Alternatives for Connecting Photovoltaic Generators to Power Systems with Three-Port and Partial Power Converters
<p>Stand-alone PV power conversion system.</p> "> Figure 2
<p>Hybrid PV power conversion system.</p> "> Figure 3
<p>Grid-connected PV power conversion system.</p> "> Figure 4
<p>Alternative grid-connected PV system control with power curtailment control algorithm.</p> "> Figure 5
<p>Traditional configuration of a PV system with two individual DC-DC converters. The red lines indicate the possible directions of power flow.</p> "> Figure 6
<p>Power flow scheme of traditional TPCs.</p> "> Figure 7
<p>Power flow scheme of traditional TPCs. Operation modes of a TPC: (<b>a</b>) SIDO; (<b>b</b>) DISO; (<b>c</b>–<b>e</b>) SISO.</p> "> Figure 8
<p>Full power converter. (<b>a</b>) Circuit configuration. (<b>b</b>) Power flow scheme.</p> "> Figure 9
<p>Partial power converter. (<b>a</b>) Circuit configuration. (<b>b</b>) Power flow scheme (red arrows indicate direct power flow).</p> "> Figure 10
<p>Power flow of two-port partial power converters (<b>a</b>) with step-up (<span class="html-italic">v<sub>c</sub></span> > 0) or step-down (<span class="html-italic">v<sub>c</sub></span> < 0) operation modes. (<b>b</b>,<b>c</b>) Two examples of circuit structure of step-up operation. (<b>d</b>,<b>e</b>) Two examples of circuit structure of step-down operation.</p> "> Figure 11
<p>Partial power boost DC-DC converter.</p> "> Figure 12
<p>Power flow scheme. (<b>a</b>) Full-power TPC; (<b>b</b>) step-down TPC with PPR; (<b>c</b>) step-up TPC with PPR.</p> "> Figure 13
<p>Power flow scheme of the proposed BESS-integrated PV system with PPR.</p> "> Figure 14
<p>Centralized PV system with a string PV panel.</p> "> Figure 15
<p>Centralized PV system with bypass diodes.</p> "> Figure 16
<p>Traditional distributed PV system with individual converters.</p> "> Figure 17
<p>Distributed PV system architectures. (<b>a</b>) Individual DC-DC converters connected between each PV panel and the output. (<b>b</b>) A DC-DC converter connected between PV panels and the output.</p> "> Figure 18
<p>Distributed PV system architecture with DC-DC converters connected between each PV panel.</p> "> Figure 19
<p>Distributed PV system architecture with DC-DC converters connected between each PV panel and the DC bus.</p> "> Figure 20
<p>Circuit configuration of a distributed PV system with a BESS and PPR.</p> ">
Abstract
:1. Introduction
2. PV Power Systems
2.1. Stand-Alone PV Systems
2.2. Hybrid PV Systems
2.3. Grid-Connected PV Systems
- PV power curtailment methods
- Integration of energy storage
3. Three-Port Electrical Converter Technologies
3.1. Traditional Configuration of BESS-Integrated PV Systems
3.2. Three-Port Converters
- Fully isolated TPCs
- Partly isolated TPCs
- Non-isolated TPCs
4. Three-Port Converters with Partial Power Regulation
4.1. Two-Port Partial Power Converters
4.2. Three-Port Converters with Partial Power Regulation
5. PV Systems with Distributed Architecture
5.1. Centralized PV Systems
5.2. Distributed PV Systems
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tian, Q.; Zhou, G.; Leng, M.; Xu, G.; Fan, X. A Nonisolated Symmetric Bipolar Output Four-Port Converter Interfacing PV-Battery System. IEEE Trans. Power Electron. 2020, 35, 11731–11744. [Google Scholar] [CrossRef]
- Belloni, E.; Massaccesi, A.; Moscatiello, C.; Martirano, L. Stand-Alone LED Lighting System Powered by PV and Battery: Electrical Overall Performance Analysis of a Case Study. IEEE Trans. Industry Appl. 2024, 60, 5142–5149. [Google Scholar] [CrossRef]
- Touré, M.L.; Camara, M.B.; Dakyo, B. Symmetrical Multilevel High Voltage-Gain Boost Converter Control Strategy for Photovoltaic Systems Applications. Electronics 2024, 13, 2565. [Google Scholar] [CrossRef]
- Myneni, H.; Ganjikunta, S.K. Energy Management and Control of Single-Stage Grid-Connected Solar PV and BES System. IEEE Trans. Sustain. Energy 2020, 11, 1739–1749. [Google Scholar] [CrossRef]
- Kurm, S.; Agarwal, V. Dual Active Bridge Based Reduced Stage Multiport DC/AC Converter for PV-Battery Systems. IEEE Trans. Ind. Appl. 2022, 58, 4027–4035. [Google Scholar] [CrossRef]
- Hasabelrasul, H.; Cai, Z.; Sun, L.; Suo, X.; Matraji, I. Two-Stage Converter Standalone PV-Battery System Based on VSG Control. IEEE Access 2022, 10, 39825–39832. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, B.; Mao, S. Analysis of Grid-Connected Stability of VSG-Controlled PV Plant Integrated with Energy Storage System and Optimization of Control Parameters. Electronics 2024, 13, 1314. [Google Scholar] [CrossRef]
- Tang, X.; Chen, X.; Zhang, R.; Li, Q.; Song, Y.; Zhang, Y.; Luo, N. The Averaged Modeling Method and Power Fluctuation Smoothing Research of the Two-Stage PV and Battery Hybrid System. In Proceedings of the 2020 10th International Conference on Power and Energy Systems (ICPES), Chengdu, China, 25–27 December 2020. [Google Scholar]
- Hasan, M.M.; Jaman, S.; Geury, T.; Hegazy, O. Design and Simulation of a Grid-Connected Two-Stage Bidirectional Converter for a Combined PV- Stationary Energy Storage System. In Proceedings of the 2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Cassino, Italy, 23–25 November 2022. [Google Scholar]
- Saadatizadeh, Z.; Heris, P.C.; Mantooth, A. High-Frequency Three-Port DC–DC Converter with Zero-Voltage Switching Operation. IEEE Trans. Ind. Electron. 2023, 71, 537–548. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Xue, Y.; Chang, X.; Su, J.; Wang, P.; Guo, Q.; Sun, H. A Stochastic Bi-level Optimal Allocation Approach of Intelligent Buildings Considering Energy Storage Sharing Services. IEEE Trans. Consumer Electron. 2024, 70, 5142–5153. [Google Scholar] [CrossRef]
- Duarte, J.L.; Hendrix, M.; Simões, M.G. Three-Port Bidirectional Converter for Hybrid Fuel Cell Systems. IEEE Trans. Power Electron. 2007, 22, 480–487. [Google Scholar] [CrossRef]
- Sarkar, S.; Nayak, S.; Das, A.; Hu, H.; Xing, Y. A Three Port Three-Phase Modular Series Multilevel Converter Integrating MVDC with MVAC Grids. In Proceedings of the IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16–19 October 2023. [Google Scholar]
- Hameed, A.; Moschopoulos, G. Three-phase Single-stage Multiport Bidirectional AC-DC Converter with Reduced Power Conversion Stages. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024. [Google Scholar]
- Sofiya, S.; Sathyan, S. Three-Port Isolated Hybrid Converter for Power Supply Systems in EV. In Proceedings of the 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), Trivandrum, India, 2–5 January 2022. [Google Scholar]
- Wu, H.; Sun, K.; Zhu, L.; Xing, Y. An Interleaved Half-Bridge Three-Port Converter with Enhanced Power Transfer Capability Using Three-Leg Rectifier for Renewable Energy Applications. IEEE J. Emerg. Sel. Topics Power Electron. 2016, 4, 606–616. [Google Scholar] [CrossRef]
- Huynh, K.K.N.; Liang, T.; Tran, T.A.A.; Chen, K. Three-Port Converter with Leakage Inductance Energy Recycling for High Step-Down Applications. IEEE J. Emerg. Sel. Topics Power Electron. 2023, 11, 4453–4462. [Google Scholar] [CrossRef]
- Ye, D.; Martinez, S. A Three-Port DC-DC Converter with Partial Power Regulation for a Photovoltaic Generator Integrated with Energy Storage. Electronics 2024, 13, 2304. [Google Scholar] [CrossRef]
- Du, Y.; Lu, D.D. Battery-integrated boost converter utilizing distributed MPPT configuration for photovoltaic systems. Sol. Energy 2011, 85, 1992–2002. [Google Scholar] [CrossRef]
- Bell, R.; Pilawa-Podgurski, R.C.N. Decoupled and Distributed Maximum Power Point Tracking of Series-Connected Photovoltaic Submodules Using Differential Power Processing. IEEE J. Emerg. Sel. Topics Power Electron. 2015, 3, 881–891. [Google Scholar] [CrossRef]
- Hsieh, Y.; Moo, C.; Liu, S.; Chang, Y. Distributive Maximum Power Point Tracking for Serial Photovoltaic Panels with Partial Power Regulation. In Proceedings of the 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 29 November–1 December 2019. [Google Scholar]
- Hong, Y.; Pham, S.N.; Yoo, T.; Chae, K.; Baek, K. Efficient Maximum Power Point Tracking for a Distributed PV System under Rapidly Changing Environmental Conditions. IEEE Trans. Power Electron. 2015, 30, 4209–4218. [Google Scholar] [CrossRef]
- Ge, Z.; Li, X.; Xu, F.; Wu, H.; Wang, R.; Ding, S. An Improved Distributed Maximum Power Point Tracking Technique in Photovoltaic Systems Based on Reinforcement Learning Algorithm. IEEE J. Emerg. Sel. Topics Ind. Electron. 2024, 5, 167–178. [Google Scholar] [CrossRef]
- Crăciun, B.; Kerekes, T.; Séra, D.; Teodorescu, R. Frequency Support Functions in Large PV Power Plants with Active Power Reserves. IEEE J. Emerg. Sel. Topics Power Electron. 2014, 2, 849–858. [Google Scholar] [CrossRef]
- Mahmood, H.; Michaelson, D.; Jiang, J. Decentralized Power Management of a PV/Battery Hybrid Unit in a Droop-Controlled Islanded Microgrid. IEEE Trans. Power Electron. 2015, 30, 7215–7229. [Google Scholar] [CrossRef]
- Vilathgamuwa, M.; Nayanasiri, D.; Gamini, S. Power Electronic for Photovoltaic Power Systems, 1st ed.; Springer Nature: Cham, Switzerland, 2015; pp. 22–30. ISBN 978-3-031-02500-6. [Google Scholar]
- Sunny, A.C.; Debnath, D. A Novel Three-Port High-Gain DC–DC Converter for PV–Battery Stand-Alone System with Reduced Device Count. IEEE J. Emerg. Sel. Topics Ind. Electron. 2024, 5, 1216–1225. [Google Scholar] [CrossRef]
- Ravada, B.R.; Tummuru, N.R. Control of a Supercapacitor-Battery-PV Based Stand-Alone DC-Microgrid. IEEE Trans. Energy Convers. 2020, 35, 1268–1277. [Google Scholar]
- Joung, K.W.; Kim, T.; Park, J. Decoupled Frequency and Voltage Control for Stand-Alone Microgrid with High Renewable Penetration. IEEE Trans. Ind. Appl. 2019, 55, 122–133. [Google Scholar] [CrossRef]
- Karimi, Y.; Oraee, H.; Guerrero, J.M. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Unit. IEEE Trans. Power Electron. 2017, 32, 6135–6144. [Google Scholar] [CrossRef]
- Shafiullah, M.; Ahmed, S.; Al-sulaiman, F.A. Grid Integration Challenges and Solution Strategies for Solar PV Systems: A Review. IEEE Access 2022, 10, 52233–52257. [Google Scholar]
- Behera, M.K.; Saikia, L.C. A Seamless Control of Grid-Connected PV System for Alleviating PV Penetration in Rural Grid Using Supercapacitor Accompanying with DSTATCOM and Improved CTF Control. IEEE Trans. Ind. Appl. 2024, 60, 3588–3602. [Google Scholar] [CrossRef]
- Sekhar, K.S.R.; Chaudhari, M.A.; Khadkikar, V. Enhanced Hybrid Converter Topology for PV-Grid-EV Integration. IEEE Trans. Energy Convers. 2023, 38, 2634–2646. [Google Scholar] [CrossRef]
- Yang, Y.; Blaabjerg, F.; Zou, Z. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems. IEEE Trans. Ind. Appl. 2013, 49, 2167–2176. [Google Scholar] [CrossRef]
- Mohandes, B.; Moursi, M.S.E.; Hatziargyriou, N.; Khatib, S.E. A Review of Power System Flexibility with High Penetration of Renewables. IEEE Trans. Power Syst. 2019, 34, 3140–3155. [Google Scholar]
- Fang, J.; Li, H.; Tang, Y.; Blaabjerg, F. On the Inertia of Future More-Electronics Power Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2130–2146. [Google Scholar] [CrossRef]
- Cabrera-Tobar, A.; Bullich-Massagué, E.; Aragüés-Peñalba, M.; Gomis-Bellmunt, O. Active and reactive power control of a PV generator for grid code compliance. Energies 2019, 12, 3872. [Google Scholar] [CrossRef]
- Zhang, Z.; Mishra, Y.; Dou, C.; Yue, D.; Zhang, B.; Tian, Y. Steady-State Voltage Regulation with Reduced Photovoltaic Power Curtailment. IEEE J. Photovolt. 2020, 10, 1853–1863. [Google Scholar] [CrossRef]
- Tonkoski, R.; Lopes, L.A.C.; El-Fouly, T.H.M. Coordinated Active Power Curtailment of Grid Connected PV Inverters for Overvoltage Prevention. IEEE Trans. Sustain. Energy. 2011, 2, 139–147. [Google Scholar] [CrossRef]
- Li, X.; Wen, H.; Zhu, Y.; Jiang, L.; Hu, Y.; Xiao, W. A Novel Sensorless Photovoltaic Power Reserve Control with Simple Real-Time MPP Estimation. IEEE Trans. Power Electron. 2019, 34, 7521–7531. [Google Scholar] [CrossRef]
- Riquelme-Dominguez, J.M.; Martinez, S. A Photovoltaic Power Curtailment Method for Operation on Both Sides of the Power-Voltage Curve. Energies 2020, 13, 3906. [Google Scholar] [CrossRef]
- Batzelis, E.I.; Kampitsis, G.E.; Papathanassiou, S.A. Power Reserves Control for PV Systems with Real-Time MPP Estimation via Curve Fitting. IEEE Trans. Sustain. Energy 2017, 8, 1269–1280. [Google Scholar] [CrossRef]
- Sangwongwanich, A.; Yang, Y.; Blaabjerg, F.; Sera, D. Delta Power Control Strategy for Multistring Grid-Connected PV Inverters. IEEE Trans. Ind. Appl. 2017, 53, 3862–3870. [Google Scholar] [CrossRef]
- Hoke, A.F.; Shirazi, M.; Chakraborty, S.; Muljadi, E.; Maksimovic, D. Rapid Active Power Control of Photovoltaic Systems for Grid Frequency Support. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1154–1163. [Google Scholar] [CrossRef]
- Ye, D.; Riquelme-Dominguez, J.M.; Martinez, S. Estimation of the Output Characteristic of a Photovoltaic Generator under Power Curtailment and Considering Converter Losses. Electronics 2022, 11, 1544. [Google Scholar] [CrossRef]
- Hill, C.A.; Such, M.C.; Chen, D.; Gonzalez, J.; Grady, W.M. Battery Energy Storage for Enabling Integration of Distributed Solar Power Generation. IEEE Trans. Smart Grid 2012, 3, 850–857. [Google Scholar] [CrossRef]
- Li, X.; Hui, D.; Lai, X. Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations. IEEE Trans. Sustain. Energy 2013, 4, 464–473. [Google Scholar] [CrossRef]
- Zhang, H.; Zhai, X.; Zhang, J.; Bai, X.; Li, Z. Mechanism Analysis of the Effect of the Equivalent Proportional Coefficient of Inertia Control for a Doubly Fed Wind Generator on Frequency Stability in Extreme Environments. Sustainability 2024, 16, 4965. [Google Scholar] [CrossRef]
- Abdollahy, S.; Mammoli, A.; Cheng, F.; Ellis, A.; Johnson, J. Distributed Compensation of a Large Intermittent Energy Resource in a Distribution Feeder. In Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 24–27 February 2013. [Google Scholar]
- Ma, W.; Wang, W.; Wu, X.; Hu, R.; Tang, F.; Zhang, W.; Han, X.; Ding, L. Optimal Allocation of Hybrid Energy Storage Systems for Smoothing Photovoltaic Power Fluctuations Considering the Active Power Curtailment of Photovoltaic. IEEE Access 2019, 7, 1109. [Google Scholar] [CrossRef]
- Ellis, A.; Schoenwald, D.; Hawkins, J.; Willard, S.; Arellano, B. PV Output Smoothing with Energy Storage. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012. [Google Scholar]
- Abdalla, A.A.; Moursi, M.S.E.; El-Fouly, T.H.M.; Hosani, K.H.A. Reliant Monotonic Charging Controllers for Parallel-Connected Battery Storage Units to Reduce PV Power Ramp Rate and Battery Aging. IEEE Trans. Smart Grid 2023, 14, 4424–4438. [Google Scholar] [CrossRef]
- Tran, V.T.; Islam, M.R.; Muttaqi, K.M.; Sutanto, D. A Novel Application of Magnesium Di-Boride Superconducting Energy Storage to Mitigate the Power Fluctuations of Single-Phase PV Systems. IEEE Trans. Appl. Supercond. 2019, 29, 5700505. [Google Scholar] [CrossRef]
- Hossain, M.K.; Ali, M.H. Small scale energy storage for power fluctuation minimization with spatially diverged PV plants. In Proceedings of the 2013 Proceedings of IEEE Southeastcon, Jacksonville, FL, USA, 4–7 April 2013. [Google Scholar]
- Alam, M.J.E.; Muttaqi, K.M.; Sutanto, D. Battery Energy Storage to Mitigate Rapid Voltage/Power Fluctuations in Power Grids Due to Fast Variations of Solar/Wind Outputs. IEEE Access 2021, 10, 1109. [Google Scholar] [CrossRef]
- Kakimoto, N.; Satoh, H.; Takayama, S.; Nakamura, K. Ramp-Rate Control of Photovoltaic Generator with Electric Double-Layer Capacitor. IEEE Trans. Energy Convers. 2009, 24, 465–473. [Google Scholar] [CrossRef]
- Alam, M.J.E.; Satoh, H.; Takayama, S.; Nakamura, K. A Novel Approach for Ramp-Rate Control of Solar PV Using Energy Storage to Mitigate Output Fluctuations Caused by Cloud Passing. IEEE Trans. Energy Convers. 2014, 29, 507–518. [Google Scholar]
- Li, H.; Wei, H. High Voltage Ride-Through Control Strategy for Two-Stage PV Grid-Connected Systems. In Proceedings of the 2023 2nd Asia Power and Electrical Technology Conference (APET), Shanghai, China, 28–30 December 2023. [Google Scholar]
- Zhang, N.; Sutanto, D.; Muttaqi, K.M. A review of topologies of three-port DC-DC converters for the integration of renewable energy and energy storage system. Renew. Sustain. Energy Rev. 2016, 56, 388–401. [Google Scholar] [CrossRef]
- Wang, G.; Wen, H.; Xu, P.; Liu, W.; Zhou, J.; Yang, Y. A Comprehensive Review of Integrated Three-Port DC-DC Converters with Key Performance Indices. IEEE Trans. Power Electron. 2024, 39, 6391–6408. [Google Scholar] [CrossRef]
- Elmakawi, A.; Bayındır, K. High-Gain Non-Isolated Three-Port Converter for Building-Integrated PV Systems. Electronics 2022, 11, 387. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, F.; Ruan, X.; Wang, L. Optimal idling control strategy for three-port full-bridge converter. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014—ECCE ASIA), Hiroshima, Japan, 18–21 May 2014. [Google Scholar]
- Wang, L.; Wang, Z.; Li, H. Asymmetrical Duty Cycle Control and Decoupled Power Flow Design of a Three-port Bidirectional DC-DC Converter for Fuel Cell Vehicle Application. IEEE Trans. Power Electron. 2011, 27, 891–904. [Google Scholar] [CrossRef]
- Phattanasak, M.; Gavagsaz-Ghoachani, R.; Martin, J.; Nahid-Mobarakeh, B.; Pierfederici, S.; Davat, B. Control of a Hybrid Energy Source Comprising a Fuel Cell and Two Storage Devices Using Isolated Three-Port Bidirectional DC-DC Converters. IEEE Trans. Ind. Appl. 2015, 51, 491–497. [Google Scholar] [CrossRef]
- Liu, D.; Li, H. A ZVS Bi-Directional DC-DC Converter for Multiple Energy Storage Elements. IEEE Trans. Power Electron. 2006, 21, 1513–1517. [Google Scholar] [CrossRef]
- Hu, W.; Wu, H.; Xing, Y.; Sun, K. A full-bridge three-port converter for renewable energy application. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014. [Google Scholar]
- Chen, Z. Three-port ZVS converter with PWM plus secondary-side phase-shifted for photovoltaic-storage hybrid systems. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014. [Google Scholar]
- Hu, Y.; Xiao, W.; Gao, W.; Ji, B.; Morrow, D. Three-Port DC-DC Converter for Stand-Alone Photovoltaic Systems. IEEE Trans. Power Electron. 2014, 30, 3068–3076. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, D.; Athab, H.; Wu, B.; Gu, Y. PV Isolated Three-Port Converter and Energy-Balancing Control Method for PV-Battery Power Supply Applications. IEEE Trans. Ind. Electron. 2015, 62, 3595–3606. [Google Scholar] [CrossRef]
- Taheri, S.M.; Baghramian, A.; Pourseyedi, S.A. A Novel High-Step-Up SEPIC-Based Nonisolated Three-Port DC–DC Converter Proper for Renewable Energy Applications. IEEE Trans. Power Electron. 2023, 70, 10114–10122. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Wang, Y.; Wang, J.; Chen, Z.; Huang, Y. A Two-Switch SEPIC-Based Nonisolated Three-Port Converter Featuring High Step-Up Gain for Solar PV Applications. Electronics 2023, 12, 1712. [Google Scholar] [CrossRef]
- Cheng, T.; Lu, D.D.C.; Qin, L. Non-Isolated Single-Inductor DC/DC Converter with Fully Reconfigurable Structure for Renewable Energy Applications. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 351–355. [Google Scholar] [CrossRef]
- Moradisizkoohi, H.; Elsayad, N.; Mohammed, O.A. A Family of Three-Port Three-Level Converter Based on Asymmetrical Bidirectional Half-Bridge Topology for Fuel Cell Electric Vehicle Applications. IEEE Trans. Power Electron. 2019, 34, 11706–11724. [Google Scholar] [CrossRef]
- Nair, S.S.; Rajeev, M. A Novel High Gain Non-Isolated Three-port Converter for Stand-Alone PV Applications. In Proceedings of the 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3), Srinagar Garhwal, India, 8–9 June 2023. [Google Scholar]
- Liang, T.-J.; Tran, T.A.A.; Huynh, K.K.N.; Chen, K.-H. Soft-Switching Three-Port Converter with a Three-Winding Coupled Inductor. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 5470–5485. [Google Scholar] [CrossRef]
- Qin, S.; Lei, Y.; Barth, C.; Liu, W.; Pilawa-Podgurski, R.C.N. A High Power Density Series-Stacked Energy Buffer for Power Pulsation Decoupling in Single-Phase Converters. IEEE Trans. Power Electron. 2017, 32, 4905–4924. [Google Scholar] [CrossRef]
- Iyer, V.M.; Gulur, S.; Gohil, G.; Bhattacharya, S. An Approach Towards Extreme Fast Charging Station Power Delivery for Electric Vehicles with Partial Power Processing. IEEE Trans. Ind. Electron. 2020, 67, 8076–8087. [Google Scholar] [CrossRef]
- Pape, M.; Kazerani, M. An Offshore Wind Farm with DC Collection System Featuring Differential Power Processing. IEEE Trans. Energy Convers. 2020, 35, 222–236. [Google Scholar] [CrossRef]
- Zapata, J.W.; Kouro, S.; Carrasco, G.; Renaudineau, H.; Meynard, T.A. Analysis of Partial Power DC-DC Converters for Two-Stage Photovoltaic Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 591–603. [Google Scholar] [CrossRef]
- Zapata, J.W.; Kouro, S.; Carrasco, G.; Meynard, T.A. Step-Down Partial Power DC-DC Converters for Two-Stage Photovoltaic String Inverters. Electronics 2019, 8, 87. [Google Scholar] [CrossRef]
- Moo, C.S.; Chen, Y.J.; Yan, W.Q. An Efficient Driver for Dimmable LED Lighting. IEEE Trans. Power Electron. 2012, 27, 4613–4618. [Google Scholar] [CrossRef]
- Hassanpour, N.; Chub, A.; Blinov, A.; Vinnikov, D. Soft-Switching Bidirectional Step-Up/Down Partial Power Converter with Reduced Components Stress. IEEE Trans. Power Electron. 2023, 38, 14166–14177. [Google Scholar] [CrossRef]
- Artal-Sevil, J.S.; Anzola, J.; Ballestín-Bernad, V.; Bernal-Agustín, J.L. Analysis and Implementation of different non-isolated Partial-Power Processing Architectures based on the Cuk Converter. In Proceedings of the 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe), Hanover, Germany, 5–9 September 2022. [Google Scholar]
- Xu, R.; Gao, S.; Wang, Y.; Xu, D. A High Step Up SEPIC-Based Partial-Power Converter with wide input range. In Proceedings of the 2021 IEEE Industry Applications Society Annual Meeting (IAS), Vancouver, BC, Canada, 10–14 October 2021. [Google Scholar]
- Chen, L.; Wu, H.; Xu, P.; Hu, H.; Wan, C. A high step-down non-isolated bus converter with partial power conversion based on synchronous LLC resonant converter. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015. [Google Scholar]
- Lai, J.; Peng, H.; Hu, J.; Huang, S.; Wang, W. Partial Power Processing DC Current Source for The Loop Resistance Measurement in Gas Insulated Switchgear. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018. [Google Scholar]
- Jiang, J.; Zhang, T.; Chen, D. Analysis, Design, and Implementation of a Differential Power Processing DMPPT With Multiple Buck–Boost Choppers for Photovoltaic Module. IEEE Trans. Power Electron. 2021, 36, 10214–10223. [Google Scholar] [CrossRef]
- Kjaer, S.B.; Pedersen, J.K.; Blaabjerg, F. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Trans. Ind. Appl. 2005, 41, 1292–1306. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, J.; Han, Y. PV Balancers: Concept, Architectures, and Realization. IEEE Trans. Power Electron. 2015, 30, 3479–3487. [Google Scholar] [CrossRef]
- Nimni, Y.; Shmilovitz, D. A Returned Energy Architecture for Improved Photovoltaic Systems Efficiency. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010. [Google Scholar]
- Sun, X.; He, X.; Wang, H.; Wang, F.; Zhuo, F.; Yi, H. Analysis and Comparison of Partial Power Processing Based DC-DC Converters in Renewable Energy Application. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018. [Google Scholar]
- Qin, S.; Morrison, A.J.; Pilawa-Podgurski, R.C.N. Enhancing Micro-inverter Energy Capture with Sub-module Differential Power Processing. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014. [Google Scholar]
- Müller, N.; Kouro, S.; Zanchetta, P.; Wheeler, P. Bidirectional Partial Power Converter Interface for Energy Storage Systems to Provide Peak Shaving in Grid-Tied PV Plants. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018. [Google Scholar]
- Shenoy, P.S.; Kim, K.A.; Krein, P.T. Comparative Analysis of Differential Power Conversion Architectures and Controls for Solar Photovoltaics. In Proceedings of the 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), Kyoto, Japan, 10–13 June 2012. [Google Scholar]
- Lee, H.; Kim, K.A. Design Considerations for Parallel Differential Power Processing Converters in a Photovoltaic-Powered Wearable Application. Energies 2018, 11, 3329. [Google Scholar] [CrossRef]
- Uno, M.; Shinohara, T. Module-Integrated Converter Based on Cascaded Quasi-Z-Source Inverter with Differential Power Processing Capability for Photovoltaic Panels Under Partial Shading. IEEE Trans. Power Electron. 2019, 34, 11553–11565. [Google Scholar] [CrossRef]
- Uno, M.; Yamamoto, M.; Sato, H.; Oyama, S. Modularized Differential Power Processing Architecture Based on Switched Capacitor Converter to Virtually Unify Mismatched Photovoltaic Panel Characteristics. IEEE Trans. Power Electron. 2020, 35, 1563–1575. [Google Scholar] [CrossRef]
- Villa, L.F.L.; Ho, T.; Crebier, J.; Raison, B. A Power Electronics Equalizer Application for Partially Shaded Photovoltaic Modules. IEEE Trans. Power Electron. 2013, 60, 1179–1190. [Google Scholar]
- Liu, C.; Zheng, Y.; Lehman, B. PV Panel to PV Panel Transfer Method for Modular Differential Power Processing. IEEE Trans. Power Electron. 2022, 37, 4764–4778. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, H.; Liu, Y.; Kim, K.A. Review of Differential Power Processing Converter Techniques for Photovoltaic Applications. IEEE Trans. Energy Convers. 2019, 34, 351–360. [Google Scholar] [CrossRef]
- Chu, G.; Wen, H.; Jiang, L.; Hu, Y.; Li, X. Bidirectional flyback based isolated-port submodule differential power processing optimizer for photovoltaic applications. Sol. Energy 2017, 158, 929–940. [Google Scholar] [CrossRef]
- Alenezi, A.; Hussain, H. A New Control Approach for Least Processed Power Tracking Under Mismatch Conditions in PV Systems Using Differential Power Processing. IEEE Trans. Ind. Appl. 2024, 60, 532–543. [Google Scholar] [CrossRef]
- Wang, X.; Wen, H.; Chu, G.; Zhu, Y.; Yang, Y.; Wang, Y.; Jiang, L. Performance Quantization and Comparative Assessment of Voltage Equalizers in Mismatched Photovoltaic Differential Power Processing Systems. IEEE Trans. Power Electron. 2024, 39, 1656–1675. [Google Scholar] [CrossRef]
Method | Estimation Output | Operation Side | Controlled Variable | PV Configuration | Converter Losses |
---|---|---|---|---|---|
[40] | MPP | Left | Duty cycle | Single-stage | Neglected |
[41] | MPP and P-V curve | Left or right | PV voltage | Single-stage | Neglected |
[42] | MPP and P-V curve | Right | PV power | Double-stage | Neglected |
[43] | MPP | Left | PV voltage | Double-stage | Neglected |
[44] | MPP | Right | PV voltage | Single-stage | Neglected |
[45] | MPP and P-V curve | Left | PV voltage | Double-stage | Considered |
Topologies | Diodes | Inductors | Switches | Capacitors | Rated Power (W) | Efficiencies (%) |
---|---|---|---|---|---|---|
[62] | 0 | 1 | 12 | 1 | 1000 | 88–96 |
[63] | 0 | 3 | 6 | 6 | 2500 | 90–92 |
[64] | 1 | 2 | 12 | 3 | 220 | 78–91 |
[65] | 0 | 1 | 6 | 7 | 6000 | 86–91 |
Topologies | Diodes | Inductors | Switches | Capacitors | Rated Power (W) | Efficiencies (%) |
---|---|---|---|---|---|---|
[67] | 2 | 3 | 6 | 3 | 800 | 89–94 |
[66] | 4 | 3 | 4 | 3 | 400 | 90–93 |
[68] | 3 | 2 | 4 | 3 | 250 | 87–91.3 |
[69] | 4 | 3 | 3 | 5 | 500 | 50–96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, D.; Martinez, S. Alternatives for Connecting Photovoltaic Generators to Power Systems with Three-Port and Partial Power Converters. Appl. Sci. 2024, 14, 11880. https://doi.org/10.3390/app142411880
Ye D, Martinez S. Alternatives for Connecting Photovoltaic Generators to Power Systems with Three-Port and Partial Power Converters. Applied Sciences. 2024; 14(24):11880. https://doi.org/10.3390/app142411880
Chicago/Turabian StyleYe, Donghui, and Sergio Martinez. 2024. "Alternatives for Connecting Photovoltaic Generators to Power Systems with Three-Port and Partial Power Converters" Applied Sciences 14, no. 24: 11880. https://doi.org/10.3390/app142411880
APA StyleYe, D., & Martinez, S. (2024). Alternatives for Connecting Photovoltaic Generators to Power Systems with Three-Port and Partial Power Converters. Applied Sciences, 14(24), 11880. https://doi.org/10.3390/app142411880