The Effect of the Cultivar and Process Parameters on Quality and Biologically Active Compounds Content in Impregnated Carrot Tissue
<p>Vacuum impregnation equipment—schema [<a href="#B17-applsci-14-11984" class="html-bibr">17</a>]. Numbers 1 and 4—valves; 2—PT100 temperature probe; 3—vacuum gauge; 5—lid; 6—vacuum chamber; 7—water jacket; 8—vacuum pump; 9—ultrasonic transducers.</p> "> Figure 2
<p>The scheme of the vacuum impregnation of carrot.</p> "> Figure 3
<p>Ascorbic acid content—AAC (<b>a</b>); impregnation degree—ID (<b>b</b>). Mean ± standard deviation. Different letters above the bars show a significant difference at <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Micro-CT scans of carrot slices: raw (<b>a</b>), impregnated at 5 kPa (<b>b</b>), and at 30 kPa (<b>c</b>). Regions that have been marked with a color other than gray indicate the presence of an air-filled spaces.</p> "> Figure 5
<p>Ion leakage (<span class="html-italic">IL</span>) in impregnated samples. Mean ± standard deviation. The different letters above the bars indicate a significant difference at <span class="html-italic">p</span> < 0.05 for the ANOVA and Tukey post hoc test mean comparisons.</p> "> Figure 6
<p>Color change (<b>a</b>) and whiteness index (<b>b</b>) for raw and processed samples. Mean ± standard deviation. The different letters above the bars indicate a significant difference at <span class="html-italic">p</span> < 0.05 for the ANOVA and Tukey post hoc test mean comparisons.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Impregnation Procedure
2.3. Measurement of Ascorbic Acid Content (AAC) and Degree of Impregnation (ID)
2.4. Microcomputed Tomography
2.5. Determination of Ion Leakage
2.6. Texture Analysis
2.7. Analysis of Structure Forming Compounds
2.8. Determining the Color Change
2.9. Determination of Carotenoid Content
2.10. Phenolic Compound Determination
2.11. Antioxidant Activity Determination
2.12. Statistical Analysis
3. Results
3.1. Ascorbic Acid Content and Degree of Impregnation
3.2. Influence of VI on Structure and Texture of the Material
3.3. Influence of VI on Color
3.4. Effect of VI on the Chemical Composition of the Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Derossi, A.; De Pilli, T.; Severini, C. Application of Vacuum Impregnation Techniques to Improve the pH Reduction of Vegetables: Study on Carrots and Eggplants. Food Bioprocess Technol. 2013, 6, 3217–3226. [Google Scholar] [CrossRef]
- Gras, M.; Vidal-Brotóns, N.; Betoret, A.; Chiralt; Fito, P. The Response of Some Vegetables to Vacuum Impregnation. Innov. Food Sci. Emerg. Technol. 2002, 3, 263–269. [Google Scholar] [CrossRef]
- Demir, H.; Çelik, S.; Sezer, Y.Ç. Effect of Ultrasonication and Vacuum Impregnation Pretreatments on the Quality of Beef Marinated in Onion Juice a Natural Meat Tenderizer. Food Sci. Technol. Int. Cienc. Tecnol. Los Aliment. Int. 2022, 28, 340–352. [Google Scholar] [CrossRef]
- Hofmeister, L.C.; Souza, J.A.R.; Laurindo, J.B. Use of Dyed Solutions to Visualize Different Aspects of Vacuum Impregnation of Minas Cheese. LWT Food Sci. Technol. 2005, 38, 379–386. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Zhao, L.; Chen, L.; He, Y.; Yang, H. Vacuum Impregnation of Fish Gelatin Combined with Grape Seed Extract Inhibits Protein Oxidation and Degradation of Chilled Tilapia Fillets. Food Chem. 2019, 294, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Fito, P.; Andrés, A.; Chiralt, A.; Pardo, P. Coupling of Hydrodynamic Mechanism and Deformation-Relaxation Phenomena during Vacuum Treatments in Solid Porous Food-Liquid Systems. J. Food Eng. 1996, 27, 229–240. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Rodríguez-Lafitte, E.; Villagrán, Z.; Aurora-Vigo, E.F.; Ruvalcaba-Gómez, J.M.; Símpalo-López, W.B.; Martínez-Esquivias, F.; Sarango-Córdova, C.H. Optimization of Vacuum Impregnation with Aqueous Extract from Hibiscus Sabdariffa Calyces in Apple Slices by Response Surface Methodology: Effect on Soluble Phenols, Flavonoids, Antioxidant Activity, and Physicochemical Parameters. Appl. Sci. 2024, 14, 10850. [Google Scholar] [CrossRef]
- Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Kidoń, M. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review. Int. J. Mol. Sci. 2014, 15, 16577–16610. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, D.; Andrés, A.; Chiralt, A.; Fito, P. The Response of Some Properties of Fruits to Vacuum Impregnation. J. Food Process Eng. 1998, 21, 59–73. [Google Scholar] [CrossRef]
- Gras, M.; Vidal, D.; Betoret, N.; Chiralt, A.; Fito, P. Calcium Fortification of Vegetables by Vacuum Impregnation: Interactions with Cellular Matrix. J. Food Eng. 2003, 56, 279–284. [Google Scholar] [CrossRef]
- Kang, J.-W.; Kang, D.-H. Antimicrobial Efficacy of Vacuum Impregnation Washing with Malic Acid Applied to Whole Paprika, Carrots, King Oyster Mushrooms and Muskmelons. Food Control 2017, 82, 126–135. [Google Scholar] [CrossRef]
- Santarelli, V.; Neri, L.; Moscetti, R.; Di Mattia, C.D.; Sacchetti, G.; Massantini, R.; Pittia, P. Combined Use of Blanching and Vacuum Impregnation with Trehalose and Green Tea Extract as Pre-Treatment to Improve the Quality and Stability of Frozen Carrots. Food Bioprocess Technol. 2021, 14, 1326–1340. [Google Scholar] [CrossRef]
- Mújica-Paz, H.; Valdez-Fragoso, A.; López-Malo, A.; Palou, E.; Welti-Chanes, J. Impregnation Properties of Some Fruits at Vacuum Pressure. J. Food Eng. 2003, 56, 307–314. [Google Scholar] [CrossRef]
- Simões, A.D.N.; Allende, A.; Tudela, J.A.; Puschmann, R.; Gil, M.I. Optimum Controlled Atmospheres Minimise Respiration Rate and Quality Losses While Increase Phenolic Compounds of Baby Carrots. LWT Food Sci. Technol. 2011, 44, 277–283. [Google Scholar] [CrossRef]
- Surjadinata, B.B.; Cisneros-Zevallos, L. Biosynthesis of Phenolic Antioxidants in Carrot Tissue Increases with Wounding Intensity. Food Chem. 2012, 134, 615–624. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Pérez-Carrillo, E.; Velázquez-Reyes, H.H.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Application of Wounding Stress to Produce a Nutraceutical-Rich Carrot Powder Ingredient and Its Incorporation to Nixtamalized Corn Flour Tortillas. J. Funct. Foods 2016, 27, 655–666. [Google Scholar] [CrossRef]
- Mierzwa, D.; Szadzińska, J.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R. Ultrasound-Assisted Vacuum Impregnation as a Strategy for the Management of Potato By-Products. Sustainability 2021, 13, 3437. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, J. Practical Applications of Vacuum Impregnation in Fruit and Vegetable Processing. Trends Food Sci. Technol. 2004, 15, 434–451. [Google Scholar] [CrossRef]
- Howard, L.A.; Wong, A.D.; Perry, A.K.; Klein, B.P. β-Carotene and Ascorbic Acid Retention in Fresh and Processed Vegetables. J. Food Sci. 1999, 64, 929–936. [Google Scholar] [CrossRef]
- Kurilich, A.C.; Tsau, G.J.; Brown, A.; Howard, L.; Klein, B.P.; Jeffery, E.H.; Kushad, M.; Wallig, M.A.; Juvik, J.A. Carotene, Tocopherol, and Ascorbate Contents in Subspecies of Brassica Oleracea. J. Agric. Food Chem. 1999, 47, 1576–1581. [Google Scholar] [CrossRef] [PubMed]
- Keklikoglou, K.; Arvanitidis, C.; Chatzigeorgiou, G.; Chatzinikolaou, E.; Karagiannidis, E.; Koletsa, T.; Magoulas, A.; Makris, K.; Mavrothalassitis, G.; Papanagnou, E.-D.; et al. Micro-CT for Biological and Biomedical Studies: A Comparison of Imaging Techniques. J. Imaging 2021, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Schössler, K.; Thomas, T.; Knorr, D. Modification of Cell Structure and Mass Transfer in Potato Tissue by Contact Ultrasound. Food Res. Int. 2012, 49, 425–431. [Google Scholar] [CrossRef]
- Rosenthal, A.J. Texture Profile Analysis—How Important Are the Parameters? J. Texture Stud. 2010, 41, 672–684. [Google Scholar] [CrossRef]
- Dziedzic, K.; Szwengiel, A.; Górecka, D.; Gujska, E.; Kaczkowska, J.; Drożdżyńska, A.; Walkowiak, J. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content. Plant Foods Hum. Nutr. Dordr. Neth. 2016, 71, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Soest, P.J.V.; Wine, R.H. Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. J. Assoc. Off. Anal. Chem. 1967, 50, 50–55. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- de Sá, M.C.; Rodriguez-Amaya, D.B. Optimization of HPLC Quantification of Carotenoids in Cooked Green Vegetables—Comparison of Analytical and Calculated Data. J. Food Compos. Anal. 2004, 17, 37–51. [Google Scholar] [CrossRef]
- Vallejo, F.; Tomás-Barberán, F.A.; García-Viguera, C. Potential Bioactive Compounds in Health Promotion from Broccoli Cultivars Grown in Spain. J. Sci. Food Agric. 2002, 82, 1293–1297. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R. Optimization of a New Mobile Phase to Know the Complex and Real Polyphenolic Composition: Towards a Total Phenolic Index Using High-Performance Liquid Chromatography. J. Chromatogr. A 2003, 1018, 29–40. [Google Scholar] [CrossRef]
- Hwang, S.-J.; Lee, J.-H. Comparison of Antioxidant Activities Expressed as Equivalents of Standard Antioxidant. Food Sci. Technol. 2023, 43, e121522. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Nicolle, C.; Simon, G.; Rock, E.; Amouroux, P.; Rémésy, C. Genetic Variability Influences Carotenoid, Vitamin, Phenolic, and Mineral Content in White, Yellow, Purple, Orange, and Dark-Orange Carrot Cultivars. J. Am. Soc. Hortic. Sci. 2004, 129, 523–529. [Google Scholar] [CrossRef]
- Tincheva, P.A. The Effect of Heating on the Vitamin C Content of Selected Vegetables. World J. Adv. Res. Rev. 2019, 3, 027–032. [Google Scholar] [CrossRef]
- Wang, G.-L.; Xu, Z.-S.; Wang, F.; Li, M.-Y.; Tan, G.-F.; Xiong, A.-S. Regulation of Ascorbic Acid Biosynthesis and Recycling during Root Development in Carrot (Daucus carota L.). Plant Physiol. Biochem. 2015, 94, 10–18. [Google Scholar] [CrossRef]
- Derossi, A.; De Pilli, T.; Severini, C. Reduction in the pH of Vegetables by Vacuum Impregnation: A Study on Pepper. J. Food Eng. 2010, 99, 9–15. [Google Scholar] [CrossRef]
- Cybulska, J.; Zdunek, A.; Kozioł, A. The Self-Assembled Network and Physiological Degradation of Pectins in Carrot Cell Walls. Food Hydrocoll. 2015, 43, 41–50. [Google Scholar] [CrossRef]
- Gajewski, M.; Szymczak, P.; Danilcenko, H. Changes of Physical and Chemical Traits of Roots of Different Carrot Cultivars Under Cold Store Conditions. J. Fruit Ornam. Plant Res. 2010, 72, 115–127. [Google Scholar] [CrossRef]
- Kidoń, M.; Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Kowalczewski, P.Ł. Suitability of Apples Flesh from Different Cultivars for Vacuum Impregnation Process. Appl. Sci. 2023, 13, 1528. [Google Scholar] [CrossRef]
- Tiwari, P.; Thakur, M.; Joshi, A.; Raigond, P.; Arora, B. Development of Iron Fortified Potato Fries through Vacuum Assisted Processing Strategies. J. Food Sci. Technol. 2022, 59, 4644–4652. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and Uses of Pectin—A Review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef] [PubMed]
- Alegria, C.; Pinheiro, J.; Duthoit, M.; Gonçalves, E.M.; Moldão-Martins, M.; Abreu, M. Fresh-Cut Carrot (Cv. Nantes) Quality as Affected by Abiotic Stress (Heat Shock and UV-C Irradiation) Pre-Treatments. LWT Food Sci. Technol. 2012, 48, 197–203. [Google Scholar] [CrossRef]
- Barry-Ryan, C.; O’beirne, D. Quality and Shelf-Life of Fresh Cut Carrot Slices as Affected by Slicing Method. J. Food Sci. 1998, 63, 851–856. [Google Scholar] [CrossRef]
- Heinonen, M.I. Carotenoids and Provitamin A Activity of Carrot (Daucus carota L.) Cultivars. J. Agric. Food Chem. 1990, 38, 609–612. [Google Scholar] [CrossRef]
- Radziejewska-Kubzdela, E. The Effect of Pretreatment and Modified Atmosphere Packaging on Bioactive Compound Content in Coleslaw Mix. LWT 2017, 75, 505–511. [Google Scholar] [CrossRef]
- López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Changes of Carotenoid Content in Carrots after Application of Pulsed Electric Field Treatments. LWT 2021, 147, 111408. [Google Scholar] [CrossRef]
- Ramos-Parra, P.A.; García-Salinas, C.; Rodríguez-López, C.E.; García, N.; García-Rivas, G.; Hernández-Brenes, C.; Díaz de la Garza, R.I. High Hydrostatic Pressure Treatments Trigger de Novo Carotenoid Biosynthesis in Papaya Fruit (Carica Papaya Cv. Maradol). Food Chem. 2019, 277, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant Carotenoids: Recent Advances and Future Perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Plants as Biofactories: Glyphosate-Induced Production of Shikimic Acid and Phenolic Antioxidants in Wounded Carrot Tissue. J. Agric. Food Chem. 2012, 60, 11378–11386. [Google Scholar] [CrossRef] [PubMed]
- del Cuéllar-Villarreal, M.R.; Ortega-Hernández, E.; Becerra-Moreno, A.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Effects of Ultrasound Treatment and Storage Time on the Extractability and Biosynthesis of Nutraceuticals in Carrot (Daucus carota). Postharvest Biol. Technol. 2016, 119, 18–26. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds. Agriculture 2012, 2, 259–271. [Google Scholar] [CrossRef]
- Heredia, J.B.; Cisneros-Zevallos, L. The Effects of Exogenous Ethylene and Methyl Jasmonate on the Accumulation of Phenolic Antioxidants in Selected Whole and Wounded Fresh Produce. Food Chem. 2009, 115, 1500–1508. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Martínez-Hernández, G.B.; del Rodríguez, S.C.; Cao, C.-M.; Cisneros-Zevallos, L. Plants as Biofactories: Physiological Role of Reactive Oxygen Species on the Accumulation of Phenolic Antioxidants in Carrot Tissue under Wounding and Hyperoxia Stress. J. Agric. Food Chem. 2011, 59, 6583–6593. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Redondo-Gil, M.; Benavides, J.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Combined Effect of Water Loss and Wounding Stress on Gene Activation of Metabolic Pathways Associated with Phenolic Biosynthesis in Carrot. Front. Plant Sci. 2015, 6, 837. [Google Scholar] [CrossRef]
- Heredia, J.B.; Cisneros-Zevallos, L. The Effect of Exogenous Ethylene and Methyl Jasmonate on Pal Activity, Phenolic Profiles and Antioxidant Capacity of Carrots (Daucus carota) under Different Wounding Intensities. Postharvest Biol. Technol. 2009, 51, 242–249. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Cirkovic Velickovic, T.D.; Stanic-Vucinic, D.J. The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. [Google Scholar] [CrossRef] [PubMed]
- Talcott, S.T.; Howard, L.R. Chemical and Sensory Quality of Processed Carrot Puree as Influenced by Stress-Induced Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.R.; Griffin, L.E. Lignin Formation and Surface Discoloration of Minimally Processed Carrot Sticks. J. Food Sci. 1993, 58, 1065–1067. [Google Scholar] [CrossRef]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L. Phenol Antioxidant Quantity and Quality in Foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolic Compounds and Their Antioxidant Properties in Different Tissues of Carrots (Daucus carota L.). Int. J. Food Agric. Environ. 2004, 2, 95–100. [Google Scholar]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
Cv. | Pressure (kPa) | Hardness (N) | Cohesiveness (-) | Gumminess (N) | Chewiness (J) |
---|---|---|---|---|---|
Baltimore F1 | raw | 277 ± 13 ab | 8.09·10−1 ± 4.76·10−3 a | 219 ± 11 abc | 181 ± 10 ab |
5 | 315 ± 12 a | 7.59·10−1 ± 6.72·10−3 b | 249 ± 13 a | 199 ± 12 ab | |
30 | 245 ± 11 b | 7.63·10−1 ± 6.87·10−3 b | 186 ± 9 c | 159 ± 10 ab | |
Komarno | raw | 301 ± 11 ab | 8.09·10−1 ± 4.29·10−3 a | 247 ± 8 ab | 200 ± 7 a |
5 | 304 ± 19 a | 7.70·10−1 ± 1.04·10−2 b | 233 ± 17 abc | 179 ± 13 ab | |
30 | 264 ± 20 ab | 7.61·10−1 ± 6.97·10−3 b | 193 ± 16 bc | 151 ± 14 b |
Fraction | Baltimore F1 | Komarno |
---|---|---|
NDF (g/100 g DM) | 13.3 ± 0.3 b | 14.8 ± 0.4 a |
ADF (g/100 g DM) | 10.92 ± 0.01 b | 11.8 ± 0.3 a |
ADL (g/100 g DM) | 1.25 ± 0.03 b | 5.1 ± 0.3 a |
Cellulose (g/100 g DM) | 9.67 ± 0.03 a | 6.7 ± 0.6 b |
Hemicellulose (g/100 g DM) | 2.4 ± 0.3 a | 2.9 ± 0.6 a |
Pectin (g/100 g FW) | 0.49 ± 0.01 b | 0.75 ± 0.04 a |
cv. | Pressure (kPa) | Lutein | α-Carotene | β-Carotene | Total |
---|---|---|---|---|---|
(µg/100 g DM) | |||||
Baltimore F1 | raw | 3.6 ± 0.1 a | 83 ± 7 a | 137 ± 12 a | 224 ± 18 a |
5 | 1.4 ± 0.4 b | 34 ± 6 d | 73 ± 7 c | 108 ± 12 c | |
30 | 2.0 ± 0.1 b | 36 ± 6 cd | 91 ± 10 bc | 129 ± 15 bc | |
Komarno | raw | 2.0 ± 0.2 b | 61 ± 5 b | 99 ± 8 b | 162 ± 14 b |
5 | 1.6 ± 0.4 b | 52 ± 5 bc | 88 ± 7 bc | 142 ± 12 bc | |
30 | 1.5 ± 0.1 b | 51 ± 7 bc | 88 ± 10 bc | 141 ± 18 bc |
cv. | Pressure (kPa) | IC | P-CAD | CHA | NCHA | FAD | Total |
---|---|---|---|---|---|---|---|
(mg/100 g DM) | |||||||
Baltimore F1 | raw | 9.7 ± 0.3 b | 30 ± 3 b | 106 ± 10 c | 23.4 ± 0.2 a | 57 ± 7 ab | 226 ± 20 b |
5 | 17 ± 3 a | 20 ± 3 c | 178 ± 13 b | 20 ± 2 b | 64 ± 6 a | 299 ± 29 c | |
30 | 10 ± 2 b | 42.5 ± 0.6 a | 182 ± 10 b | 10.8 ± 0.5 c | 63 ± 7 a | 308 ± 21 c | |
Komarno | raw | 1.4 ± 0.1 c | 9.5 ± 2.1 de | 67 ± 3 d | 17 ± 2 b | 11 ± 1 c | 106 ± 8 d |
5 | 2.0 ± 0.2 c | 12 ± 1 d | 359 ± 14 a | 12 ± 1 c | 41 ± 4 b | 426 ± 8 a | |
30 | 2.5 ± 0.1 c | 6 ± 1 e | 199 ± 7 b | 20 ± 3 ab | 57 ± 8 ab | 285 ± 22 c |
Cultivar | Pressure (kPa) | AC (µmol Trolox/1 g DM) |
---|---|---|
Baltimore F1 | raw | 18 ± 2 b |
5 | 32 ± 8 a | |
30 | 28 ± 2 ab | |
Komarno | raw | 19 ± 3 ab |
5 | 29 ± 4 ab | |
30 | 25 ± 7 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Szadzińska, J.; Spiżewski, T.; Gapiński, B.; Kowiel, A.; Mierzwa, D. The Effect of the Cultivar and Process Parameters on Quality and Biologically Active Compounds Content in Impregnated Carrot Tissue. Appl. Sci. 2024, 14, 11984. https://doi.org/10.3390/app142411984
Radziejewska-Kubzdela E, Biegańska-Marecik R, Szadzińska J, Spiżewski T, Gapiński B, Kowiel A, Mierzwa D. The Effect of the Cultivar and Process Parameters on Quality and Biologically Active Compounds Content in Impregnated Carrot Tissue. Applied Sciences. 2024; 14(24):11984. https://doi.org/10.3390/app142411984
Chicago/Turabian StyleRadziejewska-Kubzdela, Elżbieta, Róża Biegańska-Marecik, Justyna Szadzińska, Tomasz Spiżewski, Bartosz Gapiński, Angelika Kowiel, and Dominik Mierzwa. 2024. "The Effect of the Cultivar and Process Parameters on Quality and Biologically Active Compounds Content in Impregnated Carrot Tissue" Applied Sciences 14, no. 24: 11984. https://doi.org/10.3390/app142411984
APA StyleRadziejewska-Kubzdela, E., Biegańska-Marecik, R., Szadzińska, J., Spiżewski, T., Gapiński, B., Kowiel, A., & Mierzwa, D. (2024). The Effect of the Cultivar and Process Parameters on Quality and Biologically Active Compounds Content in Impregnated Carrot Tissue. Applied Sciences, 14(24), 11984. https://doi.org/10.3390/app142411984