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Abstract: Wind energy is a clean, inexhaustible resource with significant potential to re-
duce coal dependence, lower carbon emissions, and provide sustainable energy in the
off-grid areas of South Africa’s Eastern Cape. However, due to wind variability, site-specific
assessments are crucial for accurate resource estimation and investment risk mitigation.
This study evaluates the wind energy potential at Fort Hare using six statistical distribu-
tion models: Weibull (WEI), Rayleigh (RAY), gamma (GAM), generalized extreme value
(GEV), inverse Gaussian (IGA), and Gumbel (GUM). The analysis is based on three years
(2021–2023) of hourly wind speed data at 10 m above ground level from the Fort Beau-
fort weather station. Parameters were estimated using the maximum likelihood method
(MLM), and model performance was ranked using the total error (TE) metric. The results
indicate an average wind speed of 2.60 m/s with a standard deviation of 1.85 m/s. The
GEV distribution was the best fit (TE = 0.020), while the widely used Weibull distribution
ranked third (TE = 0.5421), highlighting its limitations in capturing wind variability and
extremes. This study underscores the importance of testing multiple models for accurate
wind characterization and suggests improving the performance of the Weibull model
through advanced parameter optimization, such as artificial intelligence. The wind power
density was 31.52 W/m2, classifying the site as poor for large-scale electricity generation.
The prevailing wind direction was southeast. Recommendations include deploying small-
scale turbines and exploring augmentative systems to optimize wind energy utilization in
the region.

Keywords: Weibull distribution; wind speed; wind direction; wind energy; wind power
density

1. Introduction
South Africa faces significant energy challenges, with approximately 3.5 million rural

households lacking access to electricity and relying on traditional biomass due to financial
constraints or the absence of grid connections [1–4]. Limpopo Province has the highest
electricity access rate at 98.55%, while the Eastern Cape lags at 82% [5]. These issues are
compounded by South Africa’s national power utility, Eskom, which faces a USD 24 billion
debt, aging infrastructure, and corruption. These challenges hinder electricity supply and
result in frequent load shedding as energy demand continues to rise [6]. Wind energy
presents a viable solution, with the South African wind energy association estimating it
could meet 62% of the country’s energy needs [7]. Additionally, the Renewable Energy In-
dependent Power Producer Procurement Programme (REIPPPP) reported a 42% reduction
in wind energy production costs, bringing it down to 74 cents per kWh [8].
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Global wind energy capacity grew from 743 GW in 2020 to 837 GW in 2021, with China
and the United States leading at 338 GW and 134 GW, respectively. According to the Global
Wind Energy Council, this expansion reduced carbon dioxide emissions by over 637 million
tonnes, contributing significantly to climate change mitigation [9]. These reductions are
crucial in addressing extreme weather events, such as the heatwaves experienced in Cape
Town and cyclones that have impacted Mozambique and Zimbabwe [10].

1.1. An Overview of Wind Energy Utilization in South Africa

Wind energy, one of the oldest energy sources, dates back to ancient times when it
was primarily used for grinding grain, pumping water for drinking, and irrigation [1].
In the 1990s, around 30,000 windmills were installed in South Africa to provide drinking
water and support agricultural activities [11,12]. Despite having significant wind energy
potential, particularly in the Eastern Cape, Western Cape, Northern Cape, and KwaZulu-
Natal, South Africa has historically prioritized cheaper coal over wind energy for electricity
generation [12,13]. Out of 410,000 km2 of land exposed to wind speeds over 6.5 m/s, only
1174 km2 is designated for wind farms [13]. Coastal regions have an annual mean wind
speed of 6 m/s at a height of 10 m above ground level, with an estimated high wind
potential of 60 TWh annually [14]. However, wind potential varies with time and location,
necessitating site-specific wind resource assessments to reduce investment risks by selecting
suitable wind turbines [1,15]. Statistical analysis of wind characteristics is also crucial for
optimizing wind energy utilization (McKenna et al., 2021). As a leading country in wind
energy technology in Africa, South Africa attracted ZAR 209.7 billion in investments for
wind energy projects in 2020. The wind energy sector has created 2723 jobs, commercialized
22 independent power producers, and reduced carbon dioxide emissions by 6.4 million
tonnes [16]. Since the first large-scale wind farm was installed in 2014, South Africa now
has 33 wind farms, with 22 fully operational and the rest under construction [17]. Figure 1
depicts some of the wind farms and their capacity in South Africa.
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As depicted in Figure 1, Jeffreys Bay in the Eastern Cape Province is one of South
Africa’s largest wind farms, covering 3700 hectares. However, Amakhala Emoyeni and
Cookhouse, also in the Eastern Cape, have higher capacities at 139 MW and 138.6 MW,
respectively. Jeffreys Bay’s proximity to the national grid, flat topography, and minimal
environmental impacts make it an ideal wind resource location. In the Northern Cape,
the Khobab, De Aar 2 North, and Loeriesfontein 2 wind farms have capacities of 140 MW,
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139 MW, and 138 MW, respectively. The Noupoort wind farm, covering 7500 hectares
with an 80 MW capacity, benefits from excellent wind conditions and proximity to the
national grid and roads, facilitating easy transport and construction of wind turbines [16].
The Northern Cape leads in wind farm investment costs, with De Aar 2 North costing
ZAR 5 billion and both Loeriesfontein 2 and Khobab wind farms costing ZAR 3.5 billion
each. In the Eastern Cape, Amakhala Emoyeni’s investment cost is ZAR 3.94 billion, while
Jeffreys Bay and Cookhouse are valued at ZAR 2.9 billion and ZAR 2.4 billion, respectively.
In the Western Cape, the Gouda wind farm’s investment cost is ZAR 2.7 billion. These
investments highlight South Africa’s commitment to integrating wind energy into its
energy mix, demonstrating its leadership in wind energy technology in Africa. Between
2011 and 2015, wind energy prices decreased by 20% to ZAR 0.62 per kWh, making them
ZAR 0.41 cheaper than coal prices [13,17]. By 2030, it is anticipated that 11,800 MW to
12,500 MW of South Africa’s power will come from wind energy [18].

1.2. Related Literature on Wind Potential Assessment

Wind data are often treated as a continuous random variable, requiring continuous
probability distributions for modeling predictable wind patterns [19]. Among these, the
two-parameter Weibull (WEI) distribution is widely used, though its performance varies
depending on location and wind regimes [20,21]. Studies often explore alternative distri-
butions to determine the most suitable model for specific regions. For instance, ref. [22]
investigated the wind potential across nine Nigerian locations, identifying the Rayleigh
(RAY) distribution as the best fit for six sites, while the log-normal (LGN) distribution
was superior for Maiduguri, Abuja, and Akure. Similarly, ref. [23] analyzed wind speed
characteristics using both commonly used distributions (Generalized Rayleigh (GR), GAM,
GUM, Exponentiated Weibull (EW)) and more recent ones (Exponentiated Half-Logistic
(EHL), Exponentiated Half-Normal (EHN), Skew Logistic (SL), and Generalized Extreme
Value (GEV)) at seven meteorological stations in northern Iran. The study found that the
EHN distribution provided the best overall fit.

A study conducted by [24] assessed 44 wind speed distribution models in Lebanon,
finding the Wakeby (WAK) and Beta distributions to be generally the best. The WAK
distribution provided the best fit for Younine, Birket Aarous, Mqaybleh, and Hekr El
Dahri, while the Beta distribution was the best fit for Khiam, Iskandarounah, Khartoum,
and Qaraoun. Gumbel Min and generalized logistic were best for Ain ed Dabaa and Ras
Ouadi Ed Darje, respectively. Likewise, ref. [25] assessed various wind speed distribution
models in Malaysia using goodness-of-fit criteria like the coefficient of determination
(COD), Kolmogorov–Smirnov statistic (KSS), Akaike’s information criterion (AIC), and
skewness/kurtosis deviation (SKDEV). Eight distributions, including LGN, WEI, RAY,
exponential, Burr, GAM, inverse Gaussian (IGA), and inverse gamma, were tested on data
from Kuantan and Balok Baru. The GAM distribution was found to be the best fit for wind
speed data at both locations.

Ref. [26] evaluated the wind power potential at eight sites in northern Cyprus using
wind data collected from Lefkoşa. Their analysis revealed that the GEV distribution pro-
vided the best fit for Lefkoşa, Ercan, Girne, Güzelyurt, and Dipkarpaz. In contrast, the log-
logistic (LL), WEI, and GAM distributions were more accurate for Gazimağusa, YeniBoğaz-
içi, and Salamis, respectively. The RAY distribution, however, performed poorly across
all sites. The study reported wind power densities ranging from 38.76 to 134.29 W/m2,
suggesting limited potential for large-scale energy production. Nevertheless, the 5 kW
Aeolos-V2 wind turbine was identified as suitable for meeting household energy needs in
the region. Also, ref. [27] conducted wind potential assessment in the Marmara Region,
Turkey, using ten distributions. The GAM, Burr, and WEI distributions were found to be
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superior, with metaheuristic methods enhancing parameter estimation accuracy. Ref. [28]
evaluated onshore wind potential in seven southern Iranian coastal cities to reduce fossil
fuel reliance. They analyzed six probability distributions, finding the WEI suitable for
one station, GEV for three, and GAM for the rest. The study recommended the GAM
distribution for its simplicity and effectiveness in assessing the region’s wind energy poten-
tial. These studies from different countries confirm that the performance of wind speed
distributions is site-specific.

Furthermore, the research presented in [19] reviewed fourteen probability distributions
for wind speed data at seventeen Indian locations. The study found that the WEI distribu-
tion often struggled with heterogeneous data. The truncated normal–gamma distribution
fit best at four locations, while the GAM distribution was most suitable at six locations
among the two-parameter distributions. In contrast, the study by [29] assessed wind speed
characterization at twelve Nigerian stations, comparing five distribution methods. Using
the KSS, root mean square error (RMS), and chi-square (CHI) tests, they found that the
Mixture Weibull method performed best overall, closely followed by LGN. The WEI and
GAM distributions were less accurate, emphasizing the need to fit multiple distributions to
find the most appropriate one, as the accuracy of a distribution in describing wind speed is
site-specific.

In a study conducted by [30], along Turkey’s Aegean coast, various distributions,
including RAY, inverse Weibull (IW), Burr type III, extreme value (EV), GAM, inverse
gamma (IG), Marshall–Olkin extended Lindley (MOEL), GEV, and EW, were analyzed
for wind speed modeling. The EW distribution provided the best overall fit, followed by
the GEV distribution. The WEI, EV, GAM, and MOEL distributions performed well in
cases where skewness was less than one and kurtosis was below four. In contrast, the Burr
type III, IW, and IG distributions were more effective for data with higher skewness and
kurtosis values. RAY had the worst performance. Also, ref. [31] analyzed ten years of wind
speed data from four stations in Johor, Malaysia, using the GAM, GEV, LGN, RAY, and
WEI distributions. The GEV distribution provided the best fit for the Senai, Mersing, and
Batu Pahat stations, while the GAM distribution was most suitable for Kluang.

In another study, ref. [32] assessed wind speed at ten sites in Tamil Nadu, India, using
39 years of historical data. They utilized nine distribution models, including exponen-
tial, GAM, GEV, IG, Kumaraswamy, LL, LGN, Nakagami, and WEI, to evaluate the wind
characteristics. The study found that the GEV distribution was the most suitable for most
stations, with Kumaraswamy also performing well, particularly for negatively skewed data.
This highlighted the need to select different distributions based on varying topographical
conditions. Similarly, ref. [33] evaluated wind speed at the Mersing station in Malaysia,
comparing the GAM, GEV, LGN, RAY, and WEI distributions using the maximum likeli-
hood method (MLM). Consistent with the findings of [32], the GEV distribution emerged as
the best fit in this study, underscoring GEV’s robustness in diverse geographical contexts.

In South Africa, ref. [34] assessed the wind energy potential in Mthatha, in Eastern
Cape Province, using two-parameter and three-parameter Weibull distribution models.
Their study utilized wind data collected at a 10 m height above ground level from 2018 to
2023. The analysis revealed low average wind speeds of 3.30 m/s and a wind power
density of approximately 48.48 W/m2. These findings indicate that the area may not
be ideal for large-scale wind energy projects but is suitable for standalone applications.
The prevailing wind directions were predominantly from the south and east–southeast.
Similarly, ref. [10] evaluated the wind potential of Fort Beaufort, South Africa, using the
two-parameter Weibull distribution. They applied eight numerical methods to determine
the Weibull scale and shape parameters based on five-and-a-half years of hourly wind data.
The study concluded that Fort Beaufort is suitable for small-scale wind energy projects
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with prevailing southeast winds. The authors also recommended the use of augmented
wind turbines incorporating concentrators and diffusers to improve efficiency in areas with
low wind speeds.

The WEI distribution has been shown to be highly effective in several studies. For
example, ref. [20] investigated the wind speed distribution in Agadir, Morocco, comparing
the WEI, RAY, GAM, and LGN distributions. Their results, validated by goodness-of-fit
tests, identified the WEI distribution as the most accurate model for estimating the annual
wind power density. Consequently, they recommended the WEI distribution for wind
energy assessments in the region. Similarly, ref. [35] analyzed wind speed data from Tarnab,
Peshawar (2004–2023) using the WEI and RAY distributions. Their findings revealed that
the WEI distribution closely matched the observed data, further affirming its superiority
for wind energy analysis.

In Jordan [36], the wind energy potential across nine locations was assessed using
WEI, RAY, and GAM distributions. Among the sites, King Hussein Airport exhibited the
highest wind power density, with the WEI distribution again providing the best fit. Ref. [37]
evaluated the wind energy potential in Omu Aran, Nigeria, over five years using the WEI
and RAY distributions. Their analysis reported a mean yearly wind speed of 3.964 m/s,
categorizing the location in wind power class 1. The WEI distribution demonstrated
strong performance, making it suitable for preliminary wind power plant design in Kwara
State. This study further highlighted the reliability of the WEI distribution for wind
energy assessments.

Studies in Pakistan by [38,39] demonstrated the reliability of the WEI distribution in
wind energy assessments. Ref. [38] assessed the wind energy potential in Jhimpir, Sindh,
Pakistan, using eight probability distribution functions: WEI, RAY, GUM, LGN, Logistic
(LOG), GAM, generalized Lindley (GL), and Cauchy distributions (CD). Based on 3 years
and 6 months of wind speed data, their analysis identified the WEI and RAY distributions
as the best-fitting models, with the WEI distribution showing slightly better performance.
Wind power density estimates ranged from 84.67 to 698.65 W/m2, indicating that the site is
suitable for wind power production. The predominant wind directions were from the east
and southeast. Similarly, ref. [39] assessed the wind power potential in Pakistan’s Sindh,
Balochistan, and Khyber Pakhtunkhwa Provinces, utilizing the WEI distribution. On the
other hand, ref. [40] assessed the wind energy potential in southwestern Aceh coastal areas,
Indonesia, using WEI and MLM. The wind power densities obtained ranged from 4590 to
26,040 W/m2, classifying the site as low-class for wind power generation.

Most studies assessing the wind potential in the Eastern Cape Region of South Africa
have predominantly relied on the two-parameter Weibull distribution. There has been
limited exploration of other distributions. When alternatives have been considered, they
have typically focused only on fitting without leveraging third-moment statistical properties
to evaluate wind power densities or obtaining additional statistical measures such as mean,
variance, skewness, and kurtosis from the determined distribution parameters. This study
seeks to address this gap by applying multiple distributions, such as the Weibull (WEI),
Rayleigh (RAY), gamma (GAM), generalized extreme value (GEV), inverse Gaussian (IGA),
and Gumbel (GUM) methods, to determine the most suitable distribution for the location
and to assess the statistical properties and wind power density of the area.

Section 2 details the materials and methods used in this research, including a descrip-
tion of the site, its location, the source of the wind data, and an overview of the distribution
models and numerical methods for parameter estimation. It also covers the test statistics
used for the goodness-of-fit analysis. Section 3 presents and discusses the main results of
the study, while Section 4 concludes with a summary of the findings and recommendations.
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2. Materials and Methods
2.1. Site Description and Wind Speed Data

This study utilized three years of hourly average wind speed data from January 2021
to December 2023, collected from the Fort Beaufort weather station located at a latitude of
−32.7880, a longitude of 26.6290, and an altitude of 455 m in the Eastern Cape Province,
South Africa. The wind speed data, recorded at an anemometer height of 10 m above
ground level, were sourced from the South African Weather Service. Figure 2 presents a
geographical map of the study location.
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2.2. Statistical Probability Distribution Models

Wind speed profile characterization is crucial in assessing wind availability at a partic-
ular location [21]. Six different distributions are introduced to characterize the distribution
of wind speeds. A brief explanation of these distributions is provided below. The other sta-
tistical properties (SPs) of each distribution are reported in Tables 1–6, namely, mean wind
speed (vdist), variance (σ2

dist), third moment (µ 3), skewness (Sdist), and kurtosis (K dist).

2.2.1. Two-Parameter Weibull (WEI) Distribution

The probability density function (PDF) fWEI(x) and the cumulative distribution func-
tion (CDF) FWEI(x) for the WEI distribution are defined as follows [41,42]:

fWEI(x) =
α

βα
xα−1e(−( x

β )
α), FWEI(x) = 1 − e(−( x

β )
α) (1)

for x > 0, α > 0, β > 0, where α is the dimensionless shape parameter, and β is the scale
parameter in the units of the wind speed. Table 1 summarizes the statistical properties (SPs)
of the WEI distribution.
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Table 1. Statistical properties of the WEI distribution [20,43].

SP Expression

vdist βΓ
(
1 + α−1)

σ2
dist β2

[
Γ
(

1 + 2α−1
)
− Γ2(1 + α−1)]

µ3 β3Γ
(

1 + 3α−1
)

Sdist
Γ(1+3α−1)−3Γ(1+2α−1)Γ(1+α−1)+2Γ3(1+α−1)

[Γ(1+2α−1)−Γ2(1+α−1)]
3/2

Kdist
Γ(1+ 4

α )−4Γ(1+ 3
α )Γ(1+ 1

α )+6Γ(1+ 2
α )Γ2(1+ 1

α )−3Γ4(1+ 1
α )

[Γ(1+α−1)−Γ2(1+α−1)]
2

2.2.2. Rayleigh (RAY) Distribution

The RAY distribution is a special case of the WEI distribution with α = 2, leading to
the PDF fRAY(x) and CDF FRAY(x) in Equation (2), as follows [31,44]:

fRAY(x) = xσ−2e
−0.5( x

σ )
2

, FRAY(x) = 1 − e−0.5( x
σ )

2
(2)

Table 2 summarizes the SPs of the RAY distribution.

Table 2. Statistical properties of the RAY distribution [20].

SP Expression

vdist σ
√

π
2

σ2
dist

(
4−π

2

)
σ2

µ3 3.76σ3

Sdist
(−3+π)

√
π
2

(2− π
2 )

3/2

Kdist
32−3π2

(4−π)2

2.2.3. Two-Parameter Gamma (GAM) Distribution

The PDF fGAM(x) and the CDF FGAM(x) of the GAM distribution are given by
Equation (3) [27,30].

fGAM(x) =
xα−1

βαΓ(α)
e(−

x
β ), FGAM(x) =

Γx/β(α)

Γ(α)
(3)

for x > 0, α > 0, β > 0, where Γ(α) =
∫ ∞

0 tα−1e−tdt (α > 0) is the Gamma function, and
Γx(α) =

∫ x
0 tα−1e−tdt (α > 0) is the incomplete Gamma function. α is the shape parameter,

while β is the scale parameter. Table 3 outlines the SPs of the GAM distribution.

Table 3. Statistical properties of the GAM distribution [20,43].

SP Expression

vdist βα
σ2

dist αβ2

µ3 α3β(β + 2)(β + 1)

Sdist
2β2

α
Kdist 3 + 6

α
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2.2.4. Generalized Extreme Value (GEV) Distribution

The PDF fGEV(x) and the CDF FGEV(x) of the GEV distribution are given by
Equation (4) [23,28,45].

fGEV(x) =
1
σ

e[−(1+kz)−1/k ](1 + kz)−1−1/k, FGEV(x) = e[−(1+kz)−1/k ] (4)

for k ̸= 0, 1 + k (x−µ)
σ > 0, where z ≡ x−µ

σ . k is the shape parameter, σ is the scale parameter,
and µ is the location parameter. Table 4 gives the SPs of the GEV distribution.

Table 4. Statistical properties of the GEV distribution [43].

SP Expression

vdist µ − σ
k (1 − Γ(1 − k))

σ2
dist

σ2

k2

(
Γ(1 − 2k)−

(
Γ(1 − k))2 )

µ3
1
k3

[(
µk − σ)3 + σ3Γ(1 − 3k) + 3(µk − σ)σ(σΓ(1 − 2k) + (µk − σ)Γ(1 − k))

]
Sdist k

|k|
Γ(1−3k)−3Γ(1−2k)Γ(1−k)+2(Γ(1−k))3

(Γ(1−2k)−(Γ(1−k))2 )
3/2

Kdist
Γ(1−4k)−4Γ(1−3k)Γ(1−k)+6Γ(1−2k)(Γ(1−k))2−3(Γ(1−k))4

(Γ(1−2k)−(Γ(1−k))2 )
2

2.2.5. Two-Parameter Inverse Gaussian (IGA) Distribution

The PDF fIGA(x) and the CDF FIGA(x) of the IGA distribution are given by Equation (5)
[19,28,32].

fIGA(x) =

√
λ

2πx3 e
(− λ(x−µ)2

2µ2x
)
, FIGA(x) = Φ

(√
λ

x

(
x
µ
− 1
))

+ Φ

(
−
√

λ

x

(
x
µ
+ 1
))

e(
2λ
µ ) (5)

for x > 0, µ > 0, λ > 0, where Φ(x) = 1√
2π

∫ x
0 e−t2/2dt is the Laplace integral. Table 5

summarizes the SPs of the IGA distribution, where λ is the shape parameter, and µ is the
scale parameter.

Table 5. Statistical properties of the IGA distribution [43].

SP Expression

vdist µ

σ2
dist

µ3

λ

µ3
3µ5

λ2 + 3µ4

λ + µ3

Sdist 3
√

µ
λ

Kdist 3 + 15 µ
λ

2.2.6. Gumbel Distribution (GUM)

The PDF fGUM(x) and the CDF FGUM(x) of the GUM distribution are given by
Equation (6) [23,46].

fGUM(x) =
1
β

e(−z−e(−z)), FGUM(x) = e(−e(−z)) (6)

for x > 0, β > 0, where z ≡ x−µ
β . β is the scale parameter, and µ is the location parameter.

Table 6 summarizes the SPs of the GUM distribution.
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Table 6. Statistical properties of the GUM distribution [43].

SP Expression

vdist µ + γβ where γ is the Euler–Mascheroni constant = 0.577215

σ2
dist

π2

6 β2

µ3
µ3 + 3γµ2β + 3

(
π2

6 + γ2
)

µβ2 −
(

π2

3 − π2

6 γ + 2γ3 + γ2 − 2ζ(3)
)

β3

where ζ(3) is the Riemann zeta function at 3 = 1.202057

Sdist
12
√

6
π3 ζ(3) = 1.202057

Kdist
12
5 = 2.4

2.3. Methods for Estimating Distribution Parameters
Maximum Likelihood Method (MLM)

The present study utilizes the maximum likelihood method (MLM) to estimate the
parameters of the six distributions (GAM, GEV, GUM, IGA, RAY, WEI), with the specific
form of f (x; θ) varying according to the chosen distribution [23,47]. The MLM method was
chosen for parameter estimation due to its efficiency and accuracy in fitting the distributions
to wind speed data [28]. MLM is a widely accepted approach, as it minimizes the mean
squared error and ensures the best possible alignment between the data and the probability
distribution function [31]. Given the challenge of accurately determining the parameters of
distributions, MLM provides a reliable estimation compared to other methods [48].

The general form of the maximum likelihood method (MLM) method for estimating
the parameters θ = (θ1, θ2, . . . , θm) of a wind speed distribution is given as follows.

For wind speed data {x1, x2, . . . , xn}, the log-likelihood function is as follows:

l(θ) =
n

∑
i=1

log f (xi; θ) (7)

where f (xi; θ) is the probability density function (PDF) of the respective distribution.
The aim is to minimize the negative log-likelihood function, as follows:

−l(θ) = −
n

∑
i=1

log f (xi; θ) (8)

The optimal parameters θ̂ are obtained by solving the following:

∂l(θ)
∂θ

= 0 (9)

using numerical optimization techniques such as the limited-memory Broyden–Fletcher–
Goldfarb–Shanno with box constraints (L-BFGS-B), Nelder–Mead, and Newton–Raphson
methods [26,30,49,50]. Python scripts (version 3.9.12) were implemented to carry out the
optimization and estimate the parameters.

2.4. Goodness-of-Fit Test of Stastical Distributions

The distribution that best represents the observed data is obtained by performing
the goodness-of-fit test. A well-fitted model effectively captures the detailed features
of the observed data, facilitating the estimation of parameters of the distribution model
with minimal uncertainty, precisely depicting data variability, and enhancing confidence
in predicting new observations. In this study, the following three test statistics were
utilized: the Kolmogorov–Smirnov (KSS) test, the Anderson–Darling (AD) test, and the
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wind power density error (WPDE). The AD test assigns greater significance to deviations
in the distribution tails. In contrast, the KSS test is more sensitive to differences near the
center of the distribution curve, and the WPDE assesses discrepancies specifically related to
wind power density. Since each performance statistical indicator can yield varying results,
a parameter known as the total error (TE) was utilized to rank the distributions based on
their accuracy [45].

2.4.1. Kolmogorov–Smirnov (KSS) Test

The KSS is given by the following equation [51]:

KSS = max|E(x)− T(x)| (10)

where E(x) denotes the empirical CDF and T(x) denotes the theoretical CDF. A lower KSS
statistic signifies a closer match between the theoretical and empirical distribution functions.

2.4.2. Anderson–Darling (AD) Test

The AD test, a refinement of the KSS test, is frequently used to evaluate goodness-of-fit.
The AD test statistic is computed using Equation (10) [31]:

A2 = −n −
∑n

j=1(2j − 1)

n
[
lnG

(
xj
)
+ ln

(
1 − G

(
xn−j+1

))]
(11)

where G
(

xj
)

represents the cumulative distribution function (CDF) of the tested probability
density function (PDF). Similar to the KSS test, a lower AD test statistic indicates a better fit
of the theoretical distribution model.

2.4.3. Wind Power Density Error (WPDE)

The WPDE was also utilized to evaluate the performance of each method of estimating
the wind power density [52]. The WPDE is given in the following equation [53]:

WPDE =

∣∣∣∣WPDi,dis − WPDi,obs

WPdi,obs

∣∣∣∣ (12)

where WPDi,obs represents the wind power density calculated using actual data, and
WPDi,dis represents the wind power density calculated from the distribution function.

2.4.4. Total Error (TE)

TE evaluates the performance of statistical distributions by averaging normalized
statistical indicators or metrics [45]. This study utilized three indicators: KSS, AD, and
WPDE. Each statistic was normalized using Equation (13):

Xnorm =
X − Xmin

Xmax − Xmin
(13)

where X represents the metric value, and Xmin and Xmax are its minimum and max-
imum values, respectively. This normalization scales the statistic between 0 and 1
for comparability.

The TE is then calculated using Equation (14):

TE =
KSnorm + ADnorm + WPDEnorm

3
(14)

This provides a composite score reflecting each distribution’s overall fit and accuracy.
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2.5. Wind Direction Analysis

The primary function of a wind rose is to present data on wind speed and direction
occurrences [54,55]. This information is crucial for site selection, as it helps identify the
optimal locations for installing wind turbines to maximize wind power utilization [56]. In
this study, the wind direction measurements were clockwise, with the north as the reference
point at zero degrees. The polar diagram of the wind rose was divided into 16 sectors, each
spanning 22.5 degrees [57,58]. This study used the Windographer 4.0 software to generate
a wind rose diagram with 16 sectors.

2.6. Wind Power Density Calculations

The wind power density for the observed data (WPDobs) is given by Equation (15) [59],
and the wind power densities for each distribution are given in Table 7.

WPDobs = 0.5n−1ρ
n

∑
i=1

v3
i (15)

Table 7. Wind power density (WPD) formula for each distribution.

Distribution Wind Power Density for Each Distribution

WEI WPDWEI = 0.5ρc3Γ
(
1 + 3α−1)

RAY WPDRAY = 0.5ρ·3.76σ3

GAM WPDGAM = 0.5ρα3β(β + 2)(β + 1)

GEV WPDGEV = 0.5ρ 1
k3

[(
µk − σ)3 + σ3Γ(1 − 3k) + 3(µk − σ)σ(σΓ(1 − 2k) + (µk − σ)Γ(1 − k))

]
IGA WPDIGA = 0.5ρ

3µ5

λ2 + 3µ4

λ + µ3

GUM WPDGUM = 0.5ρµ3 + 3γµ2β + 3
(

π2

6 + γ2
)

µβ2 −
(

π2

3 − π2

6 γ + 2γ3 + γ2 − 2ζ(3)
)

β3

where ζ(3) is the Riemann zeta function at 3 = 1.202057

The wind power density was divided into seven categories based on the annual mean
wind speed and power density, as shown in Table 8, which was used in this study to classify
the wind resource availability at the University of Fort Hare at a height of 10 m above
ground level (AGL).

Table 8. Wind resource availability classification [60–63].

Wind Power Class Mean Wind Speed (m/s) Wind Power Density (W/m2)

1 (Poor) 0–4.4 0–100
2 (Marginal) 4.4–5.1 100–500
3 (Moderate) 5.1–5.6 200–250
4 (Good) 5.6–6.0 200–250
5 (Excellent) 6.0–6.4 250–300
6 (Excellent) 6.4–7.0 300–400
7 (Excellent) 7.0–9.4 400–1000

3. Results and Discussion
3.1. Descriptive Statistics of the Wind Speed

Table 9 presents the annual and monthly wind speed statistics for the University of
Fort Hare, detailing the data size (N), range (R), mean wind speed (vobs), variance (σ2

obs)
standard deviation (σobs), coefficient of variation (CoV), skewness (S), kurtosis (K), and the
minimum (Min) and maximum (Max) wind speeds based on the observed data. The mean
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wind speed (vobs) peaked in July at 13.8m/s and was lowest in February at 8.3m/s. The
observed σ2

obs ranged from 2.119 in May to 2.872 in September, indicating fluctuations in
wind speed consistency. The standard deviation (σobs ) generally showed similar trends,
with the highest values in July (4.83 m/s) and lowest values in May (2.44 m/s). The
variability in the wind speeds across the months demonstrated significant fluctuations,
as the CoV values indicate. In July, the wind speed variability was at its peak, with a
CoV of 77%, marking it as the most unpredictable month. This was followed by May and
August, each with a CoV of 74%, reflecting similarly extreme variability [19,34]. Conversely,
January and September exhibited relatively lower CoV values of 63% and 67%, respectively,
though still above the threshold for high variability (>40%) [64]. The positive skewness
suggests that the measured wind speeds were typically above the mean, indicating better
wind performance at this location and a right-skewed distribution [1,34]. These results are
similar to other studies [29,64]. The kurtosis values were positive and less than 3, except in
January. The maximum wind speed recorded was 13.8 m/s, reflecting a steady upper limit
across the observations. Overall, these results indicate clear seasonal variation in wind
characteristics, with notable mid-year peaks and a general trend of increasing variability
during the summer months.

Table 9. Annual and monthly statistical wind data for University of Fort Hare at 10 m AGL.

Month N R vobs σ2
obs σobs CoV(%) S K Min Max

Jan 2232 9.5 2.756 3.04 1.74 63 0.59 −0.04 0 9.5
Feb 2016 8.3 2.481 3.12 1.77 71 0.71 0.09 0 8.3
Mar 2232 9.5 2.456 2.94 1.72 70 0.87 0.63 0 9.5
Apr 2160 9.6 2.234 2.48 1.57 70 1.12 1.61 0 9.6
May 2232 11.5 2.119 2.44 1.56 74 1.52 3.69 0 11.5
Jun 2160 11.1 2.653 3.57 1.89 71 1.39 2.09 0 11.1
Jul 2232 13.8 2.848 4.83 2.20 77 1.58 2.61 0 13.8

Aug 2232 12.0 2.710 3.97 1.99 74 1.36 2.10 0 12.0
Sept 2160 10.6 2.872 3.67 1.92 67 1.15 1.48 0 10.6
Oct 2232 10.9 2.762 3.61 1.90 69 0.76 0.43 0 10.9
Nov 2160 9.4 2.669 3.32 1.82 68 0.63 0.05 0 9.4
Dec 2232 10.2 2.670 3.46 1.86 70 0.74 0.32 0 10.2

Annual 26,280 13.8 2.603 3.42 1.85 71 1.12 1.56 0 13.8

As illustrated in Figure 3, the monthly mean wind speed values typically ranged from
2.6 to 2.9 m/s, with only a few instances falling below 2.4 m/s. The highest monthly mean
value, 2.872 m/s, was recorded in September.

Figure 4 depicts a comparison of four statistical metrics, namely, the mean, variance,
skewness, and kurtosis, across the six distributions (GAM, GEV, GUM, IGA, WEI, RAY)
relative to the actual wind data. The actual wind data’s mean was 2.603 m/s, which was
closely approximated by most distributions with minimal variation. The GEV distribution
had the closest mean of 2.602 m/s. The actual data had a variance of 3.424. However,
the variance of the distributions showed more variation, indicating differences in data
spread. The GEV distribution closely matched this variance with a value of 3.447, while the
GAM distribution deviated the most, showing a significantly lower variance of 2.365. The
skewness of the actual data was 1.12, a positive value, and the skewness values calculated
from all the distributions were also positive. The GEV distribution, with a skewness of
1.28, and the GUM distribution, with a skewness of 1.14, were closer to the actual data,
while the IGA distribution exhibited the highest skewness at 1.675, indicating a more
pronounced right-skewed distribution. The GAM distribution, on the other hand, had
the lowest skewness at 0.366, indicating less asymmetry than the actual data. In terms
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of kurtosis, the actual data showed a value of 1.57, suggesting that the wind speed data
had few extreme values. The GEV distribution exhibited a kurtosis of 6.14, which was
significantly higher than the kurtosis of the actual wind data, indicating a more pronounced
peak and steeper tails. The IGA distribution demonstrated an even higher kurtosis of 7.68,
suggesting an exceptionally sharp peak. Also, the GUM, GAM, WEI, and RAY distributions
showed kurtosis values that were also higher than the actual wind data but not as extreme
as the IGA and GEV distributions. While most of the distributions aligned reasonably well
with the actual wind data in terms of mean and variance, the IGA and GEV distributions
deviated the most in their kurtosis, highlighting their tendency for sharper peaks and
heavier tails. The results also showed a similar trend to the findings of [43], where the
distributions exhibited variations in these statistical properties compared to the values
obtained from actual wind speed data, especially when the parameters were estimated
using the maximum likelihood method.
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The diurnal variation in the mean wind speed, as shown in Figure 5, illustrated a
clear daily cycle over a 24 h period. During the early morning hours, from midnight to
around 8 a.m., the wind speeds were relatively low and remained almost constant. At
around 8:30 a.m., the wind speed began to increase gradually, followed by a sharp rise after
9:00 a.m., peaking in the late afternoon at 5 p.m. with a maximum value of 4.28 m/s. After
this peak, the wind speeds steadily declined as the day transitioned into evening, reaching
a minimum of 1.65 m/s early at 8 a.m. The dome-shaped profile shown in the Figure 5
indicates that the Fort Hare area experienced windy conditions from mid-morning to early
evening, consistent with the findings of [34].
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A further analysis of the seasonal statistical wind speed data is depicted in Table 10.
Winter showed the highest maximum wind speed at 13.8 m/s and the greatest variability,
with a standard deviation of 2.03 m/s and the highest skewness, S = 1.48, indicating more
high-speed outliers. Autumn had a moderate maximum speed of 11.5 m/s but exhibited the
highest kurtosis, K = 1.77, suggesting a more pronounced peak around the mean. Summer
and spring displayed similar patterns, with lower mean wind speeds and variability, as
indicated by the lower coefficients of variation, CoV = 0.68, suggesting more consistent
wind speeds during these seasons. This seasonal variability and distributional shape offer
valuable insights into the wind behaviour annually.

Table 10. The seasonal statistical wind data for University of Fort Hare at 10 m AGL.

Season N R vobs σ2
obs σobs CoV S K Min Max

Summer 6480 10.2 2.641 3.22 1.79 0.68 0.68 0.14 0 10.2
Autumn 6624 11.5 2.270 2.64 1.62 0.72 1.15 1.77 0 11.5
Winter 6624 13.8 2.738 4.14 2.03 0.74 1.48 2.47 0 13.8
Spring 6552 10.9 2.768 3.54 1.88 0.68 0.86 0.74 0 10.9

3.2. Analysis of Probability Distribution Functions

The parameters of the six distribution functions, estimated using the seasonal and
overall wind speed data, are presented in Table 11.
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Table 11. Probability distribution function parameters.

Season Distribution Parameters

Summer

GAM α = 3.87196207204796 β = 0.77507456427451
GEV k = −0.056960272557 σ = 1.4972487444338 µ = 1.848955588234
GUM β = 1.4709535966597 µ = 1.8035050553625
IGA λ = 9.9954369211484 µ = 3.0010579509349
RAY σ = 2.4065996370416
WEI α = 2.0109418096457 β = 3.4078140596928

Autumn

GAM α = 3.9885106615485 β = 0.6490508105913
GEV k = 0.0092984086461 σ = 1.2467280783248 µ = 1.5389917873736
GUM β = 1.2502151454179 µ = 1.5383209018954
IGA λ = 9.6627572702393 µ = 2.5888085399449
RAY σ = 2.1079513803782
WEI α = 1.9027909814916 β = 2.9407369404527

Winter

GAM α = 3.16024334329771 β = 0.9410806487361
GEV k = 0.0992291628189 σ = 1.3671470841441 µ = 1.7981664820307
GUM β = 1.4179032191099 µ = 1.8725161930694
IGA λ = 8.5461048436524 µ = 2.9740444076619
RAY σ = 2.5135424855173
WEI α = 1.6904507406495 β = 3.3661889532314

Spring

GAM α = 3.7247001946047 β = 0.8304135151953
GEV k = -0.023269024722 σ = 1.5140912691744 µ = 1.9235752478768
GUM β = 1.5031457206771 µ = 1.9046835216656
IGA λ = 9.9870434393496 µ = 3.0930411052362
RAY σ = 2.5016406862587
WEI α = 1.9406039977847 β = 3.5111781389429

Overall

GAM α = 3.5927533461899 β = 0.8113562688486
GEV k = 0.0226298979109 σ = 1.4040697074707 µ = 1.7591867818483
GUM β = 1.4442754819722 µ = 1.7706426185743
IGA λ = 9.3517654063929 µ = 2.9150050416826
RAY σ = 2.3898368796538
WEI α = 1.8510621376527 β = 3.3081271593922

The corresponding seasonal and overall wind speed distribution graphs illustrate
how well the fitted probability density functions represent the observed data, as shown
in Figures 6 and 7. As indicated in Figure 6, the GEV distribution provided the best fit for
the entire period, aligning closely with the histogram’s peak between 1 and 2 m/s and the
tails, effectively modeling infrequent higher wind speeds beyond 8 m/s. GUM, ranked
second, followed closely, while RAY, ranked last, failed to capture the central tendency and
distribution spread.

Seasonally, as shown in Figure 7, the GEV distribution consistently performed the
best across all seasons, excelling in capturing peaks and tails. GUM ranked second in all
seasons. In summer, IGA ranked last. RAY struggles in autumn and winter, ranking last in
both seasons, while GAM consistently ranked fifth in all seasons except for spring, where
it ranked fourth. GAM failed to effectively represent the variability and extreme wind
patterns. These results confirm the GEV distribution’s robustness in modeling wind speed
patterns across different periods. However, it is important to note that the GEV distribution,
having three parameters compared to the other distributions with one or two parameters,
involves more complex parameter estimation methods. This complexity often leads to a
preference for distributions that offer simpler estimation methods, particularly the widely
used Weibull distribution [28].
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The fitting of the distributions to the actual wind speed data is also validated by the
goodness-of-fit test results, as shown in Table 12 for the four seasons and in Table 13 for the
entire period of 2021–2023.
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Table 12. Performance comparison of the six distributions for the four seasons.

Distribution KSS Rank AD Rank WPDE Rank TE Overall Rank

Summer

GAM 0.160 6 1304.12 5 0.078 2 0.752 5

GEV 0.083 1 49.31 1 0.012 1 0.000 1

GUM 0.087 2 53.63 2 0.264 6 0.351 2

IGA 0.149 3 1310.79 6 0.226 5 0.901 6

RAY 0.151 4 1250.36 3 0.095 4 0.723 3

WEI 0.153 5 1258.62 4 0.093 3 0.732 4

Autumn

GAM 0.192 5 1404.10 5 0.059 5 0.650 5

GEV 0.123 1 108.60 2 0.000 1 0.000 1

GUM 0.123 2 107.55 1 0.367 6 0.336 2

IGA 0.175 3 1389.97 4 0.012 2 0.537 3

RAY 0.207 6 1445.22 6 0.017 3 0.682 6

WEI 0.189 4 1357.59 3 0.032 4 0.601 4

Winter

GAM 0.182 5 1038.83 5 0.156 5 0.526 5

GEV 0.116 2 101.15 1 0.054 1 0.022 1

GUM 0.107 1 116.44 2 0.468 6 0.337 2

IGA 0.163 3 1000.61 3 0.055 2 0.385 3

RAY 0.240 6 1329.52 6 0.109 4 0.711 6

WEI 0.173 4 1012.23 4 0.065 3 0.422 4
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Table 12. Cont.

Distribution KSS Rank AD Rank WPDE Rank TE Overall Rank

Spring

GAM 0.151 6 1184.74 4 0.024 2 0.674 4

GEV 0.079 1 45.54 1 0.017 1 0.000 1

GUM 0.081 2 46.84 2 0.296 6 0.343 2

IGA 0.145 4 1187.60 6 0.164 5 0.814 6

RAY 0.150 5 1186.30 5 0.045 3 0.695 5

WEI 0.139 3 1142.25 3 0.055 4 0.642 3
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As shown in Table 12, the GEV distribution consistently demonstrated the best perfor-
mance across all seasons, as previously seen in Figure 7, with the lowest TE values: 0.00
in summer, 0.00 in autumn, 0.022 in winter, and 0.00 in spring. These values highlight the
GEV distribution’s superior ability to model the wind speed data effectively. In contrast,
the IGA distribution ranked the worst, with the highest TE values of 0.90 in summer and
0.81 in winter, while the RAY distribution was also ranked last in autumn and winter, with
TE values of 0.68 and 0.71, respectively. Notably, the dominance of the GEV distribution
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remained consistent regardless of seasonal changes. The WEI distribution ranked fourth in
summer, autumn, and winter and third in spring.

Table 13. Performance comparison of the six distributions for the entire period of 2021–2023.

Distribution KSS Rank AD Rank WPDE Rank TE Overall Rank

GAM 0.1699 5 4910.418 5 0.042 4 0.6005 5
GEV 0.0995 1 276.9513 2 0.024 3 0.0202 1
GUM 0.1012 2 272.8823 1 0.367 6 0.3394 2
IGA 0.1526 3 4868.478 4 0.072 5 0.5622 4
RAY 0.1917 6 5259.141 6 0.003 1 0.6667 6
WEI 0.1622 4 4735.565 3 0.022 2 0.5421 3

In Figure 8, the TE for each distribution listed in Table 13 is represented by individual
bars, with different colors within each bar indicating the contribution of each normalized
test statistic metric (KSS, AD, and WPDE) to the TE. Based on the analysis in Table 13 and
Figure 8, which show the TE for each distribution, the GEV distribution emerged as the
best-performing model, with the lowest TE of 0.0202, primarily influenced by the WPDE
metric. Its three-parameter structure allowed it to capture rare and high-impact wind
events, crucial for accurately representing variability in wind regimes. Additionally, it
ranked first in KSS with a value of 0.0995, second in AD with 276.95, and third in WPDE
with 0.024, demonstrating consistent performance across multiple indicators. The GUM
distribution followed with a moderate TE of 0.3394, primarily driven by WPDE, as shown
in Figure 8. The WEI distribution, with a TE of 0.5421, showed major contributions from
KSS and AD. The IGA distribution had a TE of 0.5622, dominated by AD contributions,
while the RAY distribution, with the highest TE of 0.6667, was mainly influenced by AD and
KSS contributions. These findings align with the seasonal performance trends, confirming
the GEV distribution as the most effective and robust model overall.
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Figure 8. Contributions of normalized KSS, AD, and WPDE to TE for each distribution in Table 13.

It is worth noting that the RAY distribution performed poorly both seasonally and
overall, further emphasizing its inadequacy. Its dismal performance can be attributed to its
single-parameter structure, which assumes a zero mean wind vector an overly simplistic



Appl. Sci. 2025, 15, 2778 19 of 24

approach that failed to capture the variability and extremes present in real-world wind
speed data. Although the Weibull distribution ranked third out of six in this analysis, it
remains a historically popular choice for wind speed modeling due to its simplicity and
flexibility. Its two-parameter structure makes it easy to apply and compatible with various
parameter estimation methods. For instance, the Weibull distribution, combined with the
OpenWind method, has demonstrated notable effectiveness at sites such as Fort Beaufort
and Upper Blinkwater in the Eastern Cape [1,4]. However, in this study, the GEV and
GUM distributions, both designed to model extreme wind speeds, proved to be the most
effective in fitting the wind data. Additionally, the performance of the Weibull distribution
could potentially be improved using advanced optimization techniques, such as artificial
intelligence, to refine its scale and shape parameter estimation.

3.3. Analysis of the Wind Power Density

The observed wind power density was measured as 31.52 W/m2. In Table 14, the
wind power density values for the different distributions, i.e., GAM, GEV, GUM, IGA, RAY,
and WEI, ranged from 19.95 W/m2 for GUM to 33.78 W/m2 for IGA. Despite this range,
all distributions fell into wind power class 1 (poor), indicating insufficient wind energy
potential for large-scale electricity generation. When compared with the observed wind
power density, measured at 31.52 W/m2, the results were consistent, especially with the
RAY distribution, which estimated a wind power density of 31.43 W/m2. These similar-
ities between the observed and modeled values further confirm that the site has limited
suitability for wind energy development, as all values indicate poor wind power potential.

Table 14. Estimated wind power densities for the six distributions and their classification.

Distribution WPD for Distribution (W/m2) Wind Power Class

GAM 30.19 1 (Poor)
GEV 32.29 1 (Poor)
GUM 19.95 1 (Poor)
IGA 33.78 1 (Poor)
RAY 31.43 1 (Poor)
WEI 32.20 1 (Poor)

It is, therefore, recommended that small-scale wind turbines for standalone applica-
tions be deployed at this site [24]. Notably, previous wind resource assessments in the
Eastern Cape Province also suggested small-scale wind turbines for wind speeds measured
at heights up to 30 m above ground level [1,7,34]. Additionally, greater wind energy can be
captured by utilizing wind turbines with larger rotor diameters or by increasing the hub
height [34]. On the other hand, augmentation systems (diffusers and concentrators) that
enhance the wind speed at the rotor can be employed to enclose small-scale wind turbines,
allowing them to operate effectively in the area under study [4,65].

3.4. Wind Direction Analysis

The wind directions were assessed for the entire study period and across the four
seasons, as illustrated by the wind rose diagrams in Figures 9 and 10, respectively. Figure 9
highlights that the dominant wind direction for the 2021–2023 period was from the south-
east, with the highest relative frequency of 16.35%. In contrast, winds from the northeast
showed the lowest relative frequency, at just 0.4%. Identifying the prevailing wind direc-
tion is crucial for correctly orienting a wind turbine [36,42], which in this case should face
southeast at Fort Hare University.
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Figure 10. Wind rose diagram for seasonal wind direction variations for the 2021–2023 period.

The seasonal wind patterns shown in Figure 10 reveal that winds predominantly blow
from the southeast during summer, spring, and autumn, aligning with the overall trend.
However, winter winds primarily come from the northwest. A similar seasonal variation in
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wind direction during winter was also observed by [34], where the winter wind direction
diverged from the general pattern.

4. Conclusions
This study evaluated the wind energy potential at Fort Hare in the Eastern Cape, South

Africa, using six statistical distribution models. It emphasizes the importance of selecting
accurate models for wind energy estimation, moving beyond the traditional reliance on the
two-parameter Weibull distribution. While the Weibull model is popular for its simplicity
and flexibility, this study stresses the need for models tailored to a site’s specific wind
characteristics, which can vary over time and location.

A goodness-of-fit test approach was used, normalizing and averaging three statistical
indicators to calculate the total error and rank model performance. This method, adapted
from [45], was applied for the first time in wind potential assessments in the Eastern Cape.
The comparison revealed that the generalized extreme value (GEV) distribution outper-
formed all the other models, accurately capturing wind speed variability and extremes,
with the lowest total error being 0.020. In contrast, the Weibull and Rayleigh distributions
recorded higher total errors of 0.5421 and 0.667, respectively, highlighting their limitations
in representing highly variable wind data with extreme speeds. The Gumbel model also
showed strong performance, confirming its applicability in similar environments. The
GEV model was particularly effective in capturing seasonal wind speed variations and
demonstrated consistent reliability across multiple goodness-of-fit indicators. These results
highlight the importance of advanced statistical techniques in ensuring accurate wind
power density estimations. Using the third moment for calculating wind power densities
in models with more than two parameters could also improve accuracy.

The study classifies the site as having insufficient wind energy potential for large-
scale electricity generation but recommends small-scale or augmented wind turbines for
standalone systems. Additionally, turbines should be strategically placed in the southeast
direction to maximize wind energy utilization, in alignment with prevailing wind patterns.
These insights provide valuable guidance for optimizing wind resource utilization in
South Africa and supporting sustainable energy development in areas with moderate
wind potential.

While this study provides valuable insights into the wind energy potential at Fort
Hare University, future research should focus on assessing wind characteristics at different
heights above ground level, which is crucial for optimal wind turbine placement. Ad-
ditionally, alternative methods such as Bayesian inference or metaheuristic algorithms
could further enhance the accuracy of parameter estimation. Furthermore, future studies
should integrate wind turbine power curves, techno-economic assessments, and advanced
optimization techniques to improve wind energy potential assessments.
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