Potential Effect of Defatted Mealworm Hydrolysate on Muscle Protein Synthesis in C2C12 Cells and Rats
<p>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile and non-protein nitrogen analysis of DMP and DMH. (<b>A</b>) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; (<b>B</b>) non-protein nitrogen. Values are means ± standard error. The data were analyzed using Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05). M, molecular weight marker; DMP, defatted mealworm powder; DMH, defatted mealworm hydrolysate.</p> "> Figure 2
<p>Cell viability of DMH on dexamethasone-induced C2C12 cell viability. (<b>A</b>) Cytotoxicity of DMH; (<b>B</b>) cell protective effect of DMH. Values are means ± standard error. The data were analyzed using the Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05) compared to the group without DMH added. DMH, defatted mealworm hydrolysate. DEX, dexamethasone.</p> "> Figure 3
<p>Body weight change of rats during the experiment. Values are means ± standard error. Different letters (a and b) above the bars indicate significant differences by one-way analysis of variance with Duncan’s multiple range test (<span class="html-italic">p</span> < 0.05). DEX, dexamethasone (2.25 mg/kg, i.p.) + control diet; DEX + DMH, dexamethasone (2.25 mg/kg, i.p.) + defatted mealworm hydrolysate diet; i.p., intraperitoneal injection.</p> "> Figure 4
<p>Grip strength test of rats fed the control and experimental diets for 8 weeks. The data were analyzed using the Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05) compared to control. DEX, dexamethasone (2.25 mg/kg, intraperitoneal injection) + control diet; DEX + DMH, dexamethasone (2.25 mg/kg, intraperitoneal injection) + defatted mealworm hydrolysate diet.</p> "> Figure 5
<p>Weight of muscle tissue in rats. Values are means ± standard error. The data were analyzed using the Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05) compared to control. TA, tibialis anterior muscle; GAS, gastrocnemius muscle. DEX, dexamethasone (2.25 mg/kg, intraperitoneal injection) + control diet; DEX + DMH, dexamethasone (2.25 mg/kg, intraperitoneal injection) + defatted mealworm hydrolysate diet.</p> "> Figure 6
<p>Expression of mRNA for muscle protein synthesis and degradation factors in the muscle tissue obtained from the rats. Values are means ± standard error. The data were analyzed using the Student’s <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> < 0.05) compared to DEX group. DEX, dexamethasone (2.25 mg/kg, intraperitoneal injection) + control diet; DEX + DMH, dexamethasone (2.25 mg/kg, intraperitoneal injection) + defatted mealworm hydrolysate diet; MuRF-1, muscle RING finger-1; MyoD, myoblast determination protein.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Non-Protein Nitrogen (NPN)
2.3. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.4. Cell Culture
2.5. Cell Viability Assays
2.6. Animal Studies
2.7. Grip Strength Test and Weight of Muscle Tissue
2.8. RNA Extraction and Real-Time Polymerase Chain Reaction (PCR)
2.9. Statistical Analysis
3. Results
3.1. Hydrolysis by Enzymatic Treatment
3.2. Cytotoxicity and Protective Effect of DMH
3.3. Changes in Body Weight of Rats
3.4. Grip Strength Test
3.5. Weight of Muscle Tissue
3.6. Expression of mRNA for Muscle Protein Synthesis and Degradation Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volpi, E.; Nazemi, R.; Fujita, S. Muscle tissue changes with aging. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Ni, W.; Yuan, X.; Zhang, H.; Li, P.; Xu, J.; Zhao, Z. Sarcopenia in heart failure: A systematic review and meta-analysis. ESC Heart Fail. 2021, 8, 1007–1017. [Google Scholar] [CrossRef]
- Powers, S.K.; Lynch, G.S.; Murphy, K.T.; Reid, M.B.; Zijdewind, I. Disease-induced skeletal muscle atrophy and fatigue. Med. Sci. Sports Exerc. 2016, 48, 2307–2319. [Google Scholar] [CrossRef] [PubMed]
- Fatani, H.; Olaru, A.; Stevenson, R.; Alharazi, W.; Jafer, A.; Atherton, P.; Brook, M.; Moran, G. Systematic review of sarcopenia in inflammatory bowel disease. Clin. Nutr. 2023, 42, 1276–1291. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Li, X.; Tang, K.; Zhao, R.; Wu, M.; Wang, Y.; Li, T. Sarcopenia and cardiovascular diseases: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 1183–1198. [Google Scholar] [CrossRef]
- Huang, J.H.; Hood, D.A. Age-associated mitochondrial dysfunction in skeletal muscle: Contributing factors and suggestions for long-term interventions. IUBMB Life 2009, 61, 201–214. [Google Scholar] [CrossRef]
- Pagano, A.F.; Brioche, T.; Arc-Chagnaud, C.; Demangel, R.; Chopard, A.; Py, G. Short-term disuse promotes fatty acid infiltration into skeletal muscle. J. Cachexia Sarcopenia Muscle 2018, 9, 335–347. [Google Scholar] [CrossRef]
- Yoo, J.I.; Ha, Y.C.; Choi, H.; Kim, K.H.; Lee, Y.K.; Koo, K.H.; Park, K.S. Malnutrition and chronic inflammation as risk factors for sarcopenia in elderly patients with hip fracture. Asia Pac. J. Clin. Nutr. 2018, 27, 527–532. [Google Scholar] [CrossRef]
- Robinson, S.; Granic, A.; Cruz-Jentoft, A.J.; Sayer, A.A. The role of nutrition in the prevention of sarcopenia. Am. J. Clin. Nutr. 2023, 118, 852–864. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, J.L.; He, L.; Morales, J.S.; de Souto Barreto, P.; Jiménez-Pavón, D.; Carbonell-Baeza, A.; Casas-Herrero, Á.; Gallardo-Gómez, D.; Lucia, A.; Del Pozo Cruz, B.; et al. Association of physical behaviours with sarcopenia in older adults: A systematic review and meta-analysis of observational studies. Lancet Healthy Longev. 2024, 5, e108–e119. [Google Scholar] [CrossRef]
- Gellhaus, B.; Böker, K.O.; Schilling, A.F.; Saul, D. Therapeutic consequences of targeting the IGF-1/PI3K/AKT/FOXO3 axis in sarcopenia: A narrative review. Cells 2023, 12, 2787. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Zheng, K.; Li, W.; An, K.; Liu, Y.; Xiao, X.; Hai, S.; Dong, B.; Li, S.; An, Z.; et al. Post-translational regulation of muscle growth, muscle aging and sarcopenia. J. Cachexia Sarcopenia Muscle 2023, 14, 1212–1227. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.X.; Williams, L.J.; Holloway-Kew, K.L.; Hyde, N.K.; Pasco, J.A. Skeletal muscle health and cognitive function: A narrative review. Int. J. Mol. Sci. 2020, 22, 255. [Google Scholar] [CrossRef] [PubMed]
- Lamon, S.; Morabito, A.; Arentson-Lantz, E.; Knowles, O.; Vincent, G.E.; Condo, D.; Alexander, S.E.; Garnham, A.; Paddon-Jones, D.; Aisbett, B. The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiol. Rep. 2021, 9, e14660. [Google Scholar] [CrossRef]
- Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal muscle as potential central link between sarcopenia and immune senescence. eBioMedicine 2019, 49, 381–388. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, J.H.; Kwon, Y.J. Difference of low skeletal muscle index according to recommended protein intake in Korean. Korean J. Fam. Pract. 2019, 9, 539–545. [Google Scholar] [CrossRef]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an alternative protein source for monogastric animal: A review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Chung, M.Y.; Kwon, E.Y.; Hwang, J.S.; Goo, T.W.; Yun, E.Y. Pre-treatment conditions on the powder of Tenebrio molitor for using as a novel food ingredient. J. Sericultural Entomol. Sci. 2013, 51, 9–14. [Google Scholar] [CrossRef]
- Baek, M.H.; Kim, M.A.; Kwon, Y.S.; Hwang, J.S.; Goo, T.W.; Jun, M.R.; Yun, E.Y. Effects of processing methods on nutritional composition and antioxidant activity of mealworm (Tenebrio molitor) larvae. Entomol. Res. 2019, 49, 284–293. [Google Scholar] [CrossRef]
- Bußler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2016, 2, e00218. [Google Scholar] [CrossRef]
- Son, Y.J.; Hwang, J.Y. Physicochemical characteristics and oxidative stabilities of defatted mealworm powders under different manufacturing conditions. J. East Asian Soc. Diet. Life 2017, 27, 194–203. [Google Scholar] [CrossRef]
- Yu, M.H.; Lee, H.S.; Cho, H.R.; Lee, S.O. Enzymatic preparation and antioxidant activities of protein hydrolysates from Tenebrio molitor larvae (Mealworm). J. Korean Soc. Food Sci. Nutr. 2017, 46, 435–441. [Google Scholar] [CrossRef]
- Choi, R.Y.; Ham, J.R.; Ryu, H.S.; Lee, S.S.; Miguel, M.A.; Paik, M.J.; Ji, M.; Park, K.W.; Kang, K.Y.; Lee, H.I.; et al. Defatted Tenebrio molitor larva fermentation extract modifies steatosis, inflammation and intestinal microflora in chronic alcohol-fed rats. Nutrients 2020, 12, 1426. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.K.; Köhnke, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136, 269S–273S. [Google Scholar] [CrossRef]
- Anthony, J.C.; Anthony, T.G.; Kimball, S.R.; Vary, T.C.; Jefferson, L.S. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J. Nutr. 2000, 130, 139–145. [Google Scholar] [CrossRef]
- Maki, T.; Yamamoto, D.; Nakanishi, S.; Iida, K.; Iguchi, G.; Takahashi, Y.; Kaji, H.; Chihara, K.; Okimura, Y. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutr. Res. 2012, 32, 676–683. [Google Scholar] [CrossRef]
- Jang, J.W.; Park, S.H.; Kim, Y.M.; Jung, J.Y.; Lee, J.S.; Chang, Y.W.; Lee, S.P.; Park, B.C.; Wolfe, R.R.; Choi, C.S.; et al. Myostatin inhibition-induced increase in muscle mass and strength was amplified by resistance exercise training, and dietary essential amino acids improved muscle quality in mice. Nutrients 2021, 13, 1508. [Google Scholar] [CrossRef]
- Arshad, Z.I.M.; Amid, A.; Yusof, F.; Jaswir, I.; Ahmad, K.; Loke, S.P. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biotechnol. 2014, 98, 7283–7297. [Google Scholar] [CrossRef]
- Deng, Y.; van der Veer, F.; Sforza, S.; Gruppen, H.; Wierenga, P.A. Towards predicting protein hydrolysis by bovine trypsin. Process Biochem. 2018, 65, 81–92. [Google Scholar] [CrossRef]
- Noreen, S.; Siddiqa, A.; Fatima, R.; Anwar, F.; Adnan, M.; Raza, A. Protease production and purification from agro industrial waste by utilizing Penicillium digitatum. Int. J. Appl. Biol. Forensic 2017, 1, 119–129. [Google Scholar]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. 2021, 3, 100047. [Google Scholar] [CrossRef] [PubMed]
- Chalamaiah, M.; Ulug, S.K.; Hong, H.; Wu, J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 2019, 58, 123–129. [Google Scholar] [CrossRef]
- Duffuler, P.; Bhullar, K.S.; de Campos Zani, S.C.; Wu, J. Bioactive peptides: From basic research to clinical trials and commercialization. J. Agric. Food Chem. 2022, 70, 3585–3595. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Peng, Z.; Chen, L.; Zhang, Y.; Cheng, Q.; Nüssler, A.K.; Bao, W.; Liu, L.; Yang, W. Prospective views for whey protein and/or resistance training against age-related sarcopenia. Aging Dis. 2019, 10, 157–173. [Google Scholar] [CrossRef]
- Chen, S.H.; Li, P.H.; Chan, Y.J.; Cheng, Y.T.; Lin, H.Y.; Lee, S.C.; Lu, W.C.; Ma, Y.X.; Li, M.Y.; Song, T.Y. Potential anti-sarcopenia effect and physicochemical and functional properties of rice protein hydrolysate prepared through high-pressure processing. Agriculture 2023, 13, 209. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Al-Khalifa, A.S.; Shahidi, F. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using alcalase, flavourzyme and thermolysin. J. Funct. Foods 2015, 18, 1125–1137. [Google Scholar] [CrossRef]
- Son, W.Y.; Yang, N.E.; Kim, D.N.; Hwang, J.; Kim, H.W. Comparison of antioxidant activities of the enzymatic hydrolysate fractions derived from oilseed meals. Resour. Sci. Res. 2023, 5, 61–71. [Google Scholar] [CrossRef]
- Thamnarathip, P.; Jangchud, K.; Nitisinprasert, S.; Vardhanabhuti, B. Identification of peptide molecular weight from rice bran protein hydrolysate with high antioxidant activity. J. Cereal Sci. 2016, 69, 329–335. [Google Scholar] [CrossRef]
- Tavano, O.L. Protein hydrolysis using proteases: An important tool for food biotechnology. J. Mol. Catal. B Enzym. 2013, 90, 1–11. [Google Scholar] [CrossRef]
- Cho, K.H.; Kang, S.W.; Yoo, J.S.; Song, D.K.; Chung, Y.H.; Kwon, G.T.; Kim, Y.Y. Effects of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility in growing pigs compared to those of defatted mealworm larvae meal, fermented poultry by-product, and hydrolyzed fish soluble. Asian-Australas. J. Anim. Sci. 2020, 33, 490–500. [Google Scholar] [CrossRef]
- Chen, C.; Yang, J.S.; Lu, C.C.; Chiu, Y.J.; Chen, H.C.; Chung, M.I.; Wu, Y.T.; Chen, F.A. Effect of quercetin on dexamethasone-induced C2C12 skeletal muscle cell injury. Molecules 2020, 25, 3267. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.Y.; Kim, B.S.; Ban, E.J.; Seo, M.; Lee, J.H.; Kim, I.W. Mealworm ethanol extract enhances myogenic differentiation and alleviates dexamethasone-induced muscle atrophy in C2C12 cells. Life 2023, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Aru, M.; Alev, K.; Pehme, A.; Purge, P.; Õnnik, L.; Ellam, A.; Kaasik, P.; Seene, T. Changes in body composition of old rats at different time points after dexamethasone administration. Curr. Aging Sci. 2019, 11, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.J.; Lew, J.H. The effect of red ginseng on sarcopenic rat. J. Int. Korean Med. 2018, 39, 1168–1180. [Google Scholar] [CrossRef]
- Schakman, O.; Kalista, S.; Barbé, C.; Loumaye, A.; Thissen, J.P. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 2013, 45, 2163–2172. [Google Scholar] [CrossRef]
- Buckingham, M.; Rigby, P.W. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell 2014, 28, 225–238. [Google Scholar] [CrossRef]
- Moustogiannis, A.; Philippou, A.; Taso, O.; Zevolis, E.; Pappa, M.; Chatzigeorgiou, A.; Koutsilieris, M. The effects of muscle cell aging on myogenesis. Int. J. Mol. Sci. 2021, 22, 3721. [Google Scholar] [CrossRef]
- Langendorf, E.K.; Rommens, P.M.; Drees, P.; Ritz, U. Dexamethasone inhibits the pro-angiogenic potential of primary human myoblasts. Int. J. Mol. Sci. 2021, 22, 7986. [Google Scholar] [CrossRef]
- Kimira, Y.; Osawa, K.; Osawa, Y.; Mano, H. Preventive effects of collagen-derived dipeptide prolyl-hydroxyproline against dexamethasone-induced muscle atrophy in mouse C2C12 skeletal myotubes. Biomolecules 2023, 13, 1617. [Google Scholar] [CrossRef]
- Cui, C.; Bao, Z.Y.; Chow, S.K.H.; Wong, R.M.Y.; Welch, A.; Qin, L.; Cheung, W.H. Coapplication of magnesium supplementation and vibration modulate macrophage polarization to attenuate sarcopenic muscle atrophy through PI3K/Akt/mTOR signaling pathway. Int. J. Mol. Sci. 2022, 23, 12944. [Google Scholar] [CrossRef]
- Xu, Q.; Wu, Z. The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J. Biol. Chem. 2020, 275, 36750–36757. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R. Trans-anethole suppresses C2C12 myoblast differentiation. Biomed. Sci. Lett. 2023, 29, 190–200. [Google Scholar] [CrossRef]
- Lee, J.B.; Kwon, D.K.; Jeon, Y.J.; Song, Y.J. Mealworm (Tenebrio molitor)-derived protein supplementation attenuates skeletal muscle atrophy in hindlimb casting immobilized rats. Chin. J. Physiol. 2021, 64, 211–217. [Google Scholar] [CrossRef]
- Han, J.; Choi, S.Y.; Choi, R.Y.; Park, K.W.; Kang, K.Y.; Lee, M.K. Anti-muscle atrophy effect of fermented Tenebrio molitor larvae extract by modulating the PI3K-Akt-mTOR/FoxO3alpha pathway in mice treated with dexamethasone. Biomed. Pharmacother. 2024, 178, 117266. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Lee, H.I.; Turkyilmaz, A.; Lee, M.K. Anti-hyperglycemic effects of fermented mealworm extract on type 2 diabetic mice. J. Korean Soc. Food Sci. Nutr. 2023, 52, 431–436. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, B.C.; Kim, J.S. Analysis of trends in patents on insect medicinal materials for brain diseases. Korean Herb. Med. Inf. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- Kim, S.H.; Ko, S.M.; Han, J.S.; Kim, S.H.; Ko, S.M.; Han, J.S. A Study of the Ameliorative Effect of Gryllus bimaculatus on Sarcopenia. Asian J. Beauty Cosmetol. 2022, 20, 439–450. [Google Scholar] [CrossRef]
Diet (1) | |||
---|---|---|---|
Composition (g/kg) | Control | DEX | DEX + DMH |
Corn starch | 397.486 | 397.486 | 394.596 |
Maltodextrin | 132 | 132 | 132 |
Cellulose | 50 | 50 | 50 |
Sucrose | 100 | 100 | 100 |
Soybean oil | 70 | 70 | 66.15 |
Casein | 200 | 200 | 171.74 |
Mealworm hydrolysate | 0 | 0 | 35 |
L-cystine | 3 | 3 | 3 |
Vitamin mix | 10 | 10 | 10 |
Mineral mix | 35 | 35 | 35 |
Choline bitartrate | 2.5 | 2.5 | 2.5 |
t-Butylhydroquinone | 0.014 | 0.014 | 0.014 |
Total (g) | 1000 | 1000 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-H.; Jung, T.-H.; Han, K.-S. Potential Effect of Defatted Mealworm Hydrolysate on Muscle Protein Synthesis in C2C12 Cells and Rats. Appl. Sci. 2024, 14, 11772. https://doi.org/10.3390/app142411772
Choi S-H, Jung T-H, Han K-S. Potential Effect of Defatted Mealworm Hydrolysate on Muscle Protein Synthesis in C2C12 Cells and Rats. Applied Sciences. 2024; 14(24):11772. https://doi.org/10.3390/app142411772
Chicago/Turabian StyleChoi, Seo-Hyun, Tae-Hwan Jung, and Kyoung-Sik Han. 2024. "Potential Effect of Defatted Mealworm Hydrolysate on Muscle Protein Synthesis in C2C12 Cells and Rats" Applied Sciences 14, no. 24: 11772. https://doi.org/10.3390/app142411772
APA StyleChoi, S.-H., Jung, T.-H., & Han, K.-S. (2024). Potential Effect of Defatted Mealworm Hydrolysate on Muscle Protein Synthesis in C2C12 Cells and Rats. Applied Sciences, 14(24), 11772. https://doi.org/10.3390/app142411772