Caspase-8-and Gasdermin D (GSDMD)-Dependent PANoptosis Participate in the Seasonal Atrophy of Scented Glands in Male Muskrats
<p>Transcriptomic analyses of scented glands during breeding and non-breeding seasons. (<b>a</b>) Venn diagram of shared and unique transcripts. (<b>b</b>,<b>c</b>) Clustering analysis heatmap and volcano plot of the differentially expressed genes. (<b>d</b>,<b>e</b>) GO and KEGG enrichment analyses.</p> "> Figure 2
<p>Real-time quantitative PCR was used to detect the mRNA expression levels of the following genes in muskrats’ scented glands during the breeding and non-breeding seasons. (<b>a</b>) TNFR1, TRADD, FADD, Caspase-8, BAX, and BCL2. (<b>b</b>) NLRP3, ASC, Caspase-1, GSDMD, and IL-1β. (<b>c</b>) TAK1, RIPK1, Caspase-8, GSDMD, and FADD. (<b>d</b>,<b>e</b>) Also shown are the protein expression results of GSDMD and Caspase-8. (<b>f</b>–<b>i</b>) The grayscale analysis of GSDMD, GSDMD-N, Caspase-8 p18, and Caspase-8 p43. B—breeding season; NB—non-breeding season. The error bars represent the means ± SEM (<span class="html-italic">n</span> = 3, each stage). * Statistical significance (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01).</p> "> Figure 3
<p>Immunofluorescence results in muskrats’ scented glands during the breeding (<b>a</b>–<b>d</b>) and non-breeding seasons (<b>e</b>–<b>h</b>). The green (<b>a</b>,<b>e</b>) and red (<b>b</b>,<b>f</b>) fluorescence signals represent GSDMD and Caspase-8, respectively. Scale bar = 100 μm.</p> "> Figure 4
<p>TUNEL results in scented glands during the breeding (<b>a</b>–<b>c</b>) and non-breeding seasons (<b>d</b>–<b>f</b>); scale bar = 100 μm. Apoptosis index during the breeding and non-breeding seasons is shown (<b>g</b>). The error bars represent the means ± SEM (<span class="html-italic">n</span> = 5, each stage). * Statistical significance (*** <span class="html-italic">p</span> < 0.001).</p> "> Figure 5
<p>Sketch of apoptosis and pyroptosis involved in muskrats’ scented glands.</p> ">
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals
2.3. RNA Isolation and RNA-Seq
2.4. Quantitative Real-Time PCR
2.5. Immunofluorescence Staining
2.6. Protein Isolation and Western Blotting
2.7. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bomske, C.M.; Ahlers, A.A. How do muskrats Ondatra zibethicus affect ecosystems? A review of evidence. Mammal Rev. 2021, 51, 40–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Man, X.; Ma, Y.; Zhang, W.; Wang, Y.; Lei, X.; Bai, S. Effect of muscone on anti-apoptotic ability of muskrat prostate primary cells. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2022, 323, R571–R580. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Weng, J.; Zhang, H.; Lu, L.; Ma, X.; Wang, Q.; Cao, H.; Liu, S.; Xu, M.; Weng, Q. Immunohistochemical evidence: Testicular and scented glandular androgen synthesis in muskrats (Ondatra zibethicus) during the breeding season. Eur. J. Histochem. EJH 2011, 55, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wang, L.; Zhang, S.; Lu, L.; Sheng, X.; Han, Y.; Yuan, Z.; Weng, Q. Seasonal expression of prolactin receptor in the scented gland of male muskrat (Ondatra zibethicus). Sci. Rep. 2015, 5, 15036. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Zhu, M.; Wang, J.; Sheng, X.; Yuan, Z.; Han, Y.; Watanabe, G.; Taya, K.; Weng, Q. Seasonal expressions of follicle-stimulating hormone receptor and luteinizing hormone receptor in the scented gland of the male muskrat (Ondatra zibethicus). Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2017, 312, R569–R574. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, D.; Qi, L.; Li, W.; Fan, M.; Shen, J.; Yang, L.; Wang, Y.; Wang, W.; Hu, X. Musk gland seasonal development and musk secretion are regulated by the testis in muskrat (Ondatra zibethicus). Biol. Res. 2017, 50, 10. [Google Scholar] [CrossRef]
- Moujalled, D.; Strasser, A.; Liddell, J.R. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021, 28, 2029–2044. [Google Scholar] [CrossRef] [PubMed]
- Denmeade, S.; Lin, X.; Isaacs, J. Erratum: Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 1996, 28, 251–265. [Google Scholar] [CrossRef]
- Assuncao Guimaraes, C.; Linden, R. Programmed cell deaths: Apoptosis and alternative deathstyles. Eur. J. Biochem. 2004, 271, 1638–1650. [Google Scholar] [CrossRef]
- Tsuda, H.; Ning, Z.; Yamaguchi, Y.; Suzuki, N. Programmed cell death and its possible relationship with periodontal disease. J. Oral Sci. 2012, 54, 137–149. [Google Scholar] [CrossRef]
- Yuan, J. Evolutionary conservation of a genetic pathway of programmed cell death. J. Cell. Biochem. 1996, 60, 4–11. [Google Scholar] [CrossRef]
- Malireddi, R.S.; Tweedell, R.E.; Kanneganti, T.-D. PANoptosis components, regulation, and implications. Aging 2020, 12, 11163. [Google Scholar] [CrossRef]
- Christgen, S.; Zheng, M.; Kesavardhana, S.; Karki, R.; Malireddi, R.S.; Banoth, B.; Place, D.E.; Briard, B.; Sharma, B.R.; Tuladhar, S. Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 2020, 10, 237. [Google Scholar] [CrossRef]
- Samir, P.; Malireddi, R.S.; Kanneganti, T.-D. The PANoptosome: A deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 2020, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Gartner, A.; Boag, P.R.; Blackwell, T.K. Germline survival and apoptosis. WormBook Online Rev. C Elegans Biol. 2008, 1–20. [Google Scholar] [CrossRef]
- Patel, T.; Roberts, L.R.; Jones, B.A.; Gores, G.J. Dysregulation of apoptosis as a mechanism of liver disease: An overview. Liver Dis. 1998, 18, 105–114. [Google Scholar] [CrossRef]
- Singh, P.; Lim, B. Targeting apoptosis in cancer. Curr. Oncol. Rep. 2022, 24, 273–284. [Google Scholar] [CrossRef]
- Belushkina, N.; Severin, S. Molecular mechanisms of apoptosis pathology. Arkhiv Patol. 2001, 63, 51–60. [Google Scholar]
- Tatton, W.; Chalmers-Redman, R.; Tatton, N. Apoptosis and anti-apoptosis signalling in glaucomatous retinopathy. Eur. J. Ophthalmol. 2001, 11, S12–S22. [Google Scholar]
- Naudé, P.J.; den Boer, J.A.; Luiten, P.G.; Eisel, U.L. Tumor necrosis factor receptor cross-talk. FEBS J. 2011, 278, 888–898. [Google Scholar] [CrossRef]
- Pobezinskaya, Y.L.; Liu, Z. The role of TRADD in death receptor signaling. Cell Cycle 2012, 11, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Owen-Schaub, L.; Chan, H.; Cusack, J.; Roth, J.; Hill, L. Fas and Fas ligand interactions in malignant disease. Int. J. Oncol. 2000, 17, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck-Guillem, V.; d’Herbomez-Boidein, M.; Decoulx, M.; Wemeau, J.L. Apoptosis and the thyroid: The Fas pathway. Presse Medicale 2001, 30, 74–80. [Google Scholar] [PubMed]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Malireddi, R.S.; Kesavardhana, S.; Kanneganti, T.-D. ZBP1 and TAK1: Master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front. Cell. Infect. Microbiol. 2019, 9, 406. [Google Scholar] [CrossRef]
- Ding, J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J.; Sun, H.; Wang, D.-C.; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016, 535, 111–116. [Google Scholar] [CrossRef]
- Cerretti, D.P.; Kozlosky, C.J.; Mosley, B.; Nelson, N.; Van Ness, K.; Greenstreet, T.A.; March, C.J.; Kronheim, S.R.; Druck, T.; Cannizzaro, L.A. Molecular cloning of the interleukin-1β converting enzyme. Science 1992, 256, 97–100. [Google Scholar] [CrossRef]
- Demarco, B.; Grayczyk, J.P.; Bjanes, E.; Le Roy, D.; Tonnus, W.; Assenmacher, C.-A.; Radaelli, E.; Fettrelet, T.; Mack, V.; Linkermann, A. Caspase-8–dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv. 2020, 6, eabc3465. [Google Scholar] [CrossRef]
- Sarhan, J.; Liu, B.C.; Muendlein, H.I.; Li, P.; Nilson, R.; Tang, A.Y.; Rongvaux, A.; Bunnell, S.C.; Shao, F.; Green, D.R. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl. Acad. Sci. USA 2018, 115, E10888–E10897. [Google Scholar] [CrossRef]
- Orning, P.; Weng, D.; Starheim, K.; Ratner, D.; Best, Z.; Lee, B.; Brooks, A.; Xia, S.; Wu, H.; Kelliher, M.A. Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. Science 2018, 362, 1064–1069. [Google Scholar] [CrossRef]
- Lincoln, G.; Short, R. Seasonal breeding: Nature’s contraceptive. In Proceedings of the 1979 Laurentian Hormone Conference; Academic Press: Cambridge, MA, USA, 1980; pp. 1–52. [Google Scholar]
- Zhang, Y.; Ma, Y.; Zhang, W.; Liao, G.Z.; Lei, X.; Man, X.; Tong, X.F.; Tian, Y.; Cui, Y.X.; Su, X.; et al. The expression profile of 79 genes from 107 viruses revealed new insights into disease susceptibility in rats, mice, and muskrats. Physiol. Genom. 2023, 55, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, T.; Zhou, J.; Yang, S.; Fan, M.; Sun, X.; Zhang, M.; Xu, S.; Cha, M.; Hu, X. Transcriptome analysis of muskrat scented glands degeneration mechanism. PLoS ONE 2017, 12, e0176935. [Google Scholar] [CrossRef]
- Xie, W.; Zhao, X.; Guo, L.; Han, Y.; Yuan, Z.; Zhang, H.; Weng, Q. Seasonal expressions of ERα, ERβ, EGF, EGFR, PI3K and Akt in the scent glands of the muskrats (Ondatra zibethicus). J. Steroid Biochem. Mol. Biol. 2021, 213, 105961. [Google Scholar] [CrossRef] [PubMed]
- Boldin, M.P.; Goncharov, T.M.; Goltseve, Y.V.; Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor–induced cell death. Cell 1996, 85, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.; Esteban, M. The interferon-induced protein kinase (PKR), triggers apoptosis through FADD-mediated activation of caspase 8 in a manner independent of Fas and TNF-α receptors. Oncogene 2000, 19, 3665–3674. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Mcdonnell, J.M.; Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999, 13, 1899–1911. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 2006, 8, 1812–1825. [Google Scholar] [CrossRef]
- Elliott, E.I.; Sutterwala, F.S. Initiation and perpetuation of NLRP 3 inflammasome activation and assembly. Immunol. Rev. 2015, 265, 35–52. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Park, M.Y.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Bhosale, P.B.; Abusaliya, A.; Kim, G.S. Differences of Key Proteins between Apoptosis and Necroptosis. BioMed Res. Int. 2021, 2021, 3420168. [Google Scholar] [CrossRef]
- Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.-C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 2019, 575, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Newton, K.; Wickliffe, K.E.; Maltzman, A.; Dugger, D.L.; Reja, R.; Zhang, Y.; Roose-Girma, M.; Modrusan, Z.; Sagolla, M.S.; Webster, J.D. Activity of caspase-8 determines plasticity between cell death pathways. Nature 2019, 575, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Karki, R.; Zheng, M.; Kancharana, B.; Lee, S.J.; Kesavardhana, S.; Hansen, B.S.; Pruett-Miller, S.M.; Kanneganti, T.D. Cutting edge: Caspase-8 is a linchpin in Caspase-3 and Gasdermin D activation to control cell death, cytokine release, and host defense during influenza a virus infection. J. Immunol. Off. J. Am. Assoc. Immunol. 2021, 207, 2411–2416. [Google Scholar] [CrossRef] [PubMed]
- Booty, L.M.; Bryant, C.E. Gasdermin D and Beyond—Gasdermin-mediated pyroptosis in bacterial infections. J. Mol. Biol. 2022, 434, 167409. [Google Scholar] [CrossRef]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021, 184, 149–168. [Google Scholar] [CrossRef]
- Gurung, P.; Anand, P.K.; Malireddi, R.K.S.; Vande Walle, L.; Van Opdenbosch, N.; Dillon, C.P.; Weinlich, R.; Green, D.R.; Lamkanfi, M.; Kanneganti, T.-D. FADD and Caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 2014, 192, 1835–1846. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, X.; Zhao, X.; Ma, Y.; Li, H.; Zhang, J.; Zhang, Z.; Hua, S.; Li, B.; Zhang, W.; Zhang, Y.; et al. Caspase-8-and Gasdermin D (GSDMD)-Dependent PANoptosis Participate in the Seasonal Atrophy of Scented Glands in Male Muskrats. Animals 2024, 14, 3194. https://doi.org/10.3390/ani14223194
Tong X, Zhao X, Ma Y, Li H, Zhang J, Zhang Z, Hua S, Li B, Zhang W, Zhang Y, et al. Caspase-8-and Gasdermin D (GSDMD)-Dependent PANoptosis Participate in the Seasonal Atrophy of Scented Glands in Male Muskrats. Animals. 2024; 14(22):3194. https://doi.org/10.3390/ani14223194
Chicago/Turabian StyleTong, Xiaofeng, Xuefei Zhao, Yue Ma, Haimeng Li, Jinpeng Zhang, Zuoyang Zhang, Sirui Hua, Bo Li, Wei Zhang, Yu Zhang, and et al. 2024. "Caspase-8-and Gasdermin D (GSDMD)-Dependent PANoptosis Participate in the Seasonal Atrophy of Scented Glands in Male Muskrats" Animals 14, no. 22: 3194. https://doi.org/10.3390/ani14223194
APA StyleTong, X., Zhao, X., Ma, Y., Li, H., Zhang, J., Zhang, Z., Hua, S., Li, B., Zhang, W., Zhang, Y., & Bai, S. (2024). Caspase-8-and Gasdermin D (GSDMD)-Dependent PANoptosis Participate in the Seasonal Atrophy of Scented Glands in Male Muskrats. Animals, 14(22), 3194. https://doi.org/10.3390/ani14223194