Towards the Sustainable Removal of Heavy Metals from Wastewater Using Arthrospira platensis: A Laboratory-Scale Approach in the Context of a Green Circular Economy
<p>Optical microscopy images from all cultures as collected with ×10 objective lens on Day 7 of cultivation.</p> "> Figure 2
<p>Representative optical microscopy images collected with ×60 objective lens on Day 7 of cultivation: (<b>a</b>) Control, (<b>b</b>) Mix 5 ppm, (<b>c</b>) Cu 10 ppm, and (<b>d</b>) Ni 5 ppm.</p> "> Figure 3
<p>NIR reflectance response of cultures at 1062.6 nm: (<b>a</b>) Cd-MT; (<b>b</b>) Zn-MT; (<b>c</b>) Pb-MT; (<b>d</b>) Cu-MT; (<b>e</b>) Ni-MT; (<b>f</b>) Multi-MT. Values were normalized to Day 0 of cultivation to account for slight variations in initial biomass. Each value is average of two measurements, with uncertainties less than 3% over each value.</p> "> Figure 4
<p>pH measurements of cultures during all cultivation days: (<b>a</b>) Cu-MT; (<b>b</b>) Cd-MT; (<b>c</b>) Ni-MT; (<b>d</b>) Pb-MT; (<b>e</b>) Zn-MT; (<b>f</b>) Multi-MT. Each value is average of two measurements, with uncertainties less than 4% over each value.</p> "> Figure 5
<p>Chlorophyll-a content on Days 0 and 7 of cultivation of all cultures (Control and MT). Each value is average of two measurements, with uncertainties less than 5% over each one.</p> "> Figure 6
<p>ATR-FTIR spectra of <span class="html-italic">A. platensis</span> biomass collected from Control culture on initial (Day 0) and final days (Day 7) of cultivation.</p> "> Figure 7
<p>ATR-FTIR spectra of <span class="html-italic">A. platensis</span> biomass collected from all cultures on Day 7 of cultivation: (<b>a</b>) Cu-MT; (<b>b</b>) Cd-MT; (<b>c</b>) Ni-MT; (<b>d</b>) Pb-MT; (<b>e</b>) Zn-MT; (<b>f</b>) Multi-MT. Control culture spectrum is also shown for comparative reasons.</p> "> Figure 8
<p>FPA/FTIR imaging analysis in micro-ATR mode of <span class="html-italic">A. platensis</span> filament (Control culture, Day 7 of cultivation). (<b>a</b>) Optical image (350 μm × 350 μm). Micro-ATR measured area is indicated with red rectangle (70 μm × 70 μm). FPA chemical images showing distribution of FTIR bands at (<b>b</b>) 1643, (<b>c</b>) 1728, and (<b>d</b>) 837 cm<sup>−1</sup>, that correspond to amide I, lipids, and saccharides, respectively.</p> "> Figure 9
<p>Removal (%) of heavy metals from culture media by <span class="html-italic">A. platensis</span> after mono- (<b>a</b>) and multi-metal (<b>b</b>) treatment of cultures. Each value is average of two measurements, with uncertainties less than 5%.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalga Initial Stock Cultivation Conditions
2.2. Mono- and Multi-MT Microalga Cultivation
- Pb: Pb(NO3)2, Carl Roth.
- Cu: Cu(NO3)2·3H2O, Sigma-Aldrich.
- Zn: Zn(NO3)2·4H2O, Chem-Lab NV.
- Ni: Ni(NO3)2·6H2O, Sigma-Aldrich.
- Cd: Cd(NO3)2·4H2O, Thermo Scientific.
2.3. Characterization Methods
2.3.1. Optical Microscopy
2.3.2. Near-Infrared Spectroscopy (NIR)
2.3.3. Electrical Conductivity (EC) and pH Measurements
2.3.4. Chlorophyll Content Estimation
2.3.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.6. Atomic Absorption Spectroscopy (AAS)
3. Results and Discussion
3.1. Optical Microscopy
3.2. Biomass Growth Estimation
3.3. Electrical Conductivity and pH Measurements
- Zn, Pb, and Cd mono-MT cultures follow the Control one closely, at least up to Day 6.
- Ni and Cu mono-MT cultures present similar behavior.
- Regarding the multi-MT cultures, Mix 1 ppm seems to be unaffected up to Day 2 of cultivation. Afterwards, it starts declining. Mix 5 and 10 ppm cultures present reduced values even from Day 1.
3.4. Chlorophyll-A Estimation
- Control culture: The chlorophyll-a increase relates to the biomass increase through cultivation.
- Cu and Ni mono-MT cultures: Low concentrations of 1 ppm seem to elevate the pigment’s content, while higher concentrations exhibit toxic effects, drastically reducing it. This is in agreement with Kaamoush et al. [5], although we found similar toxicity of Ni in comparison to Cu. The toxicity of Cu to A. platensis relates to its role in increasing reactive oxygen groups. This affects lipids, proteins, and DNA, while it also substitutes Mg from chlorophyll. The authors [5] also showed that up to Day 7 of cultivation, low Ni concentrations, up to 1 ppm, act positively to the cultivations, surpassing the Control sample, while higher concentrations of Ni act negatively.
- Zn and Pb mono-MT cultures: Again, the low Zn concentration, that of 1 ppm, elevates the chlorophyll-a content. Kaamoush et al. [5] showed that up to Day 7 of cultivation, 1 ppm of Zn had similar results with their Control sample, but higher concentrations had a negative effect.
- Cd mono-MT cultures: All metal concentrations seem to elevate the chlorophyll-a content of the microalga, in comparison to the Control culture. This suggests an adaptive response and may be connected to the induction of stress-related metabolic pathways that affect growth. This hormetic response to low concentrations of Cd was observed with two other microalgae strains, Spirulina indica [60] and Chromochloris zofingiensis [61], and in peppermint plants [62].
- Multi-MT cultures: Their chlorophyll-a content reduces when metal concentration increases. While the 5 and 10 ppm cultures present similar characteristics with the mono-MT cultures, the Mix 1 ppm presents the lowest chlorophyll-a content, in comparison to all the mono-MT cultures.
3.5. FTIR Analysis
3.6. Heavy Metal Removal Efficiency of A. platensis in MT Cultures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalita, N.; Baruah, P.P. Cyanobacteria as a Potent Platform for Heavy Metals Biosorption: Uptake, Responses and Removal Mechanisms. J. Hazard. Mater. Adv. 2023, 11, 100349. [Google Scholar] [CrossRef]
- Mehta, S.K.; Gaur, J.P. Use of Algae for Removing Heavy Metal Ions from Wastewater: Progress and Prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef]
- Xiao, X.; Li, W.; Jin, M.; Zhang, L.; Qin, L.; Geng, W. Responses and Tolerance Mechanisms of Microalgae to Heavy Metal Stress: A Review. Mar. Environ. Res. 2023, 183, 105805. [Google Scholar] [CrossRef]
- Jayakumar, V.; Govindaradjane, S.; Rajamohan, N.; Rajasimman, M. Biosorption Potential of Brown Algae, Sargassum Polycystum, for the Removal of Toxic Metals, Cadmium and Zinc. Environ. Sci. Pollut. Res. 2022, 29, 41909–41922. [Google Scholar] [CrossRef]
- Kaamoush, M.; El-Agawany, N.; El Salhin, H.; El-Zeiny, A. Monitoring Effect of Nickel, Copper, and Zinc on Growth and Photosynthetic Pigments of Spirulina Platensis with Suitability Investigation in Idku Lake. Environ. Sci. Pollut. Res. 2022, 29, 78942–78959. [Google Scholar] [CrossRef] [PubMed]
- Suresh Kumar, K.; Dahms, H.U.; Won, E.J.; Lee, J.S.; Shin, K.H. Microalgae—A Promising Tool for Heavy Metal Remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Arora, R. Adsorption of Heavy Metals-a Review. Mater. Today Proc. 2019, 18, 4745–4750. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Bolto, B.; Gregory, J. Organic Polyelectrolytes in Water Treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef] [PubMed]
- Van Der Bruggen, B.; Vandecasteele, C.; Gestel, T.V.; Doyenb, W.; Leysenb, R. Review of Pressure-Driven Membrane Processes. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for Heavy Metals Removal and Their Future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Rangsayatorn, N.; Upatham, E.S.; Kruatrachue, M.; Pokethitiyook, P.; Lanza, G.R. Phytoremediation Potential of Spirulina (Arthrospira) platensis: Biosorption and Toxicity Studies of Cadmium. Environ. Pollut. 2002, 119, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Cao, L.; Zhang, Q.; Liu, Y.; Xiang, S.; Liu, T.; Ruan, R. Effect of Chlortetracycline on the Growth and Intracellular Components of Spirulina Platensis and Its Biodegradation Pathway. J. Hazard. Mater. 2021, 413, 125310. [Google Scholar] [CrossRef] [PubMed]
- Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Ana Culicov, O.; Frontasyeva, M.; Pavlov, S.; Kirkesali, E.; Akshintsev, A.; Rodlovskaya, E. Spirulina Platensis as Biosorbent of Chromium and Nickel from Industrial Effluents. Desalin. Water Treat. 2016, 57, 11103–11110. [Google Scholar] [CrossRef]
- Balaji, S.; Kalaivani, T.; Rajasekaran, C. Biosorption of Zinc and Nickel and Its Effect on Growth of Different Spirulina Strains. CLEAN Soil Air Water 2014, 42, 507–512. [Google Scholar] [CrossRef]
- Soto-Ramírez, R.; Lobos, M.G.; Córdova, O.; Poirrier, P.; Chamy, R. Effect of Growth Conditions on Cell Wall Composition and Cadmium Adsorption in Chlorella Vulgaris: A New Approach to Biosorption Research. J. Hazard. Mater. 2021, 411, 125059. [Google Scholar] [CrossRef]
- Edris, G.; Alhamed, Y.; Alzahrani, A. Biosorption of Cadmium and Lead from Aqueous Solutions by Chlorella Vulgaris Biomass: Equilibrium and Kinetic Study. Arab. J. Sci. Eng. 2014, 39, 87–93. [Google Scholar] [CrossRef]
- Kiran Marella, T.; Saxena, A.; Tiwari, A. Diatom Mediated Heavy Metal Remediation: A Review. Bioresour. Technol. 2020, 305, 123068. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, M.; Soreanu, G.; Balan, C.D.; Buciscanu, I.I.; Maier, V.; Cretescu, I. Study of Spirulina platensis (Arthrospira) Development under the Heavy Metals Influence, as a Potential Promoter of Wastewater Remediation. Water 2023, 15, 3962. [Google Scholar] [CrossRef]
- Hussain, M.K.; Khatoon, S.; Nizami, G.; Fatma, U.K.; Ali, M.; Singh, B.; Quraishi, A.; Assiri, M.A.; Ahamad, S.; Saquib, M. Unleashing the Power of Bio-Adsorbents: Efficient Heavy Metal Removal for Sustainable Water Purification. J. Water Process Eng. 2024, 64, 105705. [Google Scholar] [CrossRef]
- Salama, E.S.; Roh, H.S.; Dev, S.; Khan, M.A.; Abou-Shanab, R.A.I.; Chang, S.W.; Jeon, B.H. Algae as a Green Technology for Heavy Metals Removal from Various Wastewater. World J. Microbiol. Biotechnol. 2019, 35, 75. [Google Scholar] [CrossRef] [PubMed]
- Çelekli, A.; Topyürek, A.; Markou, G.; Bozkurt, H. A Multivariate Approach to Evaluate Biomass Production, Biochemical Composition and Stress Compounds of Spirulina Platensis Cultivated in Wastewater. Appl. Biochem. Biotechnol. 2016, 180, 728–739. [Google Scholar] [CrossRef]
- Li, H.; Watson, J.; Zhang, Y.; Lu, H.; Liu, Z. Environment-Enhancing Process for Algal Wastewater Treatment, Heavy Metal Control and Hydrothermal Biofuel Production: A Critical Review. Bioresour. Technol. 2020, 298, 122421. [Google Scholar] [CrossRef]
- Richmond, A. Handbook of Microalgal Culture; Blackwell Publishing Ltd.: Oxford, UK, 2013. [Google Scholar]
- Baldev, E.; MubarakAli, D.; Sivasubramanian, V.; Pugazhendhi, A.; Thajuddin, N. Unveiling the Induced Lipid Production in Chlorella Vulgaris under Pulsed Magnetic Field Treatment. Chemosphere 2021, 279, 130673. [Google Scholar] [CrossRef] [PubMed]
- Bayu, A.; Rachman, A.; Noerdjito, D.R.; Putra, M.Y.; Widayatno, W.B. High-Value Chemicals from Marine Diatoms: A Biorefinery Approach. IOP Conf. Ser. Earth Environ. Sci. 2020, 460, 012012. [Google Scholar] [CrossRef]
- Xu, R.; Mi, Y. Simplifying the Process of Microalgal Biodiesel Production through in Situ Transesterification Technology. JAOCS, J. Am. Oil Chem. Soc. 2011, 88, 91–99. [Google Scholar] [CrossRef]
- Spain, O.; Funk, C. Detailed Characterization of the Cell Wall Structure and Composition of Nordic Green Microalgae. J. Agric. Food Chem. 2022, 70, 9711–9721. [Google Scholar] [CrossRef] [PubMed]
- Gabal, A.A.A.; Khaled, A.E.M.; El-Sayed, H.S.; Aboul-Ela, H.M.; Shalaby, O.K.; Khaled, A.A.; Mohamed, L.A. Optimization of Spirulina Platensis Biomass and Evaluation of Its Protective Effect Against Chromosomal Aberrations of Bone Marrow Cells. Fish. Aquac. J. 2018, 10, 260. [Google Scholar] [CrossRef]
- Chen, H.B.; Wu, J.Y.; Wang, C.F.; Fu, C.C.; Shieh, C.J.; Chen, C.I.; Wang, C.Y.; Liu, Y.C. Modeling on Chlorophyll a and Phycocyanin Production by Spirulina Platensis under Various Light-Emitting Diodes. Biochem. Eng. J. 2010, 53, 52–56. [Google Scholar] [CrossRef]
- Thiviyanathan, V.A.; Ker, P.J.; Hoon Tang, S.G.; Amin, E.P.; Yee, W.; Hannan, M.A.; Jamaludin, Z.; Nghiem, L.D.; Indra Mahlia, T.M. Microalgae Biomass and Biomolecule Quantification: Optical Techniques, Challenges and Prospects. Renew. Sustain. Energy Rev. 2024, 189, 113926. [Google Scholar] [CrossRef]
- Singh, J.; Gu, S. Commercialization Potential of Microalgae for Biofuels Production. Renew. Sustain. Energy Rev. 2010, 14, 2596–2610. [Google Scholar] [CrossRef]
- Kazakis, N.A. Green Approaches to Heavy Metal Removal from Wastewater: Microalgae Solutions in a Circular Economy Framework. Soc. Impacts 2025, 5, 100103. [Google Scholar] [CrossRef]
- Saavedra, R.; Muñoz, R.; Taboada, M.E.; Vega, M.; Bolado, S. Comparative Uptake Study of Arsenic, Boron, Copper, Manganese and Zinc from Water by Different Green Microalgae. Bioresour. Technol. 2018, 263, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.S.; Rodrigues, M.S.; de Carvalho, J.C.M.; Lodi, A.; Finocchio, E.; Perego, P.; Converti, A. Adsorption of Ni2+, Zn2+ and Pb2+ onto Dry Biomass of Arthrospira (Spirulina) Platensis and Chlorella Vulgaris. I. Single Metal Systems. Chem. Eng. J. 2011, 173, 326–333. [Google Scholar] [CrossRef]
- Dmytryk, A.; Saeid, A.; Chojnacka, K. Biosorption of Microelements by Spirulina: Towards Technology of Mineral Feed Supplements. Sci. World J. 2014, 2014, 356328. [Google Scholar] [CrossRef] [PubMed]
- Çetinkaya Dönmez, G.; Aksu, Z.; Öztürk, A.; Kutsal, T. A Comparative Study on Heavy Metal Biosorption Characteristics of Some Algae. Process Biochem. 1999, 34, 885–892. [Google Scholar] [CrossRef]
- Xu, K.; Du, M.; Yao, R.; Luo, J.; Chen, Z.; Li, C.; Lei, A.; Wang, J. Microalgae-Mediated Heavy Metal Removal in Wastewater Treatment: Mechanisms, Influencing Factors, and Novel Techniques. Algal Res. 2024, 82, 103645. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Ferreira, L.S.; de Carvalho, J.C.M.; Lodi, A.; Finocchio, E.; Converti, A. Metal Biosorption onto Dry Biomass of Arthrospira (Spirulina) Platensis and Chlorella Vulgaris: Multi-Metal Systems. J. Hazard. Mater. 2012, 217–218, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Zeraatkar, A.K.; Ahmadzadeh, H.; Talebi, A.F.; Moheimani, N.R.; McHenry, M.P. Potential Use of Algae for Heavy Metal Bioremediation, a Critical Review. J. Environ. Manag. 2016, 181, 817–831. [Google Scholar] [CrossRef]
- El-Agawany, N.; Kaamoush, M.; El Salhin, H. Nutritional and Toxicological Importance of Nickel, Copper and Zinc Elements in Spirulina Platensis. Int. Marit. Transp. Logist. J. 2023, 12, 55–77. [Google Scholar] [CrossRef]
- Akbarnezhad, M.; Shamsaie Mehrgan, M.; Kamali, A.; Javaheri Baboli, M. Effects of Microelements (Fe, Cu, Zn) on Growth and Pigment Contents of Arthrospira (Spirulina) platensis. Iran. J. Fish. Sci. 2020, 19, 653–668. [Google Scholar] [CrossRef]
- Gagrai, M.K.; Das, C.; Golder, A.K. Non-Ideal Metal Binding Model for Cr(III) Sorption Using Spirulina Platensis Biomass: Experimental and Theoretical Approach. Can. J. Chem. Eng. 2013, 91, 1904–1912. [Google Scholar] [CrossRef]
- Fang, L.; Zhou, C.; Cai, P.; Chen, W.; Rong, X.; Dai, K.; Liang, W.; Gu, J.D.; Huang, Q. Binding Characteristics of Copper and Cadmium by Cyanobacterium Spirulina Platensis. J. Hazard. Mater. 2011, 190, 810–815. [Google Scholar] [CrossRef]
- Çelekli, A.; Yavuzatmaca, M.; Bozkurt, H. An Eco-Friendly Process: Predictive Modelling of Copper Adsorption from Aqueous Solution on Spirulina Platensis. J. Hazard. Mater. 2010, 173, 123–129. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Safonov, A.; Tregubova, V.; Ilin, V.; Cepoi, L.; Chiriac, T.; Rudi, L.; Frontasyeva, M.V. Uptake of Metals from Single and Multi-Component Systems by Spirulina Platensis Biomass. Ecol. Chem. Eng. S 2016, 23, 401–412. [Google Scholar] [CrossRef]
- Spirulina Medium. CCCryo Cult. Collect. Cryophilic Algae 2020, 09/2020. Available online: https://utex.org/products/spirulina-medium (accessed on 19 March 2024).
- Malletzidou, L.; Kyratzopoulou, E.; Kyzaki, N.; Nerantzis, E.; Kazakis, N.A. Near-Infrared Spectroscopy for Growth Estimation of Spirulina Platensis Cultures. Methods Protoc. 2024, 7, 91. [Google Scholar] [CrossRef]
- Chapman, J.; Truong, V.K.; Elbourne, A.; Gangadoo, S.; Cheeseman, S.; Rajapaksha, P.; Latham, K.; Crawford, R.J.; Cozzolino, D. Combining Chemometrics and Sensors: Toward New Applications in Monitoring and Environmental Analysis. Chem. Rev. 2020, 120, 6048–6069. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Parsons, T.R.; Strickland, J.D. Discussion of Spectrophotometric Determination of Marine-Plant Pigments, with Revised Equations for Ascertaining Chlorophylls and Carotenoids. J. Mar. Res. 1963, 21, 619. [Google Scholar] [CrossRef]
- Zapata, D.; Arroyave, C.; Cardona, L.; Aristizábal, A.; Poschenrieder, C.; Llugany, M. Phytohormone Production and Morphology of Spirulina Platensis Grown in Dairy Wastewaters. Algal Res. 2021, 59, 102469. [Google Scholar] [CrossRef]
- Sili, C.C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II, Their Diversity in Space and Time; Springer: Dordrecht, The Netherlands, 2012; Volume 9789400738, pp. 677–705. ISBN 9789400738553. [Google Scholar]
- Djearamane, S.; Lim, Y.M.; Wong, L.S.; Lee, P.F. Cytotoxic Effects of Zinc Oxide Nanoparticles on Cyanobacterium Spirulina (Arthrospira) Platensis. PeerJ 2018, 6, e4682. [Google Scholar] [CrossRef] [PubMed]
- Vonshak, A. Spirulina: Growth, Physiology and Biochemistry. In Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology; Vonshak, A., Ed.; Taylor & Francis: Abingdon, UK, 2002; pp. 43–66. [Google Scholar]
- Águila-Carricondo, P.; de la Roche Cadavid, J.P.; Galán, P.L.; Bautista, L.F.; Vicente, G. New Green Biorefineries from Cyanobacterial-Microalgal Consortia: Production of Chlorophyll-Rich Extracts for the Cosmetic Industry and Sustainable Biogas. J. Clean. Prod. 2023, 429, 139652. [Google Scholar] [CrossRef]
- Isar, M.; Cirik, S.; Turan, G. Production of Natural and Functional Pigments in Arthrospira (Spirulina) Platensis Cultivated in Laboratory Conditions. Bull. Biotechnol. 2022, 3, 11–15. [Google Scholar] [CrossRef]
- Rangel-Yagui, C.D.O.; Danesi, E.D.G.; De Carvalho, J.C.M.; Sato, S. Chlorophyll Production from Spirulina Platensis: Cultivation with Urea Addition by Fed-Batch Process. Bioresour. Technol. 2004, 92, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Shevela, D.; Pishchalnikov, R.; Eichacker, L. Oxygenic Photosynthesis in Cyanobacteria. In Stress Biology of Cyanobacteria: Molecular Mechanisms to Cellular Responses; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2013; pp. 3–40. [Google Scholar] [CrossRef]
- Siva Kiran, R.R.; Madhu, G.M.; SV, S. Bioaccumulation of Cadmium in Blue Green Algae Spirulina (Arthrospira) Indica. J. Bioremediation Biodegrad. 2012, 3, 1–4. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, D.; Gao, W.; Zhang, X.; Ye, W.; Zhang, Z. The Metabolic Mechanisms of Cd-Induced Hormesis in Photosynthetic Microalgae, Chromochloris Zofingiensis. Sci. Total Environ. 2024, 912, 168966. [Google Scholar] [CrossRef]
- Wang, B.; Lin, L.; Yuan, X.; Zhu, Y.; Wang, Y.; Li, D.; He, J.; Xiao, Y. Low-Level Cadmium Exposure Induced Hormesis in Peppermint Young Plant by Constantly Activating Antioxidant Activity Based on Physiological and Transcriptomic Analyses. Front. Plant Sci. 2023, 14, 1088285. [Google Scholar] [CrossRef]
- Manrich, A.; de Oliveira, J.E.; Martins, M.A.; Mattoso, L.H.C. Physicochemical and Thermal Characterization of the Spirulina Platensis. J. Agric. Sci. Technol. B 2020, 10, 298–307. [Google Scholar] [CrossRef]
- Smith, B. Infrared Spectrum Interpretation, a Systematic Approach; CRC Press: Boca Raton, FL, USA, 1999; ISBN 0-8493-2463-7. [Google Scholar]
- Bataller, B.G.; Capareda, S.C. A Rapid and Non-Destructive Method for Quantifying Biomolecules in Spirulina Platensis via Fourier Transform Infrared—Attenuated Total Reflectance Spectroscopy. Algal Res. 2018, 32, 341–352. [Google Scholar] [CrossRef]
- Liu, H.J.; Xu, C.H.; Zhou, Q.; Wang, F.; Li, W.M.; Ha, Y.M.; Sun, S.Q. Analysis and Identification of Irradiated Spirulina Powder by a Three-Step Infrared Macro-Fingerprint Spectroscopy. Radiat. Phys. Chem. 2013, 85, 210–217. [Google Scholar] [CrossRef]
- Kavitha, E.; Devaraj Stephen, L.; Brishti, F.H.; Karthikeyan, S. Two-Trace Two-Dimensional (2T2D) Correlation Infrared Spectral Analysis of Spirulina Platensis and Its Commercial Food Products Coupled with Chemometric Analysis. J. Mol. Struct. 2021, 1244, 130964. [Google Scholar] [CrossRef]
- Biswas, A. Biosorption of Lead and Copper from Contaminated Solutions by the Cyanobacteria—Spirulina Maxima. Master’s Thesis, California State University, Long Beach, CA, USA, 2017. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts, 3rd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; ISBN 978-0-470-09307-8. [Google Scholar]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 9681308034. [Google Scholar]
- Al-Badwy, A.H.; Khalil, A.M.; Bashal, A.H.; Kebeish, R. Polysaccharides from Spirulina Platensis (PSP): Promising Biostimulants for the Green Synthesis of Silver Nanoparticles and Their Potential Application in the Treatment of Cancer Tumors. Microb. Cell Fact. 2023, 22, 1–12. [Google Scholar] [CrossRef]
- Tul’chinsky, V.M.; Zurabyan, S.E.; Asankozhoev, K.A.; Kogan, G.A.; Khorlin, A.Y. Study of the Infrared Spectra of Oligosaccharides in the Region 1000–40 cm−1. Carbohydr. Res. 1976, 51, 1–8. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Chen, X.; Yang, Z.; Cao, Y. Effects of the Polysaccharide SPS-3-1 Purified from Spirulina on Barrier Integrity and Proliferation of Caco-2 Cells. Int. J. Biol. Macromol. 2020, 163, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Brezeștean, I.; Bocăneală, M.; Gherman, A.M.R.; Porav, S.A.; Kacsó, I.; Rakosy-Tican, E.; Dina, N.E. Spectroscopic Investigation of Exopolysaccharides Purified from Arthrospira Platensis Cultures as Potential Bioresources. J. Mol. Struct. 2021, 1246, 131228. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.; Wang, C.; Zhu, Z.; Yu, L.; Yang, W.; Ren, X.; Liu, X. Characterization of Selenium-Containing Polysaccharide from Spirulina Platensis and Its Protective Role against Cd-Induced Toxicity. Int. J. Biol. Macromol. 2020, 164, 2465–2476. [Google Scholar] [CrossRef]
- Chen, W.; Xu, J.; Yu, Q.; Yuan, Z.; Kong, X.; Sun, Y.; Wang, Z.; Zhuang, X.; Zhang, Y.; Guo, Y. Structural Insights Reveal the Effective Spirulina Platensis Cell Wall Dissociation Methods for Multi-Output Recovery. Bioresour. Technol. 2020, 300, 122628. [Google Scholar] [CrossRef]
- Sytar, O.; Kumar, A.; Latowski, D.; Kuczynska, P.; Strzałka, K.; Prasad, M.N.V. Heavy Metal-Induced Oxidative Damage, Defense Reactions, and Detoxification Mechanisms in Plants. Acta Physiol. Plant. 2013, 35, 985–999. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Chu, H.; Zhou, X.; Zhang, Y. Advances in Microalgae-Based Livestock Wastewater Treatment: Mechanisms of Pollutants Removal, Effects of Inhibitory Components and Enhancement Strategies. Chem. Eng. J. 2024, 483, 149222. [Google Scholar] [CrossRef]
- Nalimova, A.A.; Popova, V.V.; Tsoglin, L.N.; Pronina, N.A. The Effects of Copper and Zinc on Spirulina Platensis Growth and Heavy Metal Accumulation in Its Cells. Russ. J. Plant Physiol. 2005, 52, 229–234. [Google Scholar] [CrossRef]
- Talapatra, N.; Mittal, V.; Maiti, T.K.; Ghosh, U.K. Algae-Based Biosorbent for Removal of Heavy Metals. In Encyclopedia of Green Materials; Baskar, C., Ramakrishna, S., Daniela La Rosa, A., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Abbas, S.; Ismail, I.M.; Mostafa, T.M.; Sulaymon, A.H. Biosorption of Heavy Metals: A Review. J. Chem. Sci. Technol. 2014, 3, 74–102. [Google Scholar]
- Ordóñez, J.I.; Cortés, S.; Maluenda, P.; Soto, I. Biosorption of Heavy Metals with Algae: Critical Review of Its Application in Real Effluents. Sustainability 2023, 15, 5521. [Google Scholar] [CrossRef]
Stock Solution I (500 mL) | Stock Solution II (500 mL) | Stock Solution III (900 mL) | Stock Solution IV (100 mL) | ||||
---|---|---|---|---|---|---|---|
Component | Amount | Component | Amount | Component | Amount | Component | Amount |
NaHCO3 | 13.61 g | NaNO3 | 2.50 g | ZnSO4·7H2O | 1 mL of 1 g/L | FeSO4·7H2O | 0.70 g |
Na2CO3 | 4.03 g | K2SO4 | 1.00 g | MnSO4·4H2O | 2 mL of 1 g/L | Na2-EDTA (Titriplex III) | 0.40 g |
K2HPO4 | 0.50 g | NaCl | 1.00 g | H3BO3 | 5 mL of 2 g/L | Distilled water | |
Distilled water | MgSO4·7H2O | 0.20 g | Co(NO3)2·6H2O | 5 mL of 0.2 g/L | |||
CaCl2·2H2O | 0.04 g | Na2MoO4·2H2O | 5 mL of 0.2 g/L | ||||
FeSO4·7H2O | 0.01 g | CuSO4·5H2O | 1 mL of 0.005 g/L | ||||
Na2-EDTA (Titriplex III) | 0.08 g | Na2-EDTA (Titriplex III) | 0.40 g | ||||
SL III and SL IV | 5 mL | Distilled water | |||||
Distilled water |
Concentration (ppm) | Metal Treatment | Day | Removal Efficiency Order |
---|---|---|---|
1 | Mono | 3 | Zn > Pb > Cd > Cu > Ni |
7 | Zn > Cd > Pb > Cu > Ni | ||
Multi | 3 | Cd = Cu > Pb > Zn > Ni | |
7 | Pb > Cd = Cu > Zn > Ni | ||
5 | Mono | 3 | Pb > Zn > Cd >Ni > Cu |
7 | Pb = Zn > Cd > Ni > Cu | ||
Multi | 3 | Cd > Pb > Zn > Cu > Ni | |
7 | Cd = Pb > Zn > Cu > Ni | ||
10 | Mono | 3 | Pb > Zn > Cd > Ni > Cu |
7 | Zn > Pb> Cd > Ni > Cu | ||
Multi | 3 | Zn > Pb > Cd > Ni > Cu | |
7 | Zn > Pb > Cd > Cu > Ni |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malletzidou, L.; Kyratzopoulou, E.; Kyzaki, N.; Nerantzis, E.; Kazakis, N.A. Towards the Sustainable Removal of Heavy Metals from Wastewater Using Arthrospira platensis: A Laboratory-Scale Approach in the Context of a Green Circular Economy. Appl. Sci. 2025, 15, 791. https://doi.org/10.3390/app15020791
Malletzidou L, Kyratzopoulou E, Kyzaki N, Nerantzis E, Kazakis NA. Towards the Sustainable Removal of Heavy Metals from Wastewater Using Arthrospira platensis: A Laboratory-Scale Approach in the Context of a Green Circular Economy. Applied Sciences. 2025; 15(2):791. https://doi.org/10.3390/app15020791
Chicago/Turabian StyleMalletzidou, Lamprini, Eleni Kyratzopoulou, Nikoletta Kyzaki, Evangelos Nerantzis, and Nikolaos A. Kazakis. 2025. "Towards the Sustainable Removal of Heavy Metals from Wastewater Using Arthrospira platensis: A Laboratory-Scale Approach in the Context of a Green Circular Economy" Applied Sciences 15, no. 2: 791. https://doi.org/10.3390/app15020791
APA StyleMalletzidou, L., Kyratzopoulou, E., Kyzaki, N., Nerantzis, E., & Kazakis, N. A. (2025). Towards the Sustainable Removal of Heavy Metals from Wastewater Using Arthrospira platensis: A Laboratory-Scale Approach in the Context of a Green Circular Economy. Applied Sciences, 15(2), 791. https://doi.org/10.3390/app15020791