Screening and Functional Prediction of Rumen Microbiota Associated with Methane Emissions in Dairy Cows
<p>Overview of phenotype characteristics for the selected low methane-emitting (LME) and high methane-emitting (HME) groups. (<b>A</b>) Differences of methane emission concentrations for the two groups and their <span class="html-italic">t</span>-test analysis results; (<b>B</b>) Differences of milk yield for the two groups and their T-test analysis results; (<b>C</b>) Distribution of parities for the two groups; (<b>D</b>) Distribution of days in milk (DIM) for the two groups; (<b>E</b>) Distribution of methane emission for all cows after quality control; (<b>F</b>) Distribution of methane emission for the two groups. Symbols indicate significance (***, <span class="html-italic">p</span> < 0.001; NS, <span class="html-italic">p</span> > 0.05).</p> "> Figure 2
<p>The number of ASVs (Amplicon Sequence Variants) detected in the low methane-emitting (LME) and high methane-emitting (HME) groups of cows.</p> "> Figure 3
<p>Microbial diversity analysis of rumen in the low methane-emitting (LME) cows and high methane-emitting (HME) cows. (<b>A</b>) Shannon index, Chao1 index, Observe index, and Pielou index based on the abundance of ASVs; (<b>B</b>) Principal Coordinates Analysis (PCoA); (<b>C</b>) Non-metric Multidimensional Scaling (NMDS). * represents <span class="html-italic">p</span> < 0.05, and NS represents <span class="html-italic">p</span> > 0.05.</p> "> Figure 4
<p>The composition of dominant species in the rumen of low methane-emitting (LME) and high methane-emitting (HME) cows, along with a correlation analysis of dominant genera between the two groups. (<b>A</b>) Horizontal species composition accumulation map of the top 10 phyla; (<b>B</b>) Horizontal species composition accumulation map at the genus level; (<b>C</b>) Spearman correlation of dominant genera in the rumen of LME cows; (<b>D</b>) Spearman correlation of dominant genera in the rumen of HME cows.</p> "> Figure 5
<p>Different structures of rumen microbiota of cows in the low methane-emitting (LME) and high methane-emitting (HME) groups. (<b>A</b>) Cladogram of analysis demonstrated microbiome differences of the two groups at various phylogenic levels. Circles from the inside out indicate the phylogenetic levels from the phylum to genus; (<b>B</b>) The abundance of the differential taxa and the magnitude of the LDA effect. FDR < 0.05 & log10(LDA) > 3.0.</p> "> Figure 6
<p>Significantly different KEGG functional pathways in the rumen bacteria between the low methane-emitting (LME) and high methane-emitting (HME) cows. (<b>A</b>) Differential KEGG Level-2 pathways in the rumen bacteria between the LME and HME groups; (<b>B</b>) Differential KEGG Level-3 pathways in the rumen bacteria between the LME and HME groups. FDR< 0.05 & log10|LDA| > 1.0.</p> ">
1. Introduction
2. Materials and Methods
2.1. Animals and Methane Emission Phenotyping
2.2. Methane Emission Grouping and Sample Collection
2.3. DNA Extraction, Library Construction, and Sequencing
2.4. Sequencing Data Processing and Analysis
3. Results
3.1. Phenotypic Characteristics of Methane Emissions in Dairy Cows
3.2. Ruminal Microbial Composition and Differential Analysis Between LME and HME Groups
3.3. Microbial Diversity Analysis of LME and HME Groups
3.4. Dominant Species Composition in the Rumen Between Low and High Methane-Emitting Cows
3.5. Analysis of Differences in the Rumen Microbiota of Cows Between the LME and HME Groups
3.6. Functional Profile Analysis of the Rumen Flora
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, J.; Qi, B.; Du, R.; Xu, X.; Xiong, H.; Liu, H.; Ai, X.; Peng, Y.; Xiao, W. Global warming will largely increase waste treatment CH4 emissions in Chinese megacities: Insight from the first city-scale CH4 concentrationobservation network in Hangzhou, China. Atmos. Chem. Phys. 2023, 23, 4501–4520. [Google Scholar] [CrossRef]
- Hristov, A.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.; Boland, T.; Brito, A.; Casper, D.; Crompton, L.; et al. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef]
- Sorg, D.; Mühlbach, S.; Rosner, F.; Kuhla, B.; Derno, M.; Meese, S.; Schwarm, A.; Kreuzer, M.; Swalve, H. The agreement between two next-generation laser methane detectors and respiration chamber facilities in recording methane concentrations in the spent air produced by dairy cows. Comput. Electron. Agric. 2017, 143, 262–272. [Google Scholar] [CrossRef]
- Sorg, D.; Difford, G.F.; Mühlbach, S.; Kuhla, B.; Swalve, H.H.; Lassen, J.; Strabel, T.; Pszczola, M. Comparison of a laser methane detector with the GreenFeed and two breath analysers for on-farm measurements of methane emissions from dairy cows. Comput. Electron. Agric. 2018, 153, 285–294. [Google Scholar] [CrossRef]
- Pereira, A.M.; Peixoto, P.; Rosa, H.J.D.; Vouzela, C.; Madruga, J.S.; Borba, A.E.S. A Longitudinal Study with a Laser Methane Detector (LMD) Highlighting Lactation Cycle-Related Differences in Methane Emissions from Dairy Cows. Animals 2023, 13, 974. [Google Scholar] [CrossRef]
- Kang, K.; Cho, H.; Jeong, S.; Jeon, S.; Lee, M.; Lee, S.; Baek, Y.; Oh, J.; Seo, S. Application of a hand-held laser methane detector for measuring enteric methane emissions from cattle in intensive farming. J. Anim. Sci. 2022, 100, skac211. [Google Scholar] [CrossRef]
- Pickering, N.K.; Chagunda, M.G.G.; Banos, G.; Mrode, R.; McEwan, J.C.; Wall, E. Genetic parameters for predicted methane production and laser methane detector measurements. J. Anim. Sci. 2015, 93, 11–20. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Bhatta, R.; Enishi, O.; Kurihara, M. Measurement of methane production from ruminants. Asian-Australas. J. Anim. Sci. 2007, 20, 1305–1318. [Google Scholar] [CrossRef]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Mahala, S.; Kala, A.; Kumar, A. Host genetics associated with gut microbiota and methane emission in cattle. Mol. Biol. Rep. 2022, 49, 8153–8161. [Google Scholar] [CrossRef] [PubMed]
- Auffret, M.D.; Stewart, R.; Dewhurst, R.J.; Duthie, C.-A.; Rooke, J.A.; Wallace, R.J.; Freeman, T.C.; Snelling, T.J.; Watson, M.; Roehe, R. Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets. Front. Microbiol. 2018, 8, 2642. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chung, Y.-H.; Beauchemin, K.; Holtshausen, L.; Oba, M.; McAllister, T.; Guan, L. Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J. Appl. Microbiol. 2011, 111, 1148–1158. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef]
- Ramayo-Caldas, Y.; Zingaretti, L.; Popova, M.; Estellé, J.; Bernard, A.; Pons, N.; Bellot, P.; Mach, N.; Rau, A.; Roume, H.; et al. Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. J. Anim. Breed. Genet. 2020, 137, 49–59. [Google Scholar] [CrossRef]
- Difford, G.F.; Plichta, D.R.; Løvendahl, P.; Lassen, J.; Noel, S.J.; Højberg, O.; Wright, A.-D.G.; Zhu, Z.; Kristensen, L.; Nielsen, H.B.; et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 2018, 14, e1007580. [Google Scholar] [CrossRef]
- Stepanchenko, N.; Stefenoni, H.; Hennessy, M.; Nagaraju, I.; Wasson, D.; Cueva, S.; Räisänen, S.; Dechow, C.; Pitta, D.; Hristov, A. Microbial composition, rumen fermentation parameters, enteric methane emissions, and lactational performance of phenotypically high and low methane-emitting dairy cows. J. Dairy Sci. 2023, 106, 6146–6170. [Google Scholar] [CrossRef]
- Wallace, R.J.; Rooke, J.A.; McKain, N.; Duthie, C.-A.; Hyslop, J.J.; Ross, D.W.; Waterhouse, A.; Watson, M.; Roehe, R. The rumen microbial metagenome associated with high methane production in cattle. BMC Genom. 2015, 16, 839. [Google Scholar] [CrossRef]
- Martínez-Álvaro, M.; Auffret, M.D.; Stewart, R.D.; Dewhurst, R.J.; Duthie, C.-A.; Rooke, J.A.; Wallace, R.J.; Shih, B.; Freeman, T.C.; Watson, M.; et al. Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine. Front. Microbiol. 2020, 11, 659. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhan, L.; Tang, W.; Wang, Q.; Dai, Z.; Zhou, L.; Feng, T.; Chen, M.; Wu, T.; Hu, E.; et al. MicrobiotaProcess: A comprehensive R package for deep mining microbiome. Innovation 2023, 4, 100388. [Google Scholar] [CrossRef]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. microeco: An R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Ticinesi, A.; Milani, C.; Lauretani, F.; Nouvenne, A.; Mancabelli, L.; Lugli, G.A.; Turroni, F.; Duranti, S.; Mangifesta, M.; Viappiani, A.; et al. Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Sci. Rep. 2017, 7, 11102. [Google Scholar] [CrossRef]
- Pielou, E.C. Measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Roessler, R.; Chefor, F.; Schlecht, E. Using a portable laser methane detector in goats to assess diurnal, diet- and position-dependent variations in enteric methane emissions. Comput. Electron. Agric. 2018, 150, 110–117. [Google Scholar] [CrossRef]
- Chagunda, M.; Yan, T. Do methane measurements from a laser detector and an indirect open-circuit respiration calorimetric chamber agree sufficiently closely? Anim. Feed Sci. Technol. 2011, 165, 8–14. [Google Scholar] [CrossRef]
- Ricci, P.; Chagunda, M.G.G.; Rooke, J.; Houdijk, J.G.M.; Duthie, C.-A.; Hyslop, J.; Roehe, R.; Waterhouse, A. Evaluation of the laser methane detector to estimate methane emissions from ewes and steers. J. Anim. Sci. 2014, 92, 5239–5250. [Google Scholar] [CrossRef] [PubMed]
- Boré, R.; Bruder, T.; El Jabri, M.; March, M.; Hargreaves, P.R.; Rouillé, B.; Dewhurst, R.J.; Chagunda, M.G.G. Measurement Duration but Not Distance, Angle, and Neighbour-Proximity Affects Precision in Enteric Methane Emissions when Using the Laser Methane Detector Technique in Lactating Dairy Cows. Animals 2022, 12, 1295. [Google Scholar] [CrossRef]
- Chagunda, M.; Ross, D.; Roberts, D. On the use of a laser methane detector in dairy cows. Comput. Electron. Agric. 2009, 68, 157–160. [Google Scholar] [CrossRef]
- Willis, A.D. Rarefaction, Alpha Diversity, and Statistics. Front. Microbiol. 2019, 10, 2407. [Google Scholar] [CrossRef] [PubMed]
- Granja-Salcedo, Y.T.; Fernandes, R.M.; de Araujo, R.C.; Kishi, L.T.; Berchielli, T.T.; de Resende, F.D.; Berndt, A.; Siqueira, G.R. Long-Term Encapsulated Nitrate Supplementation Modulates Rumen Microbial Diversity and Rumen Fermentation to Reduce Methane Emission in Grazing Steers. Front. Microbiol. 2019, 10, 614. [Google Scholar] [CrossRef]
- Chen, B.; He, X.; Pan, B.; Zou, X.; You, N. Comparison of beta diversity measures in clustering the high-dimensional microbial data. PLoS ONE 2021, 16, e0246893. [Google Scholar] [CrossRef] [PubMed]
- Ben Shabat, S.K.; Sasson, G.; Doron-Faigenboim, A.; Durman, T.; Yaacoby, S.; Miller, M.E.B.; A White, B.; Shterzer, N.; Mizrahi, I. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016, 10, 2958–2972. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Hernandez-Sanabria, E.; Guan, L.L. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl. Environ. Microbiol. 2009, 75, 6524–6533. [Google Scholar] [CrossRef]
- Saborío-Montero, A.; López-García, A.; Gutiérrez-Rivas, M.; Atxaerandio, R.; Goiri, I.; García-Rodriguez, A.; Jiménez-Montero, J.A.; González, C.; Tamames, J.; Puente-Sánchez, F.; et al. A dimensional reduction approach to modulate the core ruminal microbiome associated with methane emissions via selective breeding. J. Dairy Sci. 2021, 104, 8135–8151. [Google Scholar] [CrossRef]
- Hook, S.E.; Wright, A.-D.G.; McBride, B.W. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef]
- Kelly, W.J.; Mackie, R.I.; Attwood, G.T.; Janssen, P.H.; McAllister, T.A.; Leahy, S.C. Hydrogen and formate production and utilisation in the rumen and the human colon. Anim. Microbiome. 2022, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Hungate, R.E.; Smith, W.; Bauchop, T.; Yu, I.; Rabinowitz, J.C. Formate as an intermediate in the bovine rumen fermentation. J. Bacteriol. 1970, 102, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J. The rumen microbial ecosystem—Some recent developments. Trends Microbiol. 1997, 5, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Lapébie, P.; Lombard, V.; Drula, E.; Terrapon, N.; Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. 2019, 10, 2043. [Google Scholar] [CrossRef]
- Pan, X.; Raaijmakers, J.M.; Carrión, V.J. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol. 2023, 31, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, N.D.; Groisman, E.A. Navigating the Gut Buffet: Control of Polysaccharide Utilization in Bacteroides spp. Trends Microbiol. 2017, 25, 1005–1015. [Google Scholar] [CrossRef]
- Kamke, J.; Kittelmann, S.; Soni, P.; Li, Y.; Tavendale, M.; Ganesh, S.; Janssen, P.H.; Shi, W.; Froula, J.; Rubin, E.M.; et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 2016, 4, 56. [Google Scholar] [CrossRef]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Portugal, A.V.; Sutherland, T.M. Metabolism of glutamic and aspartic acids in whole rumen contents. Nature 1966, 209, 510–511. [Google Scholar] [CrossRef]
- Syväoja, E.-L.; Kreula, M. Incorporation of radioactive carbon from [14C] alanine in the rumen of a cow given feed containing urea as the sole source of nitrogen. Agric. Food Sci. 1980, 52, 69–74. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef] [PubMed]
- Hunting, E.R.; Vijver, M.G.; van der Geest, H.G.; Mulder, C.; Kraak, M.H.S.; Breure, A.M.; Admiraal, W. Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms. Front. Microbiol. 2015, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dong, Y.; Guo, W.; Zhang, X.; Degen, A.A.; Bi, S.; Ding, L.; Chen, X.; Long, R. Linkages between rumen microbiome, host, and environment in yaks, and their implications for understanding animal production and management. Front. Microbiol. 2024, 15, 1301258. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, Y.; Zhang, X.; Li, C.; Yuan, L.; Zhang, D.; Zhao, Y.; Li, X.; Cheng, J.; Lin, C.; et al. Heritability and recursive influence of host genetics on the rumen microbiota drive body weight variance in male Hu sheep lambs. Microbiome 2023, 11, 197. [Google Scholar] [CrossRef]
Group | Mean (ppm × m) | SD (ppm × m) | Max (ppm × m) | Min (ppm × m) | CV |
---|---|---|---|---|---|
LME (57) | 628.80 | 78.61 | 832.75 | 379.42 | 12.50% |
HME (50) | 1134.21 | 209.58 | 1814.73 | 918.13 | 18.51% |
ALL (648) | 853.25 | 284.01 | 4203.75 | 367.18 | 33.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, J.; Wang, L.; Li, S.; Guo, J.; Ma, P.; Huang, X.; Guo, G.; Zhang, H.; Wang, Y. Screening and Functional Prediction of Rumen Microbiota Associated with Methane Emissions in Dairy Cows. Animals 2024, 14, 3195. https://doi.org/10.3390/ani14223195
Bao J, Wang L, Li S, Guo J, Ma P, Huang X, Guo G, Zhang H, Wang Y. Screening and Functional Prediction of Rumen Microbiota Associated with Methane Emissions in Dairy Cows. Animals. 2024; 14(22):3195. https://doi.org/10.3390/ani14223195
Chicago/Turabian StyleBao, Jiatai, Lei Wang, Shanshan Li, Jiahe Guo, Pan Ma, Xixia Huang, Gang Guo, Hailiang Zhang, and Yachun Wang. 2024. "Screening and Functional Prediction of Rumen Microbiota Associated with Methane Emissions in Dairy Cows" Animals 14, no. 22: 3195. https://doi.org/10.3390/ani14223195
APA StyleBao, J., Wang, L., Li, S., Guo, J., Ma, P., Huang, X., Guo, G., Zhang, H., & Wang, Y. (2024). Screening and Functional Prediction of Rumen Microbiota Associated with Methane Emissions in Dairy Cows. Animals, 14(22), 3195. https://doi.org/10.3390/ani14223195