Treatment of Swine Wastewater Using the Domestic Microalga Halochlorella rubescens KNUA214 for Bioenergy Production and Carotenoid Extraction
<p>(<b>a</b>) Light microscope image of <span class="html-italic">H. rubescens</span> KNUA214. (<b>b</b>) Phylogenetic relationship of <span class="html-italic">H. rubescens</span> KNUA214 and its closely related species based on 18S rRNA sequence data. Numbers at nodes indicate percentage values derived from 500-bootstrap-analysis samples. The scale bar represents differences in nucleotide sequences.</p> "> Figure 2
<p>(<b>a</b>) Optical density, (<b>b</b>) dry weight, and (<b>c</b>) chlorophyll <span class="html-italic">a</span> and (<b>d</b>) chlorophyll <span class="html-italic">b</span> concentrations of <span class="html-italic">H. rubescens</span> KNUA214 under different concentrations of DSW for 8 days. Microscopy images of <span class="html-italic">H. rubescens</span> KNUA214 in (<b>e</b>) BG-11 and (<b>f</b>) 100% DSW over an 8-day period.</p> "> Figure 3
<p>(<b>a</b>) Nutrient concentration and (<b>b</b>) percentage of removal efficiency in 100% DSW by <span class="html-italic">H. rubescens</span> KNUA214 over an 8-day period. Statistical significance between groups is denoted as follows: ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 4
<p>(<b>a</b>) Astaxanthin, (<b>b</b>) lutein, (<b>c</b>) zeaxanthin, (<b>d</b>) canthaxanthin, and (<b>e</b>) beta-carotene contents of <span class="html-italic">H. rubescens</span> KNUA214 cultivated under different concentrations of DSW on 4 and 8 days. Statistical significance between groups is denoted as follows: * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Cultivation in Swine Wastewater (SW)
2.1.1. Characteristics of SW
2.1.2. Microalgal Isolation and Identification
2.1.3. Cultivation of Microalgae
2.2. Growth Characteristics and Biomass Productivity
2.3. Nutrient Removal Efficacy
2.4. Pigment Productivity
2.5. Proximate and Ultimate Analyses
2.6. Fatty Acid Methyl Ester (FAME) Analysis and Biodiesel Quality Assessment
2.6.1. FAME Analysis
2.6.2. Biodiesel Quality Assessment Based on FAMEs
2.7. Statistical Analysis
3. Results
3.1. Microalgal Cultivation in SW
3.1.1. Characteristics of DSW
3.1.2. Strain Isolation
3.2. Growth Characteristics and Biomass Productivity
3.3. Nutrient Removal Efficacy
3.4. Pigment Productivity
3.5. Proximate and Ultimate Analyses
3.6. FAME Analysis and Biodiesel Quality Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solarte-Toro, J.C.; Cardona Alzate, C.A. Biorefineries as the Base for Accomplishing the Sustainable Development Goals (SDGs) and the Transition to Bioeconomy: Technical Aspects, Challenges and Perspectives. Bioresour. Technol. 2021, 340, 125626. [Google Scholar] [CrossRef] [PubMed]
- Duarah, P.; Haldar, D.; Patel, A.K.; Dong, C.-D.; Singhania, R.R.; Purkait, M.K. A Review on Global Perspectives of Sustainable Development in Bioenergy Generation. Bioresour. Technol. 2022, 348, 126791. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K. Bio-Energy Production by Contribution of Effective and Suitable Microbial System. Mater. Sci. Energy Technol. 2019, 2, 308–318. [Google Scholar] [CrossRef]
- Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Waste-to-Energy Nexus for Circular Economy and Environmental Protection: Recent Trends in Hydrogen Energy. Sci. Total Environ. 2020, 713, 136633. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y. Macro Assessment of Microalgae-Based CO2 Sequestration: Environmental and Energy Effects. Algal Res. 2020, 51, 102066. [Google Scholar] [CrossRef]
- Marangon, B.B.; Calijuri, M.L.; Castro, J.d.S.; Assemany, P.P. A Life Cycle Assessment of Energy Recovery Using Briquette from Wastewater Grown Microalgae Biomass. J. Environ. Manag. 2021, 285, 112171. [Google Scholar] [CrossRef] [PubMed]
- Mona, S.; Malyan, S.K.; Saini, N.; Deepak, B.; Pugazhendhi, A.; Kumar, S.S. Towards Sustainable Agriculture with Carbon Sequestration, and Greenhouse Gas Mitigation Using Algal Biochar. Chemosphere 2021, 275, 129856. [Google Scholar] [CrossRef]
- Correa, D.F.; Beyer, H.L.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Global Mapping of Cost-Effective Microalgal Biofuel Production Areas with Minimal Environmental Impact. GCB Bioenergy 2019, 11, 914–929. [Google Scholar] [CrossRef]
- Lu, W.; Alam, A.; Liu, S.; Xu, J.; Parra Saldivar, R. Critical Processes and Variables in Microalgae Biomass Production Coupled with Bioremediation of Nutrients and CO2 from Livestock Farms: A Review. Sci. Total Environ. 2020, 716, 135247. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Sahoo, D.; Pandey, A. Resource Recovery through Bioremediation of Wastewaters and Waste Carbon by Microalgae: A Circular Bioeconomy Approach. Environ. Sci. Pollut. Res. 2021, 28, 58837–58856. [Google Scholar] [CrossRef] [PubMed]
- Sarma, S.; Sharma, S.; Rudakiya, D.; Upadhyay, J.; Rathod, V.; Patel, A.; Narra, M. Valorization of Microalgae Biomass into Bioproducts Promoting Circular Bioeconomy: A Holistic Approach of Bioremediation and Biorefinery. 3 Biotech 2021, 11, 378. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Illiyanasafa, N.; Jaya, D.E.C.; Darmokoesoemo, H.; Putra, N.R. Utilization of the Microalga Chlorella Vulgaris for Mercury Bioremediation from Wastewater and Biomass Production. Sustain. Chem. Pharm. 2024, 37, 101346. [Google Scholar] [CrossRef]
- Goswami, R.K.; Mehariya, S.; Verma, P.; Lavecchia, R.; Zuorro, A. Microalgae-Based Biorefineries for Sustainable Resource Recovery from Wastewater. J. Water Process. Eng. 2021, 40, 101747. [Google Scholar] [CrossRef]
- Lutzu, G.A.; Ciurli, A.; Chiellini, C.; Di Caprio, F.; Concas, A.; Dunford, N.T. Latest Developments in Wastewater Treatment and Biopolymer Production by Microalgae. J. Environ. Chem. Eng. 2021, 9, 104926. [Google Scholar] [CrossRef]
- Tua, C.; Ficara, E.; Mezzanotte, V.; Rigamonti, L. Integration of a Side-Stream Microalgae Process into a Municipal Wastewater Treatment Plant: A Life Cycle Analysis. J. Environ. Manag. 2021, 279, 111605. [Google Scholar] [CrossRef] [PubMed]
- El Bakraoui, H.; Slaoui, M.; Mabrouki, J.; Hmouni, D.; Laroche, C. Recent Trends on Domestic, Agricultural and Industrial Wastewaters Treatment Using Microalgae Biorefinery System. Appl. Sci. 2023, 13, 68. [Google Scholar] [CrossRef]
- Javed, F.; Rehman, F.; Khan, A.U.; Fazal, T.; Hafeez, A.; Rashid, N. Real Textile Industrial Wastewater Treatment and Biodiesel Production Using Microalgae. Biomass Bioenergy 2022, 165, 106559. [Google Scholar] [CrossRef]
- Raj, S.; Sajith, A.; Sreenikethanam, A.; Vadlamani, S.; Satheesh, A.; Ganguly, A.; Rajesh Banu, J.; Varjani, S.; Gugulothu, P.; Bajhaiya, A.K. Renewable Biofuels from Microalgae: Technical Advances, Limitations and Economics. Environ. Technol. Rev. 2023, 12, 18–36. [Google Scholar] [CrossRef]
- Dasan, Y.K.; Lam, M.K.; Yusup, S.; Lim, J.W.; Lee, K.T. Life Cycle Evaluation of Microalgae Biofuels Production: Effect of Cultivation System on Energy, Carbon Emission and Cost Balance Analysis. Sci. Total Environ. 2019, 688, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Okcu, G.D. Microalgae Biodiesel Production: A Solution to Increasing Energy Demands in Turkey. Biofuels 2022, 13, 77–93. [Google Scholar] [CrossRef]
- Onyeaka, H.; Miri, T.; Obileke, K.C.; Hart, A.; Anumudu, C.; Al-Sharify, Z.T. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Waghmare, A.G.; Chugh, N.; Sagaram, U.S.; Arun, S.; Menon, D.; Subhash, G.V.; Nagle, V.; Dattaroy, T.; Dasgupta, S. Characterization of Storage Stability of Microalgal Biomass for Its Applications as Protein Feed Ingredients in Animal and Aquafeeds. Anim. Feed Sci. Technol. 2022, 288, 115323. [Google Scholar] [CrossRef]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.I.; Sim, S.J.; Kim, S.H.; Pandey, A. Production of Microalgae with High Lipid Content and Their Potential as Sources of Nutraceuticals. Phytochem. Rev. 2023, 22, 833–860. [Google Scholar] [CrossRef] [PubMed]
- Čmiková, N.; Kowalczewski, P.Ł.; Kmiecik, D.; Tomczak, A.; Drożdżyńska, A.; Ślachciński, M.; Królak, J.; Kačániová, M. Characterization of Selected Microalgae Species as Potential Sources of Nutrients and Antioxidants. Foods 2024, 13, 2160. [Google Scholar] [CrossRef] [PubMed]
- Olguín, E.J.; Sánchez-Galván, G.; Arias-Olguín, I.I.; Melo, F.J.; González-Portela, R.E.; Cruz, L.; De Philippis, R.; Adessi, A. Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. Biology 2022, 11, 1146. [Google Scholar] [CrossRef]
- Zheng, Q.; Ning, R.; Zhang, M.; Deng, X. Biofuel Production as a Promising Way to Utilize Microalgae Biomass Derived from Wastewater: Progress, Technical Barriers, and Potential Solutions. Front. Bioeng. Biotechnol. 2023, 11, 1250407. [Google Scholar] [CrossRef]
- Hussain, F.; Shah, S.Z.; Ahmad, H.; Abubshait, S.A.; Abubshait, H.A.; Laref, A.; Manikandan, A.; Kusuma, H.S.; Iqbal, M. Microalgae an Ecofriendly and Sustainable Wastewater Treatment Option: Biomass Application in Biofuel and Bio-Fertilizer Production. A Review. Renew. Sustain. Energy Rev. 2021, 137, 110603. [Google Scholar] [CrossRef]
- Gupta, S.; Pawar, S.B.; Pandey, R.A. Current Practices and Challenges in Using Microalgae for Treatment of Nutrient Rich Wastewater from Agro-Based Industries. Sci. Total Environ. 2019, 687, 1107–1126. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Method and Applications; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. In Current Protocols in Food Analytical Chemistry; Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Given, P.H.; Weldon, D.; Zoeller, J.H. Calculation of Calorific Values of Coals from Ultimate Analyses: Theoretical Basis and Geochemical Implications. Fuel 1986, 65, 849–854. [Google Scholar] [CrossRef]
- Breuer, G.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H. Effect of Light Intensity, PH, and Temperature on Triacylglycerol (TAG) Accumulation Induced by Nitrogen Starvation in Scenedesmus obliquus. Bioresour. Technol. 2013, 143, 1–9. [Google Scholar] [CrossRef]
- Osundeko, O.; Davies, H.; Pittman, J.K. Oxidative Stress-Tolerant Microalgae Strains Are Highly Efficient for Biofuel Feedstock Production Onwastewater. Biomass Bioenergy 2013, 56, 284–294. [Google Scholar] [CrossRef]
- Yang, I.S.; Salama, E.S.; Kim, J.O.; Govindwar, S.P.; Kurade, M.B.; Lee, M.; Roh, H.S.; Jeon, B.H. Cultivation and Harvesting of Microalgae in Photobioreactor for Biodiesel Production and Simultaneous Nutrient Removal. Energy Convers. Manag. 2016, 117, 54–62. [Google Scholar] [CrossRef]
- Silva-Gálvez, A.L.; López-Sánchez, A.; Camargo-Valero, M.A.; Prosenc, F.; González-López, M.E.; Gradilla-Hernández, M.S. Strategies for Livestock Wastewater Treatment and Optimised Nutrient Recovery Using Microalgal-Based Technologies. J. Environ. Manag. 2024, 354, 120258. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xiao, Y.; Liu, T.; Yuan, M.; Liu, G.; Fang, J.; Yang, B. Exploration of Microalgal Species for Nutrient Removal from Anaerobically Digested Swine Wastewater and Potential Lipids Production. Microorganisms 2021, 9, 2469. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.P.d.S.; Assemany, P.; Ribeiro Júnior, J.I.; Covell, L.; Nunes-Nesi, A.; Calijuri, M.L. Swine Wastewater Treatment in High Rate Algal Ponds: Effects of Cu and Zn on Nutrient Removal, Productivity and Biomass Composition. J. Environ. Manag. 2021, 299, 113668. [Google Scholar] [CrossRef]
- Muthuraman, R.M.; Murugappan, A.; Soundharajan, B. Highly Effective Removal of Presence of Toxic Metal Concentrations in the Wastewater Using Microalgae and Pre-Treatment Processing. Appl. Nanosci. 2023, 13, 475–481. [Google Scholar] [CrossRef]
- Kessler, E.; Schäfer, M.; Hümmer, C.; Kloboucek, A.; Huss, V.A.R. Physiological, Biochemical, and Molecular Characters for the Taxonomy of the Subgenera of Scenedesmus (Chlorococcales, Chlorophyta). Bot. Acta 1997, 110, 244–250. [Google Scholar] [CrossRef]
- AlgaeBase. Haematococcus pluvialis Species Detail. Available online: https://www.algaebase.org/search/species/detail/?species_id=63287 (accessed on 9 December 2024).
- Zaitseva, A.A.; Bakhareva, D.A.; Zaitsev, P.A.; Lobakova, E.S. Characteristics of a New Halotolerant Arctic Strain of Carotenogenic Microalga Halochlorella Rubescens NAMSU SBB-20. Russ. J. Plant Physiol. 2023, 70, 49. [Google Scholar] [CrossRef]
- EN 14214:2012+A2:2019; Liquid Petroleum Products—Fatty acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- ASTM D6751-23; Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2023.
- Cheng, P.; Osei-Wusu, D.; Zhou, C.; Wang, Y.; Xu, Z.; Chang, T.; Huo, S. The Effects of Refractory Pollutants in Swine Wastewater on the Growth of Scenedesmus Sp. with Biofilm Attached Culture. Int. J. Phytoremediation 2020, 22, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Elisabeth, B.; Rayen, F.; Behnam, T. Microalgae Culture Quality Indicators: A Review. Crit. Rev. Biotechnol. 2021, 41, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Utomo, J.C.; Kim, Y.M.; Cho, H.U.; Park, J.M. Evaluation of Scenedesmus Rubescens for Lipid Production from Swine Wastewater Blended with Municipal Wastewater. Energies 2020, 13, 4895. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, S.; He, Y.; Luo, Q.; Zheng, M.; Zheng, M.; Chen, B.; Wang, M. Nutrients Removal from Piggery Wastewater Coupled to Lipid Production by a Newly Isolated Self-Flocculating Microalga Desmodesmus sp. PW1. Bioresour. Technol. 2020, 302, 122806. [Google Scholar] [CrossRef]
- Khatoon, H.; Penz, K.P.; Banerjee, S.; Rahman, M.R.; Minhaz, T.M.; Islam, Z.; Mukta, F.A.; Nayma, Z.; Sultana, R.; Amira, K.I. Immobilized Tetraselmis sp. for Reducing Nitrogenous and Phosphorous Compounds from Aquaculture Wastewater. Bioresour. Technol. 2021, 338, 125529. [Google Scholar] [CrossRef]
- Fallahi, A.; Hajinajaf, N.; Tavakoli, O.; Sarrafzadeh, M.H. Cultivation of Mixed Microalgae Using Municipal Wastewater: Biomass Productivity, Nutrient Removal, and Biochemical Content. Iran. J. Biotechnol. 2020, 18, 88–97. [Google Scholar] [CrossRef]
- Zhou, H.; Sheng, Y.; Zhao, X.; Gross, M.; Wen, Z. Treatment of Acidic Sulfate-Containing Wastewater Using Revolving Algae Biofilm Reactors: Sulfur Removal Performance and Microbial Community Characterization. Bioresour. Technol. 2018, 264, 24–34. [Google Scholar] [CrossRef]
- Cao, L.; Wang, J.; Xiang, S.; Huang, Z.; Ruan, R.; Liu, Y. Nutrient Removal from Digested Swine Wastewater by Combining Ammonia Stripping with Struvite Precipitation. Environ. Sci. Pollut. Res. 2019, 26, 6725–6734. [Google Scholar] [CrossRef] [PubMed]
- Vidhyavathi, R.; Venkatachalam, L.; Sarada, R.; Ravishankar, G.A. Regulation of Carotenoid Biosynthetic Genes Expression and Carotenoid Accumulation in the Green Alga Haematococcus Pluvialis under Nutrient Stress Conditions. J. Exp. Bot. 2008, 59, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cai, M.; Wu, Y.; Lian, Q.; Qian, Z.; Luo, J.; Zhang, Y.; Zhang, N.; Li, C.; Huang, X. Effects of Nitrogen and Light Intensity on the Astaxanthin Accumulation in Motile Cells of Haematococcus pluvialis. Front. Mar. Sci. 2022, 9, 909237. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Z.; Lu, L.; Xiao, Y.; Liu, J.; Guo, J.; Fang, F. Effects of Stepwise Nitrogen Depletion on Carotenoid Content, Fluorescence Parameters and the Cellular Stoichiometry of Chlorella vulgaris. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 181, 30–38. [Google Scholar] [CrossRef]
- Vamvuka, D.; Sfakiotakis, S. Combustion Behaviour of Biomass Fuels and Their Blends with Lignite. Thermochim. Acta 2011, 526, 192–199. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Z.; Wang, Y.; Wang, X.; Lou, C.; Xiao, B.; Lim, M. Visualization of Combustion Phases of Biomass Particles: Effects of Fuel Properties. ACS Omega 2021, 6, 27702–27710. [Google Scholar] [CrossRef] [PubMed]
- Wzorek, M. Evaluating the Potential for Combustion of Biofuels in Grate Furnaces. Energies 2020, 13, 1951. [Google Scholar] [CrossRef]
- Lachman, J.; Baláš, M.; Lisý, M.; Lisá, H.; Milčák, P.; Elbl, P. An Overview of Slagging and Fouling Indicators and Their Applicability to Biomass Fuels. Fuel Process. Technol. 2021, 217, 106804. [Google Scholar] [CrossRef]
- He, C.; Zhang, Z.; Ge, C.; Liu, W.; Tang, Y.; Zhuang, X.; Qiu, R. Synergistic Effect of Hydrothermal Co-Carbonization of Sewage Sludge with Fruit and Agricultural Wastes on Hydrochar Fuel Quality and Combustion Behavior. Waste Manag. 2019, 100, 171–181. [Google Scholar] [CrossRef]
- Gouveia, L.; Oliveira, A.C. Microalgae as a Raw Material for Biofuels Production. J. Ind. Microbiol. Biotechnol. 2009, 36, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Masum, F.H.; Zaimes, G.G.; Tan, E.C.D.; Li, S.; Dutta, A.; Ramasamy, K.K.; Hawkins, T.R. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood. Environ. Sci. Technol. 2023, 57, 12701–12712. [Google Scholar] [CrossRef] [PubMed]
- Kamyab, H.; Chelliapan, S.; Md Din, M.F.; Lee, C.T.; Rezania, S.; Khademi, T.; Bong, C.P.C. Isolate New Microalgal Strain for Biodiesel Production and Using FTIR Spectroscopy for Assessment of Pollutant Removal from Palm Oil Mill Effluent (POME). Chem. Eng. Trans. 2018, 63, 91–96. [Google Scholar] [CrossRef]
- Bouhlel, Z.; Arnold, A.A.; Warschawski, D.E.; Lemarchand, K.; Tremblay, R.; Marcotte, I. Labelling Strategy and Membrane Characterization of Marine Bacteria Vibrio Splendidus by in Vivo 2 H NMR. Biochim. Biophys. Acta Biomembr. 2019, 1861, 871–878. [Google Scholar] [CrossRef]
- Chen, Y.H.; Huang, B.Y.; Chiang, T.H.; Tang, T.C. Fuel Properties of Microalgae (Chlorella Protothecoides) Oil Biodiesel and Its Blends with Petroleum Diesel. Fuel 2012, 94, 270–273. [Google Scholar] [CrossRef]
- Mathimani, T.; Uma, L.; Prabaharan, D. Homogeneous Acid Catalysed Transesterification of Marine Microalga Chlorella sp. BDUG 91771 Lipid—An Efficient Biodiesel Yield and Its Characterization. Renew. Energy 2015, 81, 523–533. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Khan, M.M.K.; Mofijur, M.; Ahmed, S.F.; Ong, H.C.; Vo, D.-V.N.; Show, P.L. Techniques to Improve the Stability of Biodiesel: A Review. Environ. Chem. Lett. 2021, 19, 2209–2236. [Google Scholar] [CrossRef]
- Knothe, G. Improving Biodiesel Fuel Properties by Modifying Fatty Ester Composition. Energy Environ. Sci. 2009, 2, 759–766. [Google Scholar] [CrossRef]
- Arguelles, E.D.; Laurena, A.C.; Monsalud, R.G.; Martinez-Goss, M.R. Fatty Acid Profile and Fuel-Derived Physico-Chemical Properties of Biodiesel Obtained from an Indigenous Green Microalga, Desmodesmus sp. (I-AU1), as Potential Source of Renewable Lipid and High Quality Biodiesel. J. Appl. Phycol. 2018, 30, 411–419. [Google Scholar] [CrossRef]
- Soares, S.; Rocha, F.R.P. Fast Spectrophotometric Determination of Iodine Value in Biodiesel and Vegetable Oils. J. Braz. Chem. Soc. 2018, 29, 1701–1706. [Google Scholar] [CrossRef]
- Varghese, G.; Saeed, K.; Rutt, K.J. Determination of the Oxidative Stability of Biodiesel Fuels by Near-Infrared Spectroscopy. Fuel 2021, 290, 120015. [Google Scholar] [CrossRef]
- Folayan, A.J.; Anawe, P.A.L.; Aladejare, A.E.; Ayeni, A.O. Experimental Investigation of the Effect of Fatty Acids Configuration, Chain Length, Branching and Degree of Unsaturation on Biodiesel Fuel Properties Obtained from Lauric Oils, High-Oleic and High-Linoleic Vegetable Oil Biomass. Energy Rep. 2019, 5, 793–806. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, B. Effect of Winterization and Plant Phenolic-Additives on the Cold-Flow Properties and Oxidative Stability of Karanja Biodiesel. Fuel 2020, 262, 116631. [Google Scholar] [CrossRef]
- Marques, J.P.C.; Rios, Í.C.; Arruda, T.B.M.G.; Rodrigues, F.E.A.; Uchoa, A.F.J.; De Luna, F.M.T.; Cavalcante, C.L.; Ricardo, N.M.P.S. Potential Bio-Based Lubricants Synthesized from Highly Unsaturated Soybean Fatty Acids: Physicochemical Properties and Thermal Degradation. Ind. Eng. Chem. Res. 2019, 58, 17709–17717. [Google Scholar] [CrossRef]
- Fortunato, M.E.; Taddeo, F.; Vitiello, R.; Turco, R.; Tesser, R.; Russo, V.; Di Serio, M. Tailoring Synthetic Pelargonic Acid Esters for Bio-Based Lubricant Applications: Exploring the Relationship between Structure and Properties. ACS Sustain. Chem. Eng. 2023, 11, 12406–12413. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, G.; Ghosh, P.; Sharma, B.K. Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants 2017, 5, 44. [Google Scholar] [CrossRef]
BG-11 | BG-11 + 25% DSW | BG-11 + 50% DSW | 100% DSW | |
---|---|---|---|---|
Proximate analysis (wt%) | ||||
Moisture | 4.59 | 4.36 | 5.76 | 4.58 |
Volatile matter | 83.66 | 83.96 | 84.21 | 86.52 |
Ash | 11.81 | 11.82 | 10.03 | 8.89 |
Ultimate analysis (wt%) | ||||
Carbon (C) | 45.4 | 44.9 | 45.4 | 45.3 |
Hydrogen (H) | 6.51 | 6.64 | 6.73 | 6.44 |
Oxygen (O) | 28.4 | 27.5 | 27.0 | 28.4 |
Nitrogen (N) | 5.24 | 6.10 | 6.55 | 6.12 |
Sulfur (S) | 0.49 | 0.56 | 0.57 | 0.37 |
CV 1 (MJ kg−1) | 20.9 | 21.0 | 21.4 | 20.74 |
Fatty Acid | BG-11 | BG-11 + 25% DSW | BG-11 + 50% DSW | 100% DSW |
---|---|---|---|---|
C14:0 | - | - | 0.3 | 0.4 |
C16:0 | 20.2 | 18.2 | 17.0 | 24.4 |
C16:2 (ω6) | - | 1.5 | 1.5 | 1.9 |
C16:3 (ω3) | - | 4.2 | - | - |
C16:4 (ω3) | 11.6 | 12.5 | 13.9 | 11.1 |
C18:0 | - | 1.5 | 0.9 | 1.7 |
C18:1 | 18.5 | 14.5 | 10.5 | 14.5 |
C18:2 (ω6) | 10.4 | 8.4 | 8.7 | 9.2 |
C18:3 (ω3) | 39.3 | 39.1 | 44.9 | 36.6 |
C18:4 | - | - | 2.2 | - |
Saturated fatty acids (%) | 20.2 | 19.7 | 18.2 | 26.6 |
Monounsaturated fatty acids (%) | 18.5 | 14.5 | 10.5 | 14.5 |
Polyunsaturated fatty acids (%) | 61.3 | 65.8 | 71.3 | 58.9 |
Total | 100 | 100 | 100 | 100 |
BG-11 | BG-11 + 25% DSW | BG-11 + 50% DSW | 100% DSW | EN14214 Standard | ASTM D6751 Standard | |
---|---|---|---|---|---|---|
SV | 145 | 178 | 167 | 165 | ||
IV | 134 | 173 | 173 | 141 | ≤120 | |
CN | 37.8 | 35.3 | 32.3 | 40.3 | ≥51 | ≥47 |
DU | 104 | 131 | 129 | 109 | ||
CFPP | −11.8 | −9.3 | −10.7 | −14.2 | ≤0 | ≤−3 |
OS | 5.8 | 5.3 | 5.2 | 5.7 | ≥8 | ≥3 |
υ | 3.58 | 3.48 | 3.40 | 3.63 | 3.5–5.0 | 1.9–6.0 |
ρ | 0.89 | 0.89 | 0.89 | 0.89 | 0.86–0.90 | 0.82–0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.-H.; Do, J.-M.; Suh, H.-S.; Park, S.-B.; Yoon, H.-S. Treatment of Swine Wastewater Using the Domestic Microalga Halochlorella rubescens KNUA214 for Bioenergy Production and Carotenoid Extraction. Appl. Sci. 2024, 14, 11650. https://doi.org/10.3390/app142411650
Seo Y-H, Do J-M, Suh H-S, Park S-B, Yoon H-S. Treatment of Swine Wastewater Using the Domestic Microalga Halochlorella rubescens KNUA214 for Bioenergy Production and Carotenoid Extraction. Applied Sciences. 2024; 14(24):11650. https://doi.org/10.3390/app142411650
Chicago/Turabian StyleSeo, Yu-Hee, Jeong-Mi Do, Ho-Seong Suh, Su-Bin Park, and Ho-Sung Yoon. 2024. "Treatment of Swine Wastewater Using the Domestic Microalga Halochlorella rubescens KNUA214 for Bioenergy Production and Carotenoid Extraction" Applied Sciences 14, no. 24: 11650. https://doi.org/10.3390/app142411650
APA StyleSeo, Y. -H., Do, J. -M., Suh, H. -S., Park, S. -B., & Yoon, H. -S. (2024). Treatment of Swine Wastewater Using the Domestic Microalga Halochlorella rubescens KNUA214 for Bioenergy Production and Carotenoid Extraction. Applied Sciences, 14(24), 11650. https://doi.org/10.3390/app142411650