Aflatoxin Inactivation in Gamma-Ray-Irradiated Almonds
<p>Levels of aflatoxin (B1, B2, G1, and G2) solutions (5 μg/Kg) in control samples and after four γ-irradiation doses (1, 2, 4, and 8 kGy) (<span class="html-italic">n</span> = 9). Each aflatoxin’s statistically significant alterations (<span class="html-italic">p</span> < 0.05) are shown with small letters (a–e, for example).</p> "> Figure 2
<p>Levels of aflatoxin (B1, B2, G1, and G2) reduction in spiked (5 μg/kg) almond samples and after four γ-irradiation doses (1, 2, 4, and 8 kGy) (<span class="html-italic">n</span> = 9). Each aflatoxin’s statistically significant alterations (<span class="html-italic">p</span> < 0.05) are shown with small letters (a–e, for example).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation and Treatment
2.3. Irradiation Process
2.4. HPLC Analysis of Aflatoxins
2.5. Determination of Essential Nutrients
2.5.1. Protein Content
2.5.2. Fat Content
2.5.3. Fatty Acid Content
2.5.4. α-Tocopherol Content
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of γ-Irradiation on Aflatoxin Levels
3.2. Impact of γ-Irradiation on the Nutrients of Almonds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Navale, V.; Vamkudoth, K.R.; Ajmera, S.; Dhuri, V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol. Rep. 2021, 8, 1008–1030. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, N.A.; Al-Ameri, H.A.; Ramadan, N.A.; Al-Ameri, H.A. Aflatoxins. In Aflatoxins—Occurrence, Detoxification, Determination and Health Risks; Abdulra'Uf, L.B., Ed.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Dhakal, A.; Sbar, E. Aflatoxin Toxicity; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Benkerroum, N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef] [PubMed]
- Bbosa, G.S.; Kitya, D.; Lubega, A.; Ogwal-Okeng, J.; Anokbonggo, W.W.; Kyegombe, D.B. Review of the Biological and Health Effects of Aflatoxins on Body Organs and Body Systems. Aflatoxins-Recent Adv. Futur. Prospect. 2013, 12, 239–265. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Watson, S.; Routledge, M.N. Aflatoxin Exposure and Associated Human Health Effects, a Review of Epidemiological Studies. Food Saf. 2016, 4, 14–27. [Google Scholar] [CrossRef]
- Kumar, A.; Pathak, H.; Bhadauria, S.; Sudan, J. Aflatoxin contamination in food crops: Causes, detection, and management: A review. Food Prod. Process. Nutr. 2021, 3, 17. [Google Scholar] [CrossRef]
- Abrehame, S.; Manoj, V.R.; Hailu, M.; Chen, Y.-Y.; Lin, Y.-C.; Chen, Y.-P. Aflatoxins: Source, Detection, Clinical Features and Prevention. Processes 2023, 11, 204. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Müller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef]
- Lavkor, I.; Var, I. The Control of Aflatoxin Contamination at Harvest, Drying, Pre- Storage and Storage Periods in Peanut: The New Approach. Aflatoxin-Control Anal. Detect. Health Risks 2017, 3, 45–64. [Google Scholar] [CrossRef]
- Hamad, G.M.; Mehany, T.; Simal-Gandara, J.; Abou-Alella, S.; Esua, O.J.; Abdel-Wahhab, M.A.; Hafez, E.E. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 2023, 144, 109350. [Google Scholar] [CrossRef]
- Santos, A.R.; Carreiró, F.; Freitas, A.; Barros, S.; Brites, C.; Ramos, F.; Sanches Silva, A. Mycotoxins Contamination in Rice: Analytical Methods, Occurrence and Detoxification Strategies. Toxins 2022, 14, 647. [Google Scholar] [CrossRef]
- Munir, M.T.; Federighi, M. Control of foodborne biological hazards by ionizing radiations. Foods 2020, 9, 878. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.; Khorvash, R.; Goli, M.; Ranjbaran, S.M.; Najarian, A.; Mohammadi Nafchi, A. Review of proposed different irradiation methods to inactivate food-processing viruses and microorganisms. Food Sci. Nutr. 2021, 9, 5883–5896. [Google Scholar] [CrossRef] [PubMed]
- Sipos, P.; Peles, F.; Brassó, D.L.; Béri, B.; Pusztahelyi, T.; Pócsi, I.; Győri, Z. Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins 2021, 13, 204. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, I.; Orfi, M.; Shamma, M. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops. Braz. J. Microbiol. 2008, 39, 787–791. [Google Scholar] [CrossRef]
- de Camargo, A.C.; De Souza Vieira, T.M.F.; Regitano-d’Arce, M.A.B.; Alencar, S.M.d.; Calori-Domingues, M.A.; Fillet Spoto, M.H.; Canniatti-Brazaca, S.G. Gamma irradiation of in-shell and blanched peanuts protects against mycotoxic fungi and retains their nutraceutical components during long-term storage. Int. J. Mol. Sci. 2012, 13, 10935–10958. [Google Scholar] [CrossRef]
- Sadeghi, E.; Solaimanimehr, S.; Mirzazadeh, M.; Jamshidpoor, S. The effect of gamma irradiation, microwaves, and roasting on aflatoxin levels in pistachio kernels. World Mycotoxin J. 2023, 16, 75–83. [Google Scholar] [CrossRef]
- Rezaie, M.R.; Zareie, N. Impact of granite irradiation on aflatoxin reduction in pistachio. Toxicon 2021, 199, 7–11. [Google Scholar] [CrossRef]
- Hooshmand, H.; Klopfenstein, C.F. Effects of gamma irradiation on mycotoxin disappearance and amino acid contents of corn, wheat, and soybeans with different moisture contents. Plant Foods Hum. Nutr. 1995, 47, 227–238. [Google Scholar] [CrossRef]
- Serra, M.S.; Pulles, M.B.; Mayanquer, F.T.; Vallejo, M.C.; Rosero, M.I.; Ortega, J.M.; Naranjo, L.N. Evaluation of the Use of Gamma Radiation for Reduction of Aflatoxin B1 in Corn (Zea mays) Used in the Production of Feed for Broiler Chickens. J. Agric. Chem. Environ. 2018, 7, 21–33. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Gururani, P.; Bisht, B.; Kumar, V.; Kumar, N.; Joshi, R.; Vlaskin, M.S. Impact of irradiation on physico-chemical and nutritional properties of fruits and vegetables: A mini review. Heliyon 2022, 8, e10918. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Yusop, S.M.; Rahman, I.A.; Dauqan, E.; Abdullah, A. Efficacy of Gamma Irradiation in Improving the Microbial and Physical Quality Properties of Dried Chillies (Capsicum annuum L.): A Review. Foods 2022, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.; Vieira, K.; Santos, M.; Mendes de Souza, P. Effects of Radiation Technologies on Food Nutritional Quality. Descr. Food Sci. 2018, 1, 10–5772. [Google Scholar] [CrossRef]
- Vita, D.S.; Rosa, P.; Giuseppe, A. Effect of Gamma Irradiation on Aflatoxins and Ochratoxin A Reduction in Almond Samples. J. Food Res. 2014, 3, 113. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Xie, Q.F.; Che, L.M. Effects of gamma irradiation on aflatoxin B1 levels in soybean and on the properties of soybean and soybean oil. Appl. Radiat. Isot. 2018, 139, 224–230. [Google Scholar] [CrossRef]
- Zoumpoulakis, P.; Sinanoglou, V.J.; Batrinou, A.; Strati, I.F.; Miniadis-Meimaroglou, S.; Sflomos, K. A combined methodology to detect γ-irradiated white sesame seeds and evaluate the effects on fat content, physicochemical properties and protein allergenicity. Food Chem. 2012, 131, 713–721. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Adamaki-Sotiraki, C.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Waste Orange Peels as a Feed Additive for the Enhancement of the Nutritional Value of Tenebrio molitor. Foods 2023, 12, 783. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 796/2002 of 6 May 2002 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis and the additional notes in the Annex to Council Regulation (EEC) No. Off. J. Eur. Communities 2002, L128, 8–28. [Google Scholar]
- Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Palaiogiannis, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int. J. Mol. Sci. 2023, 24, 1113. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Olive Oil Produced from Olives Stored under CO2 Atmosphere: Volatile and Physicochemical Characterization. Antioxidants 2022, 12, 30. [Google Scholar] [CrossRef]
- Di Stefano, V.; Pitonzo, R.; Cicero, N.; D’Oca, M.C. Mycotoxin contamination of animal feedingstuff: Detoxification by gamma-irradiation and reduction of aflatoxins and ochratoxin A concentrations. Food Addit. Contam.-Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 2034–2039. [Google Scholar] [CrossRef]
- Di Stefano, V.; Pitonzo, R.; Bartolotta, A.; D’Oca, M.C.; Fuochi, P. Effects of γ-irradiation on the α-tocopherol and fatty acids content of raw unpeeled almond kernels (Prunus dulcis). LWT 2014, 59, 572–576. [Google Scholar] [CrossRef]
- Bhatti, I.A.; Iqbal, M.; Anwar, F.; Shahid, S.A.; Shahid, M. Quality characteristics and microbiological safety evaluation of oils extracted from gamma irradiated almond (Prunus dulcis Mill.) seeds. Grasas Y Aceites 2013, 64, 68–76. [Google Scholar] [CrossRef]
- Momchilova, S.; Kazakova, A.; Taneva, S.; Aleksieva, K.; Mladenova, R.; Karakirova, Y.; Petkova, Z.; Kamenova-Nacheva, M.; Teneva, D.; Denev, P. Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts. Molecules 2023, 28, 1439. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Chang, N.W.; Huang, P.C. Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids 1998, 33, 481–487. [Google Scholar] [CrossRef]
Nutrients | Control | 1 kGy | 2 kGy | 4 kGy | 8 kGy |
---|---|---|---|---|---|
Protein (g/100 g) | 21.23 ± 0.91 a | 21.11 ± 0.51 a | 20.96 ± 0.99 a | 20.88 ± 1.44 a | 19.74 ± 1.4 a |
Fat (g/100 g) | 52.17 ± 1.93 a | 52.54 ± 1.79 a | 52.91 ± 2.7 a | 53.22 ± 3.25 a | 55.69 ± 3.9 a |
Vitamin E (mg a-tocopherol/100 g) | 25.97 ± 1.64 a | 24.18 ± 1.81 a | 23.9 ± 0.65 a | 20.57 ± 0.91 b | 17.16 ± 0.36 c |
Fatty Acid | Control | 1 kGy | 2 kGy | 4 kGy | 8 kGy |
---|---|---|---|---|---|
Palmitic (C16:0) | 6.28 ± 0.28 a | 6.36 ± 0.44 a | 6.44 ± 0.25 a | 6.54 ± 0.27 a | 6.59 ± 0.14 a |
Stearic (C18:0) | 2.38 ± 0.14 a | 2.42 ± 0.1 a | 2.45 ± 0.09 a | 2.5 ± 0.17 a | 2.53 ± 0.08 a |
∑ Saturated (SFA) | 8.66 ± 0.42 a | 8.78 ± 0.54 a | 8.89 ± 0.34 a | 9.04 ± 0.44 a | 9.12 ± 0.22 a |
Palmitoleic (C16:1) | 0.21 ± 0.01 c | 0.24 ± 0.01 b | 0.25 ± 0.01 b | 0.33 ± 0.01 a | 0.35 ± 0.02 a |
Oleic (C18:1) | 68.6 ± 4.73 a | 70.27 ± 2.04 a | 71.06 ± 3.13 a | 72.87 ± 2.84 a | 73.25 ± 1.68 a |
∑ Monounsaturated (MUFA) | 68.81 ± 4.74 a | 70.51 ± 2.05 a | 71.31 ± 3.13 a | 73.2 ± 2.85 a | 73.6 ± 1.71 a |
Linoleic (C18:2, ω-6) | 17.18 ± 0.46 a | 16.52 ± 1.14 a,b | 16.22 ± 0.81 a,b | 15.28 ± 0.84 b,c | 14.15 ± 0.4 c |
∑ Polyunsaturated (PUFA) | 17.18 ± 0.46 a | 16.52 ± 1.14 a,b | 16.22 ± 0.81 a,b | 15.28 ± 0.84 b,c | 14.15 ± 0.4 c |
PUFA:SFA ratio | 1.99 ± 0.04 a | 1.88 ± 0.01 b | 1.82 ± 0.02 c | 1.69 ± 0.01 d | 1.55 ± 0.01 e |
MUFA:PUFA ratio | 4 ± 0.17 d | 4.28 ± 0.17 c | 4.4 ± 0.03 c | 4.79 ± 0.08 b | 5.2 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozinou, E.; Athanasiadis, V.; Samanidis, I.; Govari, M.; Govaris, A.; Sflomos, K.; Lalas, S.I. Aflatoxin Inactivation in Gamma-Ray-Irradiated Almonds. Appl. Sci. 2024, 14, 11985. https://doi.org/10.3390/app142411985
Bozinou E, Athanasiadis V, Samanidis I, Govari M, Govaris A, Sflomos K, Lalas SI. Aflatoxin Inactivation in Gamma-Ray-Irradiated Almonds. Applied Sciences. 2024; 14(24):11985. https://doi.org/10.3390/app142411985
Chicago/Turabian StyleBozinou, Eleni, Vassilis Athanasiadis, Iordanis Samanidis, Maria Govari, Alexander Govaris, Konstantinos Sflomos, and Stavros I. Lalas. 2024. "Aflatoxin Inactivation in Gamma-Ray-Irradiated Almonds" Applied Sciences 14, no. 24: 11985. https://doi.org/10.3390/app142411985
APA StyleBozinou, E., Athanasiadis, V., Samanidis, I., Govari, M., Govaris, A., Sflomos, K., & Lalas, S. I. (2024). Aflatoxin Inactivation in Gamma-Ray-Irradiated Almonds. Applied Sciences, 14(24), 11985. https://doi.org/10.3390/app142411985