 | 5 | 0.650 | 5 |
GEV | 0.123 | 1 | 108.60 | 2 | 0.000 | 1 | 0.000 | 1 | |
GUM | 0.123 | 2 | 107.55 | 1 | 0.367 | 6 | 0.336 | 2 | |
IGA | 0.175 | 3 | 1389.97 | 4 | 0.012 | 2 | 0.537 | 3 | |
RAY | 0.207 | 6 | 1445.22 | 6 | 0.017 | 3 | 0.682 | 6 | |
WEI | 0.189 | 4 | 1357.59 | 3 | 0.032 | 4 | 0.601 | 4 | |
Winter | GAM | 0.182 | 5 | 1038.83 | 5 | 0.156 | 5 | 0.526 | 5 |
GEV | 0.116 | 2 | 101.15 | 1 | 0.054 | 1 | 0.022 | 1 | |
GUM | 0.107 | 1 | 116.44 | 2 | 0.468 | 6 | 0.337 | 2 | |
IGA | 0.163 | 3 | 1000.61 | 3 | 0.055 | 2 | 0.385 | 3 | |
RAY | 0.240 | 6 | 1329.52 | 6 | 0.109 | 4 | 0.711 | 6 | |
WEI | 0.173 | 4 | 1012.23 | 4 | 0.065 | 3 | 0.422 | 4 | |
Spring | GAM | 0.151 | 6 | 1184.74 | 4 | 0.024 | 2 | 0.674 | 4 |
GEV | 0.079 | 1 | 45.54 | 1 | 0.017 | 1 | 0.000 | 1 | |
GUM | 0.081 | 2 | 46.84 | 2 | 0.296 | 6 | 0.343 | 2 | |
IGA | 0.145 | 4 | 1187.60 | 6 | 0.164 | 5 | 0.814 | 6 | |
RAY | 0.150 | 5 | 1186.30 | 5 | 0.045 | 3 | 0.695 | 5 | |
WEI | 0.139 | 3 | 1142.25 | 3 | 0.055 | 4 | 0.642 | 3 |
Distribution | KSS | Rank | AD | Rank | WPDE | Rank | TE | Overall Rank |
---|---|---|---|---|---|---|---|---|
GAM | 0.1699 | 5 | 4910.418 | 5 | 0.042 | 4 | 0.6005 | 5 |
GEV | 0.0995 | 1 | 276.9513 | 2 | 0.024 | 3 | 0.0202 | 1 |
GUM | 0.1012 | 2 | 272.8823 | 1 | 0.367 | 6 | 0.3394 | 2 |
IGA | 0.1526 | 3 | 4868.478 | 4 | 0.072 | 5 | 0.5622 | 4 |
RAY | 0.1917 | 6 | 5259.141 | 6 | 0.003 | 1 | 0.6667 | 6 |
WEI | 0.1622 | 4 | 4735.565 | 3 | 0.022 | 2 | 0.5421 | 3 |
Distribution | WPD for Distribution (W/m2) | Wind Power Class |
---|---|---|
GAM | 30.19 | 1 (Poor) |
GEV | 32.29 | 1 (Poor) |
GUM | 19.95 | 1 (Poor) |
IGA | 33.78 | 1 (Poor) |
RAY | 31.43 | 1 (Poor) |
WEI | 32.20 | 1 (Poor) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shambira, N.; Mukumba, P.; Makaka, G. Assessing the Wind Energy Potential: A Case Study in Fort Hare, South Africa, Using Six Statistical Distribution Models. Appl. Sci. 2025, 15, 2778. https://doi.org/10.3390/app15052778
Shambira N, Mukumba P, Makaka G. Assessing the Wind Energy Potential: A Case Study in Fort Hare, South Africa, Using Six Statistical Distribution Models. Applied Sciences. 2025; 15(5):2778. https://doi.org/10.3390/app15052778
Chicago/Turabian StyleShambira, Ngwarai, Patrick Mukumba, and Golden Makaka. 2025. "Assessing the Wind Energy Potential: A Case Study in Fort Hare, South Africa, Using Six Statistical Distribution Models" Applied Sciences 15, no. 5: 2778. https://doi.org/10.3390/app15052778
APA StyleShambira, N., Mukumba, P., & Makaka, G. (2025). Assessing the Wind Energy Potential: A Case Study in Fort Hare, South Africa, Using Six Statistical Distribution Models. Applied Sciences, 15(5), 2778. https://doi.org/10.3390/app15052778