Regularities of Plastic Deformation Zone Formation Around Unsupported Shafts in Tectonically Disturbed Massive Rock
<p>Definition of the influence zone of an opening intersecting the fractured rock zone: (<b>a</b>) design scheme; (<b>b</b>) stress fields in the plastic region around a circular opening, or area of potential collapse [compiled by authors]. Figure explanations: <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mi>p</mi> <mi>c</mi> <mi>z</mi> </mrow> </msub> <mo>—</mo> </mrow> </semantics></math> relative horizontal size of a potential collapse zone, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>h</mi> </mrow> <mrow> <mi>p</mi> <mi>c</mi> <mi>z</mi> </mrow> </msub> </mrow> </semantics></math>—absolute vertical size of a potential collapse zone; <math display="inline"><semantics> <mrow> <mi>m</mi> </mrow> </semantics></math>—fractured rock zone thickness; <math display="inline"><semantics> <mrow> <mi>α</mi> </mrow> </semantics></math>—fractured rock zone inclination angle.</p> "> Figure 2
<p>Variation in stress in rocks [<a href="#B50-geosciences-15-00023" class="html-bibr">50</a>] (data selected from [<a href="#B47-geosciences-15-00023" class="html-bibr">47</a>,<a href="#B48-geosciences-15-00023" class="html-bibr">48</a>]): (<b>a</b>) vertical stress variation with depth; (<b>b</b>) lateral stress coefficient variation (K) with depth. Red circles display values of the rock mass subject stress field components.</p> "> Figure 3
<p>Model Verification [compiled by authors].</p> "> Figure 4
<p>Plastic zone proportion size <math display="inline"><semantics> <mrow> <mi>ξ</mi> </mrow> </semantics></math> for a fractured rock zone 2 m thick: (<b>a</b>) depending on the inclination angle of the fractured rock zone; (<b>b</b>) depending on the GSI parameter [compiled by authors].</p> "> Figure 5
<p>Plastic zone proportion size <math display="inline"><semantics> <mrow> <mi>ξ</mi> </mrow> </semantics></math> for a fractured rock zone 4 m thick: (<b>a</b>) depending on the inclination angle of the fractured rock zone; (<b>b</b>) depending on the GSI parameter [compiled by authors].</p> "> Figure 6
<p>Plastic zone proportion size <math display="inline"><semantics> <mrow> <mi>ξ</mi> </mrow> </semantics></math> for a fractured rock zone 6 m thick: (<b>a</b>) depending on the inclination angle of the fractured rock zone; (<b>b</b>) depending on the GSI parameter [compiled by authors].</p> "> Figure 7
<p>Plastic zone proportion size <math display="inline"><semantics> <mrow> <mi>ξ</mi> </mrow> </semantics></math> for a fractured rock zone 8 m thick: (<b>a</b>) depending on the inclination angle of the fractured rock zone; (<b>b</b>) depending on the GSI parameter [compiled by authors].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- -
- friction angle
- -
- cohesion
3. Material Characteristics
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rajabi, M.; Tingay, M.; Heidbach, O. The Present-Day Stress Field of New South Wales, Australia. Aust. J. Earth Sci. 2016, 63, 1–21. [Google Scholar] [CrossRef]
- Li, P.; Ren, F.; Cai, M.; Guo, Q.; Miao, S. Present-Day Stress State and Fault Stability Analysis in the Capital Area of China Constrained by In Situ Stress Measurements and Focal Mechanism Solutions. J. Asian Earth Sci. 2019, 185, 104007. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Chen, R.; Dai, L. Tectonic Evolution of Convergent Plate Margins and Its Geological Effects. Sci. China Earth Sci. 2022, 65, 1247–1276. [Google Scholar] [CrossRef]
- Li, P.; Cai, M. Assessing the Role of Absolute Stress Measurement and Relative Stress Real-Time Monitoring for Earthquake Research. Arab. J. Geosci. 2022, 15, 831. [Google Scholar] [CrossRef]
- Uchide, T.; Shiina, T.; Imanishi, K. Stress Map of Japan: Detailed Nationwide Crustal Stress Field Inferred from Focal Mechanism Solutions of Numerous Microearthquakes. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024036. [Google Scholar] [CrossRef]
- Kosukhin, N.I.; Shabarov, A.N.; Sidorov, D.V. Evaluation of the Stress-Strain and Rockburst Hazard Conditions of Rock Masses in the Talnakh and Oktyabrsky Deposits in Zones of Large-Amplitude Tectonic Faults. Marksheider. Vestn. 2015, 6, 39–42. (In Russian) [Google Scholar]
- Kazikaev, D.M.; Sergeev, S.V. Diagnostics and Monitoring of the Stress State of Vertical Shaft Support; Mining Book: Moscow, Russia, 2011; p. 244. (In Russian) [Google Scholar]
- Kozel, A.M. Part 1: Stress-Strain State of Rocks, Strength, Manifestations of Rock Pressure in Shafts, in Other Mine Excavations and Tunnels, Evolution of Hypotheses. In Geomechanical Issues of Designing and Maintaining Mine Shafts Book 2; Nedra: Moscow, Russia, 2010; p. 288. (In Russian) [Google Scholar]
- Ilyinov, M.D.; Petrov, D.N.; Karmanskiy, D.A.; Selikhov, A.A. Physical simulation aspects of structural changes in rock samples under thermobaric conditions at great depths. Gorn. Nauk. I Tekhnologii Min. Sci. Technol. 2023, 8, 290–302. (In Russian) [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Law, R.D.; Cottle, J.M. Unraveling the Development of Regional-Scale Shear Zones by a Multidisciplinary Approach: The Case Study of the Ferrière-Mollières Shear Zone (Argentera Massif, Western Alps). J. Struct. Geol. 2021, 149, 104399. [Google Scholar] [CrossRef]
- Rybak, J.; Khayrutdinov, M.; Kuziev, D.; Kongar-Syuryun, C.; Babyr, N. Prediction of the Geomechanical State of the Rock Mass When Mining Salt Deposits with Stowing. J. Min. Inst. 2022, 253, 61–70. [Google Scholar] [CrossRef]
- Xue, Y.; Song, D.; Chen, J.; Li, Z.; He, X.; Wang, H.; Sobolev, A. Integrated Rockburst Hazard Estimation Methodology Based on Spatially Smoothed Seismicity Model and Mann-Kendall Trend Test. Int. J. Rock Mech. Min. Sci. 2023, 163, 105329. [Google Scholar] [CrossRef]
- Dou, L.; Cai, W.; Cao, A.; Guo, W. Comprehensive Early Warning of Rock Burst Utilizing Microseismic Multi-Parameter Indices. Int. J. Min. Sci. Technol. 2018, 28, 767–774. [Google Scholar] [CrossRef]
- Korshunov, V.A.; Pavlovich, A.A.; Bazhukov, A.A. Evaluation of Shear Strength of Rocks from Fractures Based on Spherical Indenter Tests. J. Min. Inst. 2023, 262, 606–618. [Google Scholar] [CrossRef]
- Belyakov, N.A.; Morozov, K.V.; Emelyanov, I.A. Methodology for Processing Field Test Data for Estimating the Natural Stress State of Rock Mass Using the Ring Decompression Method. Min. J. 2023, 5, 89–96. (In Russian) [Google Scholar] [CrossRef]
- Fedotova, Y.V. On Seismo-Acoustic Monitoring of the Geomechanical State of Rock Masses and Early Warning of Rock Bursts at High-Stress Mines. Enigma 2022, 43, 95–106. (In Russian) [Google Scholar]
- Han, J.; Zhang, H.; Liang, B.; Rong, H.; Lan, T.; Liu, Y.; Ren, T. Influence of Large Syncline on In Situ Stress Field: A Case Study of the Kaiping Coalfield, China. Rock Mech. Rock Eng. 2016, 49, 4423–4440. [Google Scholar] [CrossRef]
- Miao, S.; Cai, M.; Guo, Q.; Huang, Z. Rock Burst Prediction Based on In-Situ Stress and Energy Accumulation Theory. Int. J. Rock Mech. Min. Sci. 2016, 83, 86–94. [Google Scholar] [CrossRef]
- He, M.; Wang, Q. Rock Dynamics in Deep Mining. Int. J. Min. Sci. Technol. 2023, 33, 1065–1082. [Google Scholar] [CrossRef]
- Zoback, M.L. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project. J. Geophys. Res. Solid Earth 1992, 97, 11703–11728. [Google Scholar] [CrossRef]
- Zang, A.; Stephansson, O.; Heidbach, O.; Janouschkowetz, S. World Stress Map Database as a Resource for Rock Mechanics and Rock Engineering. Geotechnol. Geol. Eng. 2012, 30, 625–646. [Google Scholar] [CrossRef]
- Rajabi, M.; Tingay, M.; Heidbach, O. The Present-Day State of Tectonic Stress in the Darling Basin, Australia: Implications for Exploration and Production. Mar. Pet. Geol. 2016, 77, 776–790. [Google Scholar] [CrossRef]
- Peng, L.; Guo, Q.; Cai, M.; Miao, S. Present-Day State of Tectonic Stress and Tectonization in Coastal Gold Mine Area near Laizhou Gulf, North China. Trans. Nonferr. Met. Soc. China 2023, 33, 865–888. [Google Scholar] [CrossRef]
- Anderson, E. The Dynamics of Faulting and Dyke Formation with Application to Britain, 2nd ed.; Oliver and Boyd: Edinburgh, UK, 1951. [Google Scholar]
- Protosenya, A.G.; Kumov, V.V. Influence of Ground Mass Structure in the Mixed Face of a Tunnel on the Shape and Size of the Surface Subsidence Trough. Min. Inf. Anal. Bull. 2024, 4, 5–21. (In Russian) [Google Scholar] [CrossRef]
- Kharisov, T.F.; Balek, A.E. Assessment of Geodynamic Activity of a Hierarchically Blocky Rock Mass. Probl. Nedropolzovaniya 2021, 3, 30–38. [Google Scholar]
- Trushko, V.L.; Baeva, E.K. Justification of Rational Parameters for Complex Mining Support Systems in Difficult Geotechnical Conditions. Min. Inf. Anal. Bull. 2023, 12, 55–69. (In Russian) [Google Scholar]
- Uskov, V.A.; Eremenko, A.A.; Darbinyan, T.P.; Marysyuk, V.P. Assessment of Geodynamic Hazard of Tectonic Structures for Underground Development of the Northern Deposits of the Oktyabrsky Mine. Phys.-Tech. Probl. Miner. Dev. 2019, 1, 86–96. (In Russian) [Google Scholar]
- Protosenya, A.G.; Belyakov, N.A.; Buslova, M.A. Modeling of the Stress-Strain State of a Blocky Rock Mass of Ore Deposits Using Caving Methods. J. Min. Inst. 2023, 262, 620–628. (In Russian) [Google Scholar]
- Smirnov, O.Y. Ore Deposit Development Under High-Stress Conditions. Izv. Vuzov Gorn. Zh. 2017, 7, 29–34. (In Russian) [Google Scholar] [CrossRef]
- Hoek, E.; Marinos, P.; Benissi, M. Applicability of the Geological Strength Index (GSI) Classification for Very Weak and Sheared Rock Masses. The Case of the Athens Schist Formation. Bull. Eng. Geol. Environ. 1998, 57, 151–160. [Google Scholar] [CrossRef]
- Carranza-Torres, C.; Fairhurst, C. The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek–Brown failure criterion. Int. J. Rock Mech. Min. Sci. 1999, 36, 777–809. [Google Scholar] [CrossRef]
- Komurlu, E.; Demir, S. Use of Rock Mass Rating (RMR) values for Support Designs of Tunnels excavated in Soft Rocks without Squeezing Problem. GeoSci. Eng. 2019, 65, 1–17. [Google Scholar] [CrossRef]
- Wei, S.; Kao, J.; Jin, Y.; Shi, C.; Xia, Y.; Liu, S. A Discontinuous Discrete Fracture Model for Coupled Flow and Geomechanics Based on FEM. J. Pet. Sci. Eng. 2021, 204, 108677. [Google Scholar] [CrossRef]
- Basalaeva, P.V.; Kuranov, A.D. Assessment of the Influence of the Dip Angle of a Lithologically Heterogeneous Rock Layer on the Stability of Horizontal Mine Workings During Driving. Min. Inf. Anal. Bull. 2024, 3, 17–30. (In Russian) [Google Scholar] [CrossRef]
- Karasev, M.A.; Pospekhov, G.B.; Astapenko, T.S.; Shishkina, V.S. Analysis of Models for Predicting the Stress-Strain State of Low-Strength Technogenic Soils. Min. Inf. Anal. Bull. 2023, 11, 49–69. (In Russian) [Google Scholar] [CrossRef]
- Bock, S. Numerical Modelling of a Void behind Shaft Lining Using FDM with a Concrete Spalling Algorithm. J. Sustain. Min. 2014, 13, 14–21. [Google Scholar] [CrossRef]
- Karasev, M.A.; Petrushin, V.V. Methodological Issues in Determining the Initial Parameters of the Deformation Model for Rock Salt as a Polycrystalline Discrete Medium. Min. Inf. Anal. Bull. 2024, 9, 47–64. (In Russian) [Google Scholar] [CrossRef]
- Bagautdinov, I.I.; Zuev, B.Y.; Streshnev, A.A. Efficiency evaluation of destressing drilling by numerical and physical modeling toward rockburst nonhazardous conditions in mines. Gorn. Zhurnal 2023, 5, 33–39. (In Russian) [Google Scholar] [CrossRef]
- Hafezolghorani, M.; Hejazi, F.; Vaghei, R.; Jaafar, M.S.B.; Karimzade, K. Simplified Damage Plasticity Model for Concrete. Struct. Eng. Int. 2017, 27, 68–78. [Google Scholar] [CrossRef]
- Grassl, P.; Lundgren, K.; Gylltoft, K. Concrete in Compression: A Plasticity Theory with a Novel Hardening Law. Int. J. Solids Struct. 2002, 39, 5205–5223. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown Failure Criterion—2002 Edition. Proc. NARMS-Tac 2002, 1, 267–273. [Google Scholar] [CrossRef]
- Panasyan, L.L. Investigation of the Stress Field Structure by Calculation Methods (Using the Example of the Deep Horizons of the Talnakh Deposit). Ph.D. Thesis, Moscow State University, Moscow, Russia, 1979. (In Russian). [Google Scholar]
- Shashenko, A.N.; Smirnov, A.V.; Khozyaikina, N.V. Estimation of the initial stress field in the design of underground mine cavities. Gorn. Informatsionno-Anal. Byulleten 2017, 12, 37–49. (In Russian) [Google Scholar] [CrossRef]
- Goodman, R.E. Introduction to Rock Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Hoek Carranza-Torres, C.; Fairhurst, C. Application of the Convergence-Confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion. Tunn. Undergr. Space Technol. 2000, 15, 187–213. [Google Scholar] [CrossRef]
- Brady, B.H.G.; Brown, E.T. Rock Mechanics: For Underground Mining; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Brown, E.; Hoek, E. Trends in relationships between measured in situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 211–215. [Google Scholar] [CrossRef]
- Zang, A. Stress Field of the Earth’s Crust; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Taherynia, M.H.; Fatemi Aghda, S.M.; Fahimifar, A. In-Situ Stress State and Tectonic Regime in Different Depths of Earth Crust. Geotech. Geol. Eng. 2016, 34, 679–687. [Google Scholar] [CrossRef]
Crushed Rock Zone Parameter | Unit | Ranges | Increment Step |
---|---|---|---|
GSI | - | 15–30 | 2.5 |
thickness | m | 2–8 | 2 |
angle of inclination to the intersected excavation | 0–60 | 15 |
Rock Parameter | Unit | Rock Massif | GSI 15 | GSI 17.5 | GSI 20 | GSI 22.5 | GSI 25 | GSI 27.7 | GSI 30 |
---|---|---|---|---|---|---|---|---|---|
Modulus of deformation of rock, E | MPa | 74,000 | 1782 | 1866 | 1963 | 2084 | 2237 | 2426 | 2661 |
MPa | 115 | 4.1 | 4.7 | 5.3 | 6.0 | 6.7 | 7.4 | 8.1 | |
Cohesion, C | MPa | 15.2 | 0.8 | 0.9 | 1.1 | 1.2 | 1.3 | 1.4 | 1.6 |
Internal friction angle, φ | 50 | 17 | 19 | 20 | 21 | 23 | 24 | 25 | |
Poisson’s ratio, μ | - | 0.25 | 0.38 | 0.37 | 0.37 | 0.36 | 0.36 | 0.35 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demenkov, P.A.; Romanova, E.L. Regularities of Plastic Deformation Zone Formation Around Unsupported Shafts in Tectonically Disturbed Massive Rock. Geosciences 2025, 15, 23. https://doi.org/10.3390/geosciences15010023
Demenkov PA, Romanova EL. Regularities of Plastic Deformation Zone Formation Around Unsupported Shafts in Tectonically Disturbed Massive Rock. Geosciences. 2025; 15(1):23. https://doi.org/10.3390/geosciences15010023
Chicago/Turabian StyleDemenkov, Petr A., and Ekaterina L. Romanova. 2025. "Regularities of Plastic Deformation Zone Formation Around Unsupported Shafts in Tectonically Disturbed Massive Rock" Geosciences 15, no. 1: 23. https://doi.org/10.3390/geosciences15010023
APA StyleDemenkov, P. A., & Romanova, E. L. (2025). Regularities of Plastic Deformation Zone Formation Around Unsupported Shafts in Tectonically Disturbed Massive Rock. Geosciences, 15(1), 23. https://doi.org/10.3390/geosciences15010023