Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis
<p>Microbial enumerations of total viable counts (TVC), lactic acid bacteria (LAB), and yeasts in fermented table olives of (<b>A</b>) cv. Konservolia from Magnesia (MAG) and Fthiotida (FTH) regions and (<b>B</b>) cv. Halkidiki from Kavala (KAV) and Halkidiki (HAL) regions. The results present average values ± SD. Different letters indicate statistically significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Spider graph showing the sensory profiles (original scores) for the diverse fermented table olives samples. FTH (origin, Fthiotida; cultivar, Konservolia), MAG (Magnesia; Konservolia), HAL (Halkidiki; Halkidiki), KAV (Kavala; Halkidiki).</p> "> Figure 3
<p>Alpha-diversity boxplots for table olive’s bacterial families of (<b>A</b>) cultivar Halkidiki and Konservolia, (<b>B</b>) cultivar Halkidiki from Halkidiki (A_1) and Kavala (B_2) regions, and (<b>C</b>) cultivar Konservolia from Magnesia (C_3) and Fthiotida (C_4) regions based on observed and Simpson indices.</p> "> Figure 4
<p>Relative abundance of total observed bacterial families on table olives of (<b>A</b>) cv. Konservolia originating from the regions of Magnesia (MAG) and Fthiotida (FTH) and (<b>B</b>) cv. Halkidiki originating from the regions of Kavala (KAV) and Halkidiki (HAL). Only families above 1% occurrence are reported.</p> "> Figure 5
<p>Alpha-diversity boxplots for table olives yeasts families (<b>A</b>) and species (<b>B</b>) of cultivar Halkidiki and Konservolia based on observed and Simpson indices.</p> "> Figure 6
<p>Relative abundance of total observed yeast families on table olives of (<b>A</b>) cv. Konservolia originating from the regions of Magnesia (MAG) and Fthiotida (FTH) and (<b>B</b>) cv. Halkidiki originating from the regions of Kavala (KAV) and Halkidiki (HAL). Only families above 1% occurrence are reported.</p> "> Figure 7
<p>Hierarchically clustered heatmap of microbiological, physicochemical, organoleptic, and species level operational taxonomic units (OTUs) of bacteria and yeast communities data of table olive samples based on (<b>A</b>) the cultivar and (<b>B</b>) the geographical origin of the samples. The sample codes are indicated in <a href="#microorganisms-08-01241-t001" class="html-table">Table 1</a>.</p> "> Figure 8
<p>Partial least squares discriminant analysis (PLS-DA) clustering depending on (<b>A</b>) cultivar and (<b>B</b>) geographical origin of the olive samples.</p> "> Figure 9
<p>Most influential parameters of the olive samples based on the VIP scores from the PLS-DA analysis at (<b>A</b>) cultivar and (<b>B</b>) geographical origin levels.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Sampling
2.2. Microbiological Analysis
2.3. pH and Salt Measurement
2.4. Sensory Evaluation
2.5. Determination of Olive Microbiota by Next Generation Sequencing (NGS)
2.6. Statistics and Multivariate Analysis
3. Results
3.1. Microbial and Physicochemical Quality of Fermented Table Olives
3.2. Sensory Evaluation of Fermented Table Olives
3.3. Bacterial Community Profiling
3.4. Yeast Community Profiling
3.5. Cultivar and Geographical Discrimination of Table Olives by Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conte, P.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Piga, A. Table Olives: An overview on effects of processing on nutritional and sensory quality. Foods 2020, 9, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IOC, International Olive Council. World Table Olive Figures. 2020. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/01/OT-W901-29-11-2019-P.pdf (accessed on 24 March 2020).
- DOEPEL, Interprofessional Association for Table Olives. 2020. Available online: https://olivetreeroute.gr/wp-content/uploads/Studies_Publications_017a.pdf (accessed on 24 March 2020).
- Panagou, E.Z.; Tassou, C.C.; Katsaboxakis, K.Z. Induced lactic acid fermentation of untreated green olives of the Conservolea cultivar by Lactobacillus pentosus. J. Sci. Food Agric. 2003, 83, 667–674. [Google Scholar] [CrossRef]
- Kailis, S.; Harris, D. Producing Table Olives; Landlinks Press: Collingwood, Australia, 2007. [Google Scholar]
- Tassou, C.C.; Panagou, E.Z.; Katsaboxakis, K.Z. Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiol. 2002, 19, 605–615. [Google Scholar] [CrossRef]
- Perpetuini, G.; Prete, R.; García-González, N.; Khairul Alam, M.; Corsetti, A. Table olives. More than a fermented food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Nychas, G.J.E.; Panagou, E.Z.; Parker, M.L.; Waldron, K.W.; Tassou, C.C. Microbial colonization of naturally black olives during fermentation and associated biochemical activities in the cover brines. Lett. Appl. Microbiol. 2002, 34, 173–177. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Querol, A.; Bautista-Gallego, J.; Garrido-Fernández, A. Role of yeasts in table olive production. Int. J. Food Microbiol. 2008, 128, 189–196. [Google Scholar] [CrossRef]
- Doulgeraki, A.; Pramateftaki, P.; Argyri, A.; Nychas, G.J.E.; Tassou, C.; Panagou, E. Molecular characterization of lactic acid bacteria isolated from industrially fermented Greek table olives. LWT 2013, 50, 353–356. [Google Scholar] [CrossRef]
- Botta, C.; Cocolin, L. Microbial dynamics and biodiversity in table olive fermentation: Culture-dependent and-independent approaches. Front. Microbiol. 2012, 3, 245. [Google Scholar] [CrossRef] [Green Version]
- Ercolini, D. High-throughput sequencing and metagenomics: Moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 2013, 79, 3148–3155. [Google Scholar] [CrossRef] [Green Version]
- Abriouel, H.; Benomar, N.; Lucas, R.; Gálvez, A. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally fermented Aloreña green table olives. Int. J. Food Microbiol. 2011, 144, 487–496. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Ribbera, A.; Pitino, I.; Romeo, F.V.; Caggia, C. Diversity of bacterial population of table olives assessed by PCR-DGGE analysis. Food Microbiol. 2012, 32, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Cocolin, L.; Alessandria, V.; Botta, C.; Gorra, R.; De Fillipis, F.; Ercolini, D.; Rantsiou, K. NaOH-debittering induces changes in bacterial ecology during table olives fermentation. PLoS ONE 2013, 8, e69074. [Google Scholar] [CrossRef] [PubMed]
- Lucena-Padrós, H.; Caballero-Guerrero, B.; Maldonado-Barragán, A.; Ruiz-Barba, J.L. Genetic diversity and dynamics of bacterial and yeast strains associated to Spanish-style green table olive fermentations in large manufacturing companies. Int. J. Food Microbiol. 2014, 190, 72–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucena-Padrós, H.; Jiménez, E.; Maldonado-Barragán, A.; Rodríguez, J.M.; Ruiz-Barba, J.L. PCR-DGGE assessment of the bacterial diversity in Spanish-style green table olive fermentations. Int. J. Food Microbiol. 2015, 205, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Caggia, C. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol. 2017, 65, 136–148. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Medina, E.; Ruiz-Bellido, M.A.; Romero-Gil, V.; Montes-Borrego, M.; Landa, B.B. Enhancement of the knowledge on fungal communities in directly brined Aloreña de Málaga green olive fermentations by metabarcoding analysis. PLoS ONE 2016, 11, e0163135. [Google Scholar] [CrossRef] [Green Version]
- Kazou, M.; Tzamourani, A.; Panagou, E.Z.; Tsakalidou, E. Unraveling the microbiota of natural black cv. Kalamata fermented olives through 16S and ITS metataxonomic analysis. Microorganisms 2020, 8, 672. [Google Scholar] [CrossRef]
- Martiny, J.B.H.; Bohannan, B.J.M.; Brown, J.H.; Colwell, R.K.; Fuhrman, J.A.; Green, J.L.; Horner-Devine, M.C.; Kane, M.; Krumins, J.A.; Kuske, C.R.; et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. 2006, 4, 102–112. [Google Scholar] [CrossRef]
- Lucena-Padrós, H.; Ruiz-Barba, J.L. Microbial biogeography of Spanish-style green olive fermentations in the province of Seville, Spain. Food Microbiol. 2019, 82, 259–268. [Google Scholar] [CrossRef]
- Argyri, A.A.; Nisiotou, A.A.; Mallouchos, A.; Panagou, E.Z.; Tassou, C.C. Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives. Int. J. Food Microbiol. 2014, 171, 68–76. [Google Scholar] [CrossRef]
- Garrido-Fernández, A.; Fernández-Díez, M.J.; Adams, R.M. Table Olives: Production and Processing, 1st ed.; Chapman and Hall: London, UK, 1997. [Google Scholar]
- IOC, International Olive Council. Sensory Analysis of Table Olives; Document COI/OT/MO No 1/Rev. 2; International Olive Council: Madrid, Spain, 2011. [Google Scholar]
- Dowd, S.E.; Callaway, T.R.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Hagevoort, R.G.; Edrington, T.S. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discrimination analysis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and interactive metabolomics data analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
- IOOC, International Olive Oil Council. Trade Standard Applying to Table Olives; International Olive Oil Council: Madrid, Spain, 2004. [Google Scholar]
- Blana, V.A.; Grounta, A.; Tassou, C.C.; Nychas, G.J.E.; Panagou, E.Z. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Food Microbiol. 2014, 38, 208–218. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Schillinger, U.; Franz, C.M.A.P.; Nychas, G.J.E. Microbiological and biochemical profile of cv Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 2008, 25, 348–358. [Google Scholar] [CrossRef]
- Bautista Gallego, J.; Arroyo-Lopez, F.N.; Romero-Gil, V.; Rodriguez-Gomez, F.; Garcia-Garcia, P.; Garrido-Fernandez, A. Fermentation profile of green Spanish-style Manzanilla olives according to NaCl content in brine. Food Microbiol. 2015, 49, 56–64. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Romero-Gil, V.; Rodríguez-Gómez, F.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. Evaluation and identification of poly-microbial biofilms on natural green Gordal table olives. Antonie Van Leeuwenhoek 2015, 108, 597–610. [Google Scholar] [CrossRef] [Green Version]
- Porru, C.; Rodriguez-Gomez, F.; Benitez-Cabello, A.; Jimenez-Diaz, R.; Zara, G.; Budroni, M.; Mannazzu, I.; Arroyo-Lopez, F.N. Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally table olive fermentations. Food Microbiol. 2018, 69, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-López, F.N.; Romero-Gil, V.; Bautista-Gallego, J.; Rodriguez-Gómez, F.; Jiménez-Díaz, R.; García-García, P.; Querol, A.; Garrido-Fernandez, A. Yeasts in table olive processing: Desirable or spoilage microorganisms. Int. J. Food Microbiol. 2012, 160, 42–49. [Google Scholar] [CrossRef]
- Panagou, E.Z. Greek dry-salted olives: Monitoring the dry-salting process and subsequent physico-chemical and microbiological profile during storage under different packing conditions at 4 and 20 °C. LWT-Food Sci. Technol. 2006, 39, 323–330. [Google Scholar] [CrossRef]
- Arroyo Lopez, F.N.; Duran Quintana, M.C.; Ruiz-Barba, J.L.; Querol, A.; Garrido-Fernandez, A. Use of molecular methods for the identification of yeast associated with table olives. Food Microbiol. 2006, 23, 791–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado, A.; Reguant, A.; Bordons, A.; Rozès, N. Lactic acid bacteria from fermented table olives. Food Microbiol. 2012, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Campanella, D.; Cosmai, L.; Summo, C.; Rizzello, C.G.; Caponio, F. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiol. 2015, 52, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Ruiz-Bellido, M.A.; Romero-Gil, V.; Rodríguez-Gómez, F.; Montes-Borrego, M.; Landa, B.B.; Arroyo-López, F.N. Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis. Int. J. Food Microbiol. 2016, 236, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Gómez, F.; Ruiz-Bellido, M.Á.; Romero-Gil, V.; Benítez-Cabello, A.; Garrido-Fernández, A.; Arroyo-López, F.N. Microbiological and physicochemical changes in natural green heat-shocked Aloreña de Málaga table olives. Front. Microbiol. 2017, 8, 2209. [Google Scholar] [CrossRef]
- Miyamoto, M.; Seto, Y.; Hai Hao, D.; Teshima, T.; Bo Sun, Y.; Kabuki, T.; Bing Yao, L.; Nakajima, H. Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables ‘Suan cai’ in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Syst. Appl. Microbiol. 2005, 15, 688–694. [Google Scholar] [CrossRef]
- Aponte, M.; Blaiotta, G.; La Croce, F.; Mazzaglia, A.; Farina, V.; Settanni, L.; Moschetti, G. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiol. 2012, 30, 8–16. [Google Scholar] [CrossRef]
- De Bellis, P.; Valerio, F.; Sisto, A.; Lonigro, S.L.; Lavermicocca, P. Probiotic table olives: Microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. Int. J. Food Microbiol. 2010, 140, 6–13. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Hondrodimou, O.; Iliopoulos, V.; Panagou, E. Lactic acid bacteria heterogeneity during aerobic and modified atmosphere packaging storage of natural black Conservolea olives in polyethylene pouches. Food Control 2012, 26, 49–57. [Google Scholar] [CrossRef]
- Franzetti, L.; Scarpellini, M.; Vecchio, A.; Planeta, D. Microbiological and safety evaluation of green table olives marketed in Italy. Ann. Microbiol. 2011, 61, 843–851. [Google Scholar] [CrossRef]
- Billi, D.; Friedmann, E.I.; Helm, R.F.; Potts, M. Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J. Bacteriol. 2001, 183, 2298–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinno, P.; Guantario, B.; Perozzi, G.; Pastore, G.; Devirgillis, C. Impact of NaCl reduction on lactic acid bacteria during fermentation of Nocellara del Belice table olives. Food Microbiol. 2017, 63, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Tsiamis, G.; Tzagkaraki, G.; Chamalaki, A.; Xypteras, N.; Andersen, G.; Vayenas, D.; Bourtzis, K. Olive-mill wastewater bacterial communities display a cultivar specific profile. Curr. Microbiol. 2012, 64, 197–203. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.L.; Conklin, A.; Westrick, J.; Weavers, L.K.; Dionysiou, D.D.; Lenhart, J.J.; Mouser, P.J.; Szlag, D.; Walker, H.W. Toxic cyanobacteria and drinking water: Impacts, detection and treatment. Harmful Algae 2016, 54, 174–193. [Google Scholar] [CrossRef]
- Gutierrez-Praena, D.; Jos, A.; Pichardo, S.; Moreno, I.M.; Camean, A.M. Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: A review. Food Chem. Toxicol. 2013, 53, 139–152. [Google Scholar] [CrossRef]
- Manganelli, M.; Scardala, S.; Stefanelli, M.; Palazzo, F.; Funari, E.; Vichi, S.; Buratti, F.M.; Testai, E. Emerging health issues of cyanobacterial blooms. Ann. Ist. Super. Sanità 2012, 48, 415–428. [Google Scholar] [CrossRef]
- Sánchez-Gómez, A.H.; García-García, P.; Rejano Navarro, L. Elaboration of table olives. Grasas Y Aceites 2006, 57, 86–94. [Google Scholar] [CrossRef] [Green Version]
- De Fillipis, F.; Parente, E.; Ercolini, D. Metagenomics insights into food fermentations. Microb. Biotechnol. 2017, 10, 91–102. [Google Scholar] [CrossRef]
- Grounta, A.; Doulgeraki, A.I.; Panagou, E.Z. Quantification and characterization of microbial biofilm community attached on the surface of fermentation vessels used in green table olive processing. Int. J. Food Microbiol. 2015, 203, 41–48. [Google Scholar] [CrossRef]
- Crauwels, S.; Zhu, B.; Steensels, J.; Busschaert, P.; De Samblanx, G.; Marchal, K.; Willems, K.A.; Verstrepen, K.V.; Lievens, B. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing. Appl. Environ. Microbiol. 2014, 80, 4398–4413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotzekidou, P. Identification of yeasts from black olives in rapid system microtitre plates. Food Microbiol. 1997, 14, 609–616. [Google Scholar] [CrossRef]
- Nisiotou, A.A.; Chorianopoulos, N.; Nychas, G.J.E.; Panagou, E.Z. Yeast heterogeneity during spontaneous fermentation of black Conservolea olives in different brine solutions. J. Appl. Microbiol. 2010, 108, 396–405. [Google Scholar] [CrossRef]
- Bleve, G.; Tufariello, M.; Durante, M.; Grieco, F.; Ramires, F.A.; Mita, G.; Tasioula-Margari, M.; Logrieco, A.F. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamata table olives and development of a protocol for the pre-selection of fermentation starters. Food Microbiol. 2015, 46, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; Martin, A.; Aranda, E.; Pérez-Nevado, F.; Córdoba, M.G. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol. 2007, 24, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Gazi, M.R.; Hoshikuma, A.; Kanda, K.; Murata, A.; Kato, F. Detection of free radical scavenging activity in yeast culture. Bull. Fac. Agric. -Saga Univ. (Jpn.) 2001, 86, 67–74. [Google Scholar]
- Bonatsou, S.; Paramithiotis, S.; Panagou, E.Z. Evolution of yeast consortia during the fermentation of Kalamata natural black olives upon two initial acidification treatments. Front. Microbiol. 2018, 8, 2673. [Google Scholar] [CrossRef]
- Santos, A.; Marquina, D.; Leal, J.A.; Peinado, J.M. (1→6)-β-D-Glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl. Environ. Microbiol. 2000, 66, 1809–1813. [Google Scholar] [CrossRef] [Green Version]
Samples | Variety | Region | Origin | Olive Colour | Fermentation Type |
---|---|---|---|---|---|
MAG1 | Konservolia | Central Greece | Magnesia | Black | Greek-style |
MAG2 | Konservolia | Central Greece | Magnesia | Black | Greek-style |
MAG3 | Konservolia | Central Greece | Magnesia | Black | Greek-style |
MAG4 | Konservolia | Central Greece | Magnesia | Black | Greek-style |
MAG5 | Konservolia | Central Greece | Magnesia | Black | Greek-style |
MAG6 | Konservolia | Central Greece | Magnesia | Black | Greek-style |
FTH1 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
FTH2 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
FTH3 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
FTH4 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
FTH5 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
FTH6 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
FTH7 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
FTH8 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
FTH9 | Konservolia | Central Greece | Fthiotida | Black | Greek-style |
KAV1 | Halkidiki | Macedonia | Kavala | Green | Spanish-style |
KAV2 | Halkidiki | Macedonia | Kavala | Green | Spanish-style |
KAV3 | Halkidiki | Macedonia | Kavala | Green | Spanish-style |
KAV4 | Halkidiki | Macedonia | Kavala | Green | Spanish-style |
KAV5 | Halkidiki | Macedonia | Kavala | Green | Spanish-style |
KAV6 | Halkidiki | Macedonia | Kavala | Green | Spanish-style |
HAL1 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
HAL2 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
HAL3 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
HAL4 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
HAL5 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
HAL6 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
HAL7 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
HAL8 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
HAL9 | Halkidiki | Macedonia | Halkidiki | Green | Spanish-style |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyri, K.; Doulgeraki, A.I.; Manthou, E.; Grounta, A.; Argyri, A.A.; Nychas, G.-J.E.; Tassou, C.C. Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms 2020, 8, 1241. https://doi.org/10.3390/microorganisms8081241
Argyri K, Doulgeraki AI, Manthou E, Grounta A, Argyri AA, Nychas G-JE, Tassou CC. Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms. 2020; 8(8):1241. https://doi.org/10.3390/microorganisms8081241
Chicago/Turabian StyleArgyri, Konstantina, Agapi I. Doulgeraki, Evanthia Manthou, Athena Grounta, Anthoula A. Argyri, George-John E. Nychas, and Chrysoula C. Tassou. 2020. "Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis" Microorganisms 8, no. 8: 1241. https://doi.org/10.3390/microorganisms8081241
APA StyleArgyri, K., Doulgeraki, A. I., Manthou, E., Grounta, A., Argyri, A. A., Nychas, G. -J. E., & Tassou, C. C. (2020). Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms, 8(8), 1241. https://doi.org/10.3390/microorganisms8081241