Post-Traumatic Segmental Tibial Defects Management: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stoneback, J.W.; Erdman, M.K.; Marecek, G.S. Management of Segmental Tibial Bone Defects with a Motorized Intramedullary Bone Transport Nail: A Case Review with Follow-Up. J. Orthop. Trauma 2021, 35, S13–S18. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Jia, Q.; Wang, X.; Bahesutihan, Y.; Ma, C.; Ren, P.; Liu, Y.; Yusufu, A. Complications associated with single-level bone transport for the treatment of tibial bone defects caused by fracture-related infection. BMC Musculoskelet. Disord. 2023, 24, 514. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Q.; Ren, C.; Li, M.; Li, Z.; Zhang, K.; Huang, Q.; Ma, T. Proximal versus distal bone transport for the management of large segmental tibial defect: A clinical case series. Sci. Rep. 2023, 13, 3833. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, S.M.; Papakostidis, C.; Giannoudis, V.P.; Mandía-Martínez, A.; Giannoudis, P.V. Distraction osteogenesis versus induced membrane technique for infected tibial non-unions with segmental bone loss: A systematic review of the literature and meta-analysis of available studies. Eur. J. Trauma Emerg. Surg. 2023, 50, 705–721. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.; Tanwar, Y.S. Systematic approach to the management of post-traumatic segmental diaphyseal long bone defects: Treatment algorithm and comprehensive classification system. Strateg. Trauma. Limb Reconstr. 2021, 15, 106. [Google Scholar] [CrossRef]
- Mauffrey, C.; Barlow, B.T.; Smith, W. Management of segmental bone defects. JAAOS—J. Am. Acad. Orthop. Surg. 2015, 23, 143–153. [Google Scholar]
- Ilizarov, G.A. The principles of the Ilizarov method. Bull. Hosp. Jt. Dis. Orthop. Inst. 1988, 48, 1–11. [Google Scholar]
- Masquelet, A.; Kanakaris, N.K.; Obert, L.; Stafford, P.; Giannoudis, P.V. Bone repair using the Masquelet technique. JBJS 2019, 101, 1024–1036. [Google Scholar] [CrossRef]
- Adamczyk, A.; Meulenkamp, B.M.; Wilken, G.M.; Papp, S.M. Managing bone loss in open fractures. OTA Int. 2020, 3, e059. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, E.J.; Bosse, M.J. Factors influencing outcome following limb-threatening lower limb trauma: Lessons learned from the Lower Extremity Assessment Project (LEAP). JAAOS—J. Am. Acad. Orthop. Surg. 2006, 14, S205–S210. [Google Scholar] [CrossRef]
- Schemitsch, E.H. Size matters: Defining critical in bone defect size! J. Orthop. Trauma 2017, 31, S20–S22. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, C.K.; Ayad, M.; Lechtholz-Zey, E.; Chen, Y.; Lieberman, J.R. 3D-Printing for critical sized bone defects: Current concepts and future directions. Bioengineering 2022, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Paley, D.; Catagni, M.A.; Argnani, F.; Villa, A.; Bijnedetti, G.B.; Cattaneo, R. Ilizarov treatment of tibial nonunions with bone loss. Clin. Orthop. Relat. Res. 1989, 241, 146–165. [Google Scholar] [CrossRef]
- Testa, G.; Vescio, A.; Aloj, D.C.; Costa, D.; Papotto, G.; Gurrieri, L.; Sessa, G.; Pavone, V. Treatment of infected tibial non-unions with Ilizarov technique: A case series. J. Clin. Med. 2020, 9, 1352. [Google Scholar] [CrossRef]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Abula, A.; Yushan, M.; Ren, P.; Abulaiti, A.; Ma, C.; Yusufu, A. Reconstruction of soft tissue defects and bone loss in the tibia by flap transfer and bone transport by distraction osteogenesis: A case series and our experience. Ann. Plast. Surg. 2020, 84, S202–S207. [Google Scholar] [CrossRef]
- Ajmera, A.; Verma, A.; Agrawal, M.; Jain, S.; Mukherjee, A. Outcome of limb reconstruction system in open tibial diaphyseal fractures. Indian J. Orthop. 2015, 49, 429–435. [Google Scholar] [CrossRef]
- Azzam, W.; Atef, A. Our experience in the management of segmental bone defects caused by gunshots. Int. Orthop. 2016, 40, 233–238. [Google Scholar] [CrossRef]
- Babar, I.U.; Afsar, S.S.; Gulzar, M. Treatment of segmental tibial bone loss by distraction osteogenesis. J. Postgrad. Med. Inst. 2013, 27, 78–82. [Google Scholar]
- Bernstein, M.; Fragomen, A.T.; Sabharwal, S.; Barclay, J.; Rozbruch, R.S. Does integrated fixation provide benefit in the reconstruction of posttraumatic tibial bone defects? Clin. Orthop. Relat. Res. 2015, 473, 3143–3153. [Google Scholar] [CrossRef]
- Cao, Z.; Sui, X.; Xiao, Y.; Qing, L.; Wu, P.; Tang, J. Efficacy comparison of vascularized iliac crest bone flap and Ilizarov bone transport in the treatment of traumatic bone defects of the tibia combined with large soft tissue defects. J. Orthop. Surg. Res. 2023, 18, 349. [Google Scholar] [CrossRef] [PubMed]
- Chand, B.B.; Rajbhandari, A.; Banskota, A.K.; Banskota, B. Open segmental tibial bone defects treated with Ilizarov frame: A radiological and functional outcome study with average ten year follow-up. Int. Orthop. 2024, 48, 2519–2523. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Ouyang, X.; Zhang, H. Ankle joint salvage and reconstruction by limited ORIF combined with an Ilizarov external fixator for complex open tibial pilon fractures (AO 43-C3. 3) with segmental bone defects. BMC Musculoskelet. Disord. 2022, 23, 97. [Google Scholar] [CrossRef]
- Chloros, G.D.; Kanakaris, N.K.; Harwood, P.J.; Giannoudis, P.V. Induced membrane technique for acute bone loss and nonunion management of the tibia. OTA Int. 2022, 5, e170. [Google Scholar] [CrossRef] [PubMed]
- El-Alfy, B.; Abulsaad, M.; Abdelnaby, W.L. The use of free nonvascularized fibular graft in the induced membrane technique to manage post-traumatic bone defects. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 1191–1197. [Google Scholar] [CrossRef]
- Gupta, G.; Ahmad, S.; Zahid, M.; Khan, A.H.; Sherwani, M.K.A.; Khan, A.Q. Management of traumatic tibial diaphyseal bone defect by ‘induced-membrane technique’. Indian J. Orthop. 2016, 50, 290–296. [Google Scholar] [CrossRef]
- Hu, X.; Huang, L.; Zhong, C.; Du, W.; Cheng, W.; Shen, Y. Effect of a combination of local flap and sequential compression-distraction osteogenesis in the reconstruction of post-traumatic tibial bone and soft tissue defects. Chin. Med. J. 2013, 126, 2846–2851. [Google Scholar]
- Kang, Y.; Wu, Y.; Ma, Y.; Liu, J.; Gu, J.; Zhou, M.; Wang, Y.; Lin, F.; Rui, Y. ‘Primary free-flap tibial open fracture reconstruction with the Masquelet technique’ and internal fixation. Injury 2020, 51, 2970–2974. [Google Scholar] [CrossRef] [PubMed]
- Krappinger, D.; Irenberger, A.; Zegg, M.; Huber, B. Treatment of large posttraumatic tibial bone defects using the Ilizarov method: A subjective outcome assessment. Arch. Orthop. Trauma Surg. 2013, 133, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, S.; Xiao, Q.; Wang, G.; Yang, H.; Zhao, H.; Shu, B.; Zhuo, N. Efficacy comparison of double-level and single-level bone transport with Orthofix fixator for treatment of tibia fracture with massive bone defects. Int. Orthop. 2020, 44, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zeng, C.; Yuan, S.; Chen, Y.; Zhao, S.; Ren, G. Free flap transplantation combined with Ilizarov bone transport for the treatment of severe composite tibial and soft tissue defects. J. Int. Med. Res. 2021, 49, 3000605211017618. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, T.; Ren, C.; Li, Z.; Sun, L.; Xue, H.; Li, M.; Zhang, K.; Zhang, C.; Wang, Q. Treatment of segmental tibial defects by bone transport with circular external fixation and a locking plate. J. Int. Med. Res. 2020, 48, 300060520920407. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, L.; Bilichtin, E.; Durand, M.; de L’escalopier, N.; Murison, J.C.; Collombet, J.-M.; Rigal, S. Masquelet technique for open tibia fractures in a military setting. Eur. J. Trauma Emerg. Surg. 2019, 46, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, L.; Potier, L.; Ndiaye, R.; Choufani, C.; Mbaye, E.; Niang, C.-D. Challenges of the induced-membrane technique in the reconstruction of traumatic tibial defect with limited resources: A cohort study. Acta Orthop. Belg. 2020, 86, 606–613. [Google Scholar] [PubMed]
- Morris, R.; Hossain, M.; Evans, A.; Pallister, I. Induced membrane technique for treating tibial defects gives mixed results. Bone Jt. J. 2017, 99, 680–685. [Google Scholar] [CrossRef]
- Özpolat, N.; Tunçez, M.; Reisoğlu, A.; Akan, İ.; Kazimoğlu, C. Management of tibial non-unions with Masquelet technique after failed previous treatment options for Grade III open fractures. Turk. J. Trauma Emerg. Surg. 2022, 28, 1180–1185. [Google Scholar] [CrossRef]
- Sahibzada, A.S.; Khan, M.A.; Khan, M.S. Management of tibial bone defect due to high energy trauma using the locally manufactured external fixator by segmental bone transport. J. Ayub Med. Coll. Abbottabad 2005, 17, 24–72. [Google Scholar]
- Selim, N.M. Ilizarov trifocal lengthening followed by intramedullary nailing for massive posttraumatic tibial bone defects. Acta Orthop. Belg. 2013, 79, 706–710. [Google Scholar] [PubMed]
- Xu, J.; Zhong, W.-R.; Cheng, L.; Wang, C.-Y.; Wen, G.; Han, P.; Chai, Y.-M. The combined use of a neurocutaneous flap and the ilizarov technique for reconstruction of large soft tissue defects and bone loss in the tibia. Ann. Plast. Surg. 2017, 78, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-Q.; Fan, X.-Y.; He, X.-Q.; Wen, H.-J. Reconstruction of massive tibial bone and soft tissue defects by trifocal bone transport combined with soft tissue distraction: Experience from 31 cases. BMC Musculoskelet. Disord. 2021, 22, 34. [Google Scholar]
- Yoon, Y.-C.; Kim, Y.; Song, H.K.; Yoon, Y.H. Efficacy of staged surgery in the treatment of open tibial fractures with severe soft tissue injury and bone defect. Yonsei Med. J. 2022, 63, 915. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Di, J.; Peng, A. Double-level bone transport for large post-traumatic tibial bone defects: A single centre experience of sixteen cases. Int. Orthop. 2018, 42, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Benulic, C.; Canton, G.; Gril, I.; Murena, L.; Kristan, A. Management of acute bone loss following high grade open tibia fractures. Review of evidence on distraction osteogenesis and induced membrane techniques. Acta Bio Medica Atenei Parm. 2020, 91 (Suppl. S14), e2020012. [Google Scholar]
- Aktuglu, K.; Erol, K.; Vahabi, A. Ilizarov bone transport and treatment of critical-sized tibial bone defects: A narrative review. J. Orthop. Traumatol. 2019, 20, 22. [Google Scholar] [CrossRef]
- Hsu, C.-A.; Chen, S.-H.; Chan, S.-Y.; Yu, Y.-H. The induced membrane technique for the management of segmental tibial defect or nonunion: A systematic review and meta-analysis. BioMed Res. Int. 2020, 2020, 5893642. [Google Scholar] [CrossRef]
Inclusion Criteria: | Exclusion Criteria: |
---|---|
Post-traumatic segmental tibial defects | Defects following infection |
Age ≥ 16 years | Defects following bone tumor |
More than 5 cases | Defects following pseudoarthrosis |
Mean follow-up ≥ 1 year | Defects in bones other than the tibia |
Distraction osteogenesis and/or Masquelet technique | |
Language: English | |
Clinical studies | |
Outcomes of interest:
|
Bone Results | Description |
Excellent | Union, no infection, deformity < 7°, limb-length discrepancy < 2.5 cm |
Good | Union + any two of the following: absence of infection, deformity < 7°, limb-length discrepancy < 2.5 cm |
Fair | Union + only one of the following: absence of infection, deformity < 7°, limb-length discrepancy < 2.5 cm |
Poor | Nonunion/re-fracture/union + infection + deformity > 7° + limb-length discrepancy > 2.5 cm |
Functional Results | Description |
Excellent | Active, no limp, minimum stiffness (loss of <15° knee extension/<15° ankle dorsiflexion), no reflex sympathetic dystrophy, insignificant pain |
Good | Active with one or two of the following: limp, stiffness, reflex sympathetic dystrophy, significant pain |
Fair | Active with at least three of the following: limp, stiffness, reflex sympathetic dystrophy, significant pain |
Poor | Inactive (unemployment or inability to return to daily activities because of injury) |
Study: | Year: | Design: | Technique: | MINORS: |
---|---|---|---|---|
Abula et al. [17] | 2020 | RS | Distraction Osteogenesis | 10 |
Ajmera et al. [18] | 2015 | PS | Distraction Osteogenesis | 12 |
Azzam et al. [19] | 2016 | RS | Distraction Osteogenesis | 10 |
Babar et al. [20] | 2013 | PS | Distraction Osteogenesis | 12 |
Bernstein et al. [21] | 2015 | RS | Distraction Osteogenesis | 10 |
Cao et al. [22] | 2023 | RS | Distraction Osteogenesis | 10 |
Chand et al. [23] | 2024 | RS | Distraction Osteogenesis | 10 |
Chen et al. [24] | 2022 | RS | Distraction Osteogenesis | 10 |
Chloros et al. [25] | 2022 | RS | Masquelet | 11 |
El-Alfy et al. [26] | 2018 | CS | Masquelet | 10 |
Gupta et al. [27] | 2016 | PS | Masquelet | 11 |
Hu et al. [28] | 2013 | CS | Distraction Osteogenesis | 10 |
Kang et al. [29] | 2020 | CS | Masquelet | 10 |
Krappinger et al. [30] | 2013 | PS | Distraction Osteogenesis | 12 |
Li et al. [31] | 2020 | RS | Distraction Osteogenesis | 10 |
Li et al. [32] | 2021 | RS | Distraction Osteogenesis | 10 |
Lu et al. [33] | 2020 | RS | Distraction Osteogenesis | 10 |
Mathieu et al. [34] | 2020 | RS | Masquelet | 10 |
Mathieu et al. [35] | 2020 | RS | Masquelet | 10 |
Morris et al. [36] | 2017 | RS | Masquelet | 9 |
Özpolat et al. [37] | 2022 | RS | Masquelet | 10 |
Sahibzada et al. [38] | 2005 | CS | Distraction Osteogenesis | 10 |
Selim [39] | 2013 | CS | Distraction Osteogenesis | 10 |
Xu et al. [40] | 2017 | RS | Distraction Osteogenesis | 10 |
Xu et al. [41] | 2021 | RS | Distraction Osteogenesis | 10 |
Yoon et al. [42] | 2022 | RS | Masquelet | 10 |
Zhang et al. [43] | 2018 | RS | Distraction Osteogenesis | 10 |
Author/s | Year | Treatment Period | Patients | Mean Age (Range) | M/F Ratio | Mean Follow-Up (Range) (Months) |
---|---|---|---|---|---|---|
Abula et al. [17] | 2020 | 2010–2017 | 14 | 35.5 (18–54) | 8/6 | 29.9 (24–36) |
Ajmera et al. [18] | 2015 | 2009–2012 | 25 | 32.5 (20–48) | 23/2 | 15 (12–19) |
Azzam et al. [19] | 2016 | 2011–2013 | 30 | 32 (18–52) | 30/0 | 18 (10–32) |
Babar et al. [20] | 2013 | 2009–2011 | 32 | 31.6 (18–52) | 25/7 | N.A. (12–N.A.) |
Bernstein et al. [21] | 2015 | 2006–2012 | 58 | 45 (19–61) | 39/19 | 36 (12–96) |
Cao et al. [22] | 2023 | 2014–2020 | 35 | 33.2 (N.A.) | 18/17 | 32 (24–40) |
Chand et al. [23] | 2024 | 2013–2022 | 13 | 27.4 (18–48) | 11/2 | 103.4 (36–144) |
Chen et al. [24] | 2022 | 2014–2019 | 11 | 40.6 (29–58) | 7/4 | 41.1 (25–75) |
Hu et al. [28] | 2013 | 2006–2008 | 16 | 31.5 (18–56) | 14/2 | 30.2 (19–48) |
Krappinger et al. [30] | 2013 | 2004–2009 | 15 | 32 (16–61) | 11/4 | 17.3 (8–36) |
Li et al. [31] | 2020 | 2010–2017 | 26 | 40.4 (22–56) | 20/6 | 28.5 (13–38) |
Li et al. [32] | 2021 | 2012–2018 | 40 | N.A. (16–65) | 27/13 | 28.2 (18–60) |
Lu et al. [33] | 2020 | 2013–2017 | 12 | 45 (20–65) | 10/2 | 25.8 (12–48) |
Sahibzada et al. [38] | 2005 | 1997–2002 | 20 | N.A. (20–50) | 14/6 | 24 (N.A.) |
Selim [39] | 2013 | 2010–2011 | 10 | 30 (22–40) | 10/0 | 28.8 (24–36) |
Xu et al. [40] | 2017 | 2007–2012 | 18 | 41.2 (28–52) | 13/5 | 38.8 (25–52) |
Xu et al. [41] | 2021 | 2009–2016 | 31 | 33.4 (18–58) | 27/4 | 32 (12–96) |
Zhang et al. [43] | 2018 | 2010–2015 | 16 | 39.1 (16–65) | 9/7 | 29.5 (12–36) |
Author/s | Year | Mean Bone Defect Size (Range) (cm) | Bone Union Rate (%) | External Fixation Time (Range) (Months) | Bone Results ASAMI (Excellent/Good/Fair/Poor) | Functional Results (ASAMI) (Excellent/Good/Fair/Poor) | Patients (Complications) | Minor Complications | Major Complications | Complications per Patient |
---|---|---|---|---|---|---|---|---|---|---|
Abula et al. [17] | 2020 | 7 (4–12.5) | 71.4 | 6.9 (5.5–7.7) | 8/6/0/0 | 8/6/0/0 | N.A. | N.A. | N.A. | N.A. |
Ajmera et al. [18] | 2015 | 5.5 (4–9) | 92 | 10.1 (5.5–11.7) | 19/3/1/2 | 21/2/2/0 | 25 | 13 | 6 | 0.7 (19/25) |
Azzam et al. [19] | 2016 | 7.4 (3–12) | 100 | 7.5 (4.5–11.5) | 22/6/1/1 | 13/9/7/1 | 30 | 36 | 15 | 1.7 (51/30) |
Babar et al. [20] | 2013 | 5.4 (4.2–6.5) | 84.4 | 6 (N.A.) | 24/3/4/1 | 19/7/5/1 | 32 | 15 | 5 | 0.6 (20/32) |
Bernstein et al. [21] | 2015 | 5.3 (1.6–13) | 72.4 | 9.2 (1.2–19.3) | 47/8/0/0 | 51/2/0/1 | 58 | 21 | 27 | 0.8 (48/58) |
Cao et al. [22] | 2023 | 6.7 (N.A.) | 91.4% | 19.2 (N.A.) | 19/13/3/0 | 19/11/5/0 | 35 | 7 | 3 | 0.3 (10/35) |
Chand et al. [23] | 2024 | 7.7 (5–13) | 61.5% | 8.5 (N.A.) | 8/4/1/0 | 6/7/0/0 | 13 | 4 | 5 | 0.7 (9/13) |
Chen et al. [24] | 2022 | 5.6 (4–7) | 90.9 | 8.8 (6–14) | 10/0/0/1 | 0/7/4/0 | 11 | 11 | 9 | 1.8 (20/11) |
Hu et al. [28] | 2013 | 8.7 (7–10) | 87.5 | 12.9 (12–15.2) | 14/2/0/0 | 13/2/1/0 | 16 | 5 | 4 | 0.6 (9/16) |
Krappinger et al. [30] | 2013 | 6.6 (3–14.7) | 80 | 13.2 (7–25) | 7/6/2/0 | 6/7/2/0 | 15 | 27 | 17 | 2.9 (44/15) |
Li et al. [31] | 2020 | 9 (5.8–15) | 76.9 | 15.4 (9.5–20) | 20/0/0/6 | 22/4/0/0 | 26 | 7 | 6 | 0.5 (13/26) |
Li et al. [32] | 2021 | 8.3 (4–18) | 80 | 12.8 (10–24) | N.A. | 24/10/4/2 | 40 | 12 | 21 | 0.8 (33/40) |
Lu et al. [33] | 2020 | 6.7 (4–9.2) | 100 | 3.7 (2–5.2) | 12/0/0/0 | 8/4/0/0 | 12 | 4 | 0 | 0.3 (4/12) |
Sahibzada et al. [38] | 2005 | 7 (5–N.A.) | 85% | 6.8 (4–8) | 12/2/3/3 | 7/8/4/1 | 20 | 12 | 15 | 1.4 (27/20) |
Selim [39] | 2013 | 9 (6–12) | 80 | 2.6 (2–3) | 7/3/0/0 | 7/3/0/0 | 10 | 4 | 3 | 0.7 (7/10) |
Xu et al. [40] | 2017 | 4.5 (2–6) | 22 | 11.4 (7–20) | N.A. | N.A. | 18 | 9 | 14 | 1.3 (23/18) |
Xu et al. [41] | 2021 | 11.9 (8.2–18.2) | 67.7 | 22.7 (14–37) | 6/14/8/3 | 8/15/5/3 | 31 | 31 | 14 | 1.5 (45/31) |
Zhang et al. [43] | 2018 | 10.9 (6–20) | 81.3 | 12 (5–18) | 10/0/0/6 | 12/4/0/0 | 16 | 27 | 6 | 2.1 (33/16) |
Author/s | Year | Pts | DU or NU | AD >5° | Deep, Persistent, or Recurrent Infection | Refracture | LLD > 2.5 cm | Other Major Complications |
---|---|---|---|---|---|---|---|---|
Ajmera et al. [18] | 2015 | 25 | 2 | 0 | 2 | 0 | 2 | N.A. |
Azzam et al. [19] | 2016 | 30 | N.A. | 8 | 1 | 1 | 1 | 4 Angulation more than 7° (corrected with hinges) |
Babar et al. [20] | 2013 | 32 | 5 | N.A. | N.A. | N.A. | N.A. | N.A. |
Bernstein et al. [21] | 2015 | 58 | 16 | 6 | 0 | 3 | N.A. | 1 Osteomyelitis 1 Septic Knee |
Cao et al. [22] | 2023 | 35 | 3 | N.A. | N.A. | 0 | N.A. | N.A. |
Chand et al. [23] | 2024 | 13 | 5 | N.A. | N.A. | 0 | N.A. | N.A. |
Chen et al. [24] | 2022 | 11 | 1 | N.A. | 1 | N.A. | N.A. | 6 Post-traumatic arthritis 1 Elongated callus curvature |
Hu et al. [28] | 2013 | 16 | 2 | 2 | N.A. | N.A. | N.A. | N.A. |
Krappinger et al. [30] | 2013 | 15 | 3 | 7 | 2 | N.A. | 3 | 2 Late bending of the regenerated bone after frame removal |
Li et al. [31] | 2020 | 26 | 6 | N.A. | N.A. | N.A. | N.A. | N.A. |
Li et al. [32] | 2021 | 40 | 8 | N.A. | 0 | 2 | 1 | 10 Severe nail tunnel reaction or mechanical axis deviation |
Lu et al. [33] | 2020 | 12 | 0 | 0 | 0 | 0 | N.A. | N.A. |
Sahibzada et al. [38] | 2005 | 20 | 3 | 6 | N.A. | 1 | 5 | N.A. |
Selim [39] | 2013 | 10 | 2 | 0 | N.A. | 1 | 0 | N.A. |
Xu et al. [40] | 2017 | 18 | 14 | 0 | N.A. | N.A. | 0 | N.A. |
Xu et al. [41] | 2021 | 31 | 10 | N.A. | 3 | 1 | N.A. | N.A. |
Zhang et al. [43] | 2018 | 16 | 3 | 0 | N.A. | 3 | N.A. | N.A. |
Author/s | Year | Pts | Pin Tract Infection | LLD < 2.5 cm | Joint Related Complications | Other Minor Complications |
---|---|---|---|---|---|---|
Ajmera et al. [18] | 2015 | 25 | 4 | N.A. | 6 | 2 Aseptic pin loosening 1 Skin reaction after fixator application |
Azzam et al. [19] | 2016 | 30 | 16 | N.A. | 14 | 3 Poor quality of the regeneration 2 Skin invagination at the docking site 1 Translation at the planned docking site |
Babar et al. [20] | 2013 | 32 | 12 | N.A. | N.A. | 3 Wire re-tension |
Bernstein et al. [21] | 2015 | 58 | 10 | N.A. | 1 | 5 Equinus contracture 4 Entrapment of overlying skin 1 Failure of the fibula to separate |
Cao et al. [22] | 2023 | 35 | 3 | N.A. | N.A. | 1 Pin loosening 3 Soft tissue incarceration |
Chand et al. [23] | 2024 | 13 | 4 | N.A. | N.A. | N.A. |
Chen et al. [24] | 2022 | 11 | 3 | N.A. | 6 | 2 Superficial wound infection |
Hu et al. [28] | 2013 | 16 | 1 | 1 | 3 | N.A. |
Krappinger et al. [30] | 2013 | 15 | 9 | 12 | 6 | N.A. |
Li et al. [31] | 2020 | 26 | 7 | N.A. | N.A. | N.A. |
Li et al. [32] | 2021 | 40 | N.A. | 4 | 8 | N.A. |
Lu et al. [33] | 2020 | 12 | 4 | N.A. | 0 | N.A. |
Sahibzada et al. [38] | 2005 | 20 | 8 | N.A. | N.A. | 4 Foot equinus |
Selim [39] | 2013 | 10 | 1 | 0 | 1 | 2 Equinus deformity |
Xu et al. [40] | 2017 | 18 | 5 | 0 | 0 | 4 Mild contractures of the Achilles tendon during bone transport |
Xu et al. [41] | 2021 | 31 | 2 | 3 | 12 | 9 Muscle contraction 4 Axial deviation, which disappeared after adjusting the frame 1 K-wire cut out |
Zhang et al. [43] | 2018 | 16 | 13 | 3 | 3 | 8 Soft tissues cut by the wires |
Author/s | Year | Treatment Period | Patients | Mean Age (Range) | M/F Ratio | Mean Follow-Up (Range) (Months) |
---|---|---|---|---|---|---|
Chloros et al. [25] | 2022 | 2016–2020 | 7 | 36.1 (22–67) | 6/1 | N.A. (12–N.A.) |
El-Alfy et al. [26] | 2018 | 2013–2017 | 6 | 29.7 (20–37) | 4/2 | N.A. (15–N.A.) |
Gupta et al. [27] | 2016 | 2010–2013 | 7 | 35.5 (18–55) | 5/2 | 21.5 (18–24) |
Kang et al. [29] | 2020 | 2018–2019 | 15 | 46.5 (19–72) | 11/4 | N.A. (12–24) |
Mathieu et al. [34] | 2020 | 2009–2018 | 15 | 39 (26–61) | 12/3 | 33 (12–69) |
Mathieu et al. [35] | 2020 | 2007–2012 | 8 | 34.3 (22–71) | N.A. | 14.9 (12–22) |
Morris et al. [36] | 2017 | 2010–2015 | 12 | 36 (16–62) | 9/3 | 22.5 (13–32) |
Özpolat et al. [37] | 2022 | 2016–2019 | 11 | 40.7 (25–63) | 11/0 | 24.6 (13–40) |
Yoon et al. [42] | 2022 | 2014–2019 | 32 | 43.9 (28–85) | 28/4 | N.A. (12–N.A.) |
Author/s | Year | Mean Bone Defect Size (Range) (cm) | Bone Union Rate (%) | Time to Union (Range) (Months) | Mean Delay from Injury to Masquelet (Range) (Months) | Mean Previous Operative Procedures (Range) | Pts (Complications) | Nonunion | Infection | Amputation | Other Complications | Complications per Patient |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chloros et al. [25] | 2022 | 6.9 (5–8) | 85.7% | 8.7 (6–18) | 4.4 (4–5) | N.A. | 7 | 1 | 0 | 0 | 1 Soft tissue irritation | 0.3 (2/7) |
El-Alfy et al. [26] | 2018 | 6.3 (5–9) | 83.3% | 5.6 (5–8) | N.A. | N.A. | 6 | 1 | 1 | 0 | 0 | 0.3 (2/6) |
Gupta et al. [27] | 2016 | 5.2 (3.3–8.5) | 85.7 | 10.5 (8–13) | 9.2 (0.8–24) | 1.7 (0–3) | 7 | 1 | N.A. | N.A. | 5 LLD < 2.5cm | 0.9 (6/7) |
Kang et al. [29] | 2020 | 5.8 (4–11) | 93.3% | N.A. (4–7) | N.A. | N.A. | 15 | 1 | 1 | 0 | 0 | 0.1 (2/15) |
Mathieu et al. [34] | 2020 | 7.7 (3–15) | 86.7% | 10.1 (8–12) | 0.7 (0–2) | 6.7 (5–12) | 15 | 2 | 1 | 0 | 5 Ankle dorsiflexion inferior to 5° | 0.5 (8/15) |
Mathieu et al. [35] | 2020 | 4.8 (2–11) | 87.5% | N.A. | 1.1 (0.5–1.6) | N.A. | 8 | 1 | 3 | 0 | 0 | 0.5 (4/8) |
Morris et al. [36] | 2017 | 5.8 (2–15) | 41.7 | N.A. | 1.3 (0.1–11) | N.A. | 12 | 7 | 5 | 2 | 1 Plate breakage 1 Minimal callus | 1.3 (16/12) |
Özpolat et al. [37] | 2022 | 5.1 (2.5–9.8) | 81.8 | N.A. | 44.8 (18–100) | 2.8 (1–6) | 11 | 2 | 3 | 1 | 1 Bone (graft) resorption at the defect site at 18-month follow-up after a trauma | 0.6 (7/11) |
Yoon et al. [42] | 2022 | 4.4 (0.9–10) | 96.9 | 9.4 (4–16) | N.A. | N.A. | 32 | 1 | 6 | 1 | 1 Angular deformity 10° 1 Joint Stiffness | 0.3 (10/32) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrara, G.; Zampogna, B.; Schick, V.D.; Larizza, L.; Rizzo, P.; Sanzarello, I.; Nanni, M.; Leonetti, D. Post-Traumatic Segmental Tibial Defects Management: A Systematic Review of the Literature. Appl. Sci. 2025, 15, 64. https://doi.org/10.3390/app15010064
Marrara G, Zampogna B, Schick VD, Larizza L, Rizzo P, Sanzarello I, Nanni M, Leonetti D. Post-Traumatic Segmental Tibial Defects Management: A Systematic Review of the Literature. Applied Sciences. 2025; 15(1):64. https://doi.org/10.3390/app15010064
Chicago/Turabian StyleMarrara, Giovanni, Biagio Zampogna, Viktor Dietrich Schick, Leone Larizza, Paolo Rizzo, Ilaria Sanzarello, Matteo Nanni, and Danilo Leonetti. 2025. "Post-Traumatic Segmental Tibial Defects Management: A Systematic Review of the Literature" Applied Sciences 15, no. 1: 64. https://doi.org/10.3390/app15010064
APA StyleMarrara, G., Zampogna, B., Schick, V. D., Larizza, L., Rizzo, P., Sanzarello, I., Nanni, M., & Leonetti, D. (2025). Post-Traumatic Segmental Tibial Defects Management: A Systematic Review of the Literature. Applied Sciences, 15(1), 64. https://doi.org/10.3390/app15010064