Association of the Gut Microbiota with Weight-Loss Response within a Retail Weight-Management Program
<p>Schematic chart showing participant recruitment in the study.</p> "> Figure 2
<p>Changes in fat mass and glycated hemoglobin associated in participants with higher BMI and android:gynoid fat. Scatter plots with regression line showing decrease from baseline to Week 12 (<span class="html-italic">r</span>, Pearson’s coefficient): (<b>A</b>) all participants; (<b>B</b>) higher body mass index group (HI<sub>BMI</sub>); and (<b>C</b>) higher android:gynoid fat group (HI<sub>AG</sub>). The corresponding low groups for BMI and AG did not show similar association.</p> "> Figure 3
<p>OTU-richness relate with weight-loss response. Data shown as mean ± SE with individual data point distribution. a (within group change) and b (difference between groups at a given time point) indicate <span class="html-italic">p</span> < 0.05; HI, high; LO, low; res, response groups.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Diet, Anthropometrics, and Other Data Collection during Participant Visits
2.3. Nucleic Acid Extraction and 16S Ribosomal RNA Amplicon Sequencing
2.4. Sub-Grouping of Participants for Data Analyses
2.5. Bioinformatics and Statistical Data Analyses
3. Results
3.1. Energy-Intake in Study Participants
3.2. Baseline Body Composition: BMI versus AG
3.3. Anthropometric and Metabolic Changes over 12-weeks
3.4. Response Variability in Anthropometric and Metabolic Outcomes
3.5. OTU Richness May Influence Weight-Loss Response
3.6. Changes in Beta Diversity
3.7. Microbiome Differences in Response Groups
3.8. Microbiome Associations in Age-Groups
3.9. Predicted Metabolic Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, S.; Rigatto, K.; Gazzana, M.B.; Knorst, M.M.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. Altered gut microbiome profile in patients with pulmonary Arterial hypertension. Hypertension 2020. [Google Scholar] [CrossRef]
- Salonen, A.; Lahti, L.; Salojarvi, J.; Holtrop, G.; Korpela, K.; Duncan, S.H.; Date, P.; Farquharson, F.; Johnstone, A.M.; Lobley, G.E.; et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014, 8, 2218–2230. [Google Scholar] [CrossRef]
- Korpela, K.; Flint, H.J.; Johnstone, A.M.; Lappi, J.; Poutanen, K.; Dewulf, E.; Delzenne, N.; de Vos, W.M.; Salonen, A. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS ONE 2014, 9, e90702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, Y.; Santacruz, A.; Gauffin, P. Gut microbiota in obesity and metabolic disorders. Proc. Nutr. Soc. 2010, 69, 434–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbaugh, P.J.; Backhed, F.; Fulton, L.; Gordon, J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008, 3, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Bäckhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 2007, 104, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef] [PubMed]
- Høverstad, T.; Midtvedt, T. Short-chain fatty acids in germfree mice and rats. J. Nutr. 1986, 116, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seganfredo, F.B.; Blume, C.A.; Moehlecke, M.; Giongo, A.; Casagrande, D.S.; Spolidoro, J.V.N.; Padoin, A.V.; Schaan, B.D.; Mottin, C.C. Weight-loss interventions and gut microbiota changes in overweight and obese patients: A systematic review. Obes. Rev. 2017, 18, 832–851. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Lobley, G.E.; Holtrop, G.; Ince, J.; Johnstone, A.M.; Louis, P.; Flint, H.J. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 2008, 32, 1720–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Remely, M.; Tesar, I.; Hippe, B.; Gnauer, S.; Rust, P.; Haslberger, A.G. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef. Microbes 2015, 6, 431–439. [Google Scholar] [CrossRef]
- MacLean, P.S.; Wing, R.R.; Davidson, T.; Epstein, L.; Goodpaster, B.; Hall, K.D.; Levin, B.E.; Perri, M.G.; Rolls, B.J.; Rosenbaum, M.; et al. NIH working group report: Innovative research to improve maintenance of weight loss. Obesity (Silver Spring) 2015, 23, 7–15. [Google Scholar] [CrossRef]
- World Health Organisation. Obesity and Overweight; World Health Organisation: Geneva, Switzerland, 2016. [Google Scholar]
- Loveman, E.; Frampton, G.K.; Shepherd, J.; Picot, J.; Cooper, K.; Bryant, J.; Welch, K.; Clegg, A. The clinical effectiveness and cost-effectiveness of long-term weight management schemes for adults: A systematic review. Health Technol. Assess. 2011, 15, 1–182. [Google Scholar] [CrossRef] [PubMed]
- Montesi, L.; El Ghoch, M.; Brodosi, L.; Calugi, S.; Marchesini, G.; Dalle Grave, R. Long-term weight loss maintenance for obesity: A multidisciplinary approach. Diabetes Metab. Syndr. Obes. 2016, 9, 37–46. [Google Scholar] [PubMed] [Green Version]
- Gudzune, K.A.; Clark, J.M. Role of commercial weight-loss programs in medical management of obesity. Endocrinol. Metab. Clin. N. Am. 2020, 49, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Fruh, S.M. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J. Am. Assoc. Nurse Pract. 2017, 29, S3–S14. [Google Scholar] [CrossRef]
- Astrup, A.; Buemann, B.; Gluud, C.; Bennett, P.; Tjur, T.; Christensen, N. Prognostic markers for diet-induced weight loss in obese women. Int. J. Obes. Relat. Metab. Disord. 1995, 19, 275–278. [Google Scholar]
- Mutch, D.M.; Temanni, M.R.; Henegar, C.; Combes, F.; Pelloux, V.; Holst, C.; Sorensen, T.I.; Astrup, A.; Martinez, J.A.; Saris, W.H.; et al. Adipose gene expression prior to weight loss can differentiate and weakly predict dietary responders. PLoS ONE 2007, 2, e1344. [Google Scholar] [CrossRef]
- Jebb, S.A.; Ahern, A.L.; Olson, A.D.; Aston, L.M.; Holzapfel, C.; Stoll, J.; Amann-Gassner, U.; Simpson, A.E.; Fuller, N.R.; Pearson, S.; et al. Primary care referral to a commercial provider for weight loss treatment versus standard care: A randomised controlled trial. Lancet 2011, 378, 1485–1492. [Google Scholar] [CrossRef] [Green Version]
- Finley, C.E.; Barlow, C.E.; Greenway, F.L.; Rock, C.L.; Rolls, B.J.; Blair, S.N. Retention rates and weight loss in a commercial weight loss program. Int. J. Obes. 2007, 31, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Neumark-Sztainer, D.; Sherwood, N.E.; French, S.A.; Jeffery, R.W. Weight control behaviors among adult men and women: Cause for concern? Obes. Res. 1999, 7, 179–188. [Google Scholar] [CrossRef]
- Axxya Systems. Available online: https://www.nutritionistpro.com/research-students/ (accessed on 13 July 2020).
- Wey, H.E.; Binkley, T.L.; Beare, T.M.; Wey, C.L.; Specker, B.L. Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J. Clin. Endocrinol. Metab. 2011, 96, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Neovius, M.; Linne, Y.; Rossner, S. BMI, waist-circumference and waist-hip-ratio as diagnostic tests for fatness in adolescents. Int. J. Obes. 2005, 29, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, M.J.; Chin, S.L.; Rangarajan, S.; Xavier, D.; Liu, L.; Zhang, H.; Rao-Melacini, P.; Zhang, X.; Pais, P.; Agapay, S.; et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet 2016, 388, 761–775. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Nichenametla, S.N.; Weidauer, L.A.; Wey, H.E.; Beare, T.M.; Specker, B.L.; Dey, M. Resistant starch type 4-enriched diet lowered blood cholesterols and improved body composition in a double blind controlled cross-over intervention. Mol. Nutr. Food Res. 2014, 58, 1365–1369. [Google Scholar] [CrossRef]
- Swennen, Q.; Janssens, G.P.; Geers, R.; Decuypere, E.; Buyse, J. Validation of dual-energy x-ray absorptiometry for determining in vivo body composition of chickens. Poult. Sci. 2004, 83, 1348–1357. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Imboden, M.T.; Welch, W.A.; Swartz, A.M.; Montoye, A.H.; Finch, H.W.; Harber, M.P.; Kaminsky, L.A. Reference standards for body fat measures using GE dual energy x-ray absorptiometry in Caucasian adults. PLoS ONE 2017, 12, e0175110. [Google Scholar] [CrossRef] [Green Version]
- Carson, A.P.; Reynolds, K.; Fonseca, V.A.; Muntner, P. Comparison of A1C and fasting glucose criteria to diagnose diabetes among U.S. adults. Diabetes Care 2010, 33, 95–97. [Google Scholar] [CrossRef] [Green Version]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Jaccard, P. The Distribution of The Flora in the Alpine Zone.1. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurdie, P.J.; Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 2014, 10, e1003531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, W.S. How does multiple testing correction work? Nat. Biotechnol. 2009, 27, 1135–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, S.; Weinmaier, T.; Schmidt, B.L.; Albertson, D.G.; Poloso, N.J.; Dabbagh, K.; DeSantis, T.Z. Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS ONE 2016, 11, e0166104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britton, K.A.; Massaro, J.M.; Murabito, J.M.; Kreger, B.E.; Hoffmann, U.; Fox, C.S. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 921–925. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.L.; Takx, R.A.; MacNabb, M.H.; Abdelbaky, A.; Lavender, Z.R.; Kaplan, R.S.; Truong, Q.A.; Lo, J.; Ghoshhajra, B.B.; Grinspoon, S.K.; et al. Relationship between measures of adiposity, arterial inflammation, and subsequent cardiovascular events. Circ. Cardiovasc. Imaging 2016, 9, e004043. [Google Scholar] [CrossRef] [Green Version]
- Nicklas, B.J.; Penninx, B.W.; Cesari, M.; Kritchevsky, S.B.; Newman, A.B.; Kanaya, A.M.; Pahor, M.; Jingzhong, D.; Harris, T.B. Association of visceral adipose tissue with incident myocardial infarction in older men and women: The Health, Aging and Body Composition Study. Am. J. Epidemiol. 2004, 160, 741–749. [Google Scholar] [CrossRef]
- Fujimoto, W.Y.; Bergstrom, R.W.; Boyko, E.J.; Chen, K.W.; Leonetti, D.L.; Newell-Morris, L.; Shofer, J.B.; Wahl, P.W. Visceral adiposity and incident coronary heart disease in Japanese-American men. The 10-year follow-up results of the Seattle Japanese-American Community Diabetes Study. Diabetes Care 1999, 22, 1808–1812. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef]
- Mongraw-Chaffin, M.; Allison, M.A.; Burke, G.L.; Criqui, M.H.; Matsushita, K.; Ouyang, P.; Shah, R.V.; Shay, C.M.; Anderson, C.A.M. CT-derived body fat distribution and incident cardiovascular disease: The multi-ethnic study of atherosclerosis. J. Clin. Endocrinol. Metab. 2017, 102, 4173–4183. [Google Scholar] [CrossRef]
- Corrigan, F.E., 3rd; Kelli, H.M.; Dhindsa, D.S.; Heinl, R.E.; Al Mheid, I.; Hammadah, M.; Hayek, S.S.; Sher, S.; Eapen, D.J.; Martin, G.S.; et al. Changes in truncal obesity and fat distribution predict arterial health. J. Clin. Lipidol. 2017, 11, 1354–1360.e1353. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Batsis, J.A.; Coutinho, T.; Somers, V.K.; Hodge, D.O.; Carter, R.E.; Sochor, O.; Kragelund, C.; Kanaya, A.M.; Zeller, M.; et al. Normal-weight central obesity and mortality risk in older adults with coronary artery disease. Mayo Clin. Proc. 2016, 91, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Kirk, S.F.; Cramm, C.L.; Price, S.L.; Penney, T.L.; Jarvie, L.; Power, H. BMI: A vital sign for patients and health professionals. Can. Nurse 2009, 105, 25–28. [Google Scholar] [PubMed]
- Arciero, P.J.; Goran, M.I.; Poehlman, E.T. Resting metabolic rate is lower in women than in men. J. Appl. Physiol. 1993, 75, 2514–2520. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.L.; Wood, L.G.; Collins, C.E.; Callister, R. Effectiveness of weight loss interventions--is there a difference between men and women: A systematic review. Obes. Rev. 2015, 16, 171–186. [Google Scholar] [CrossRef]
- Lang, J.M.; Pan, C.; Cantor, R.M.; Tang, W.H.W.; Garcia-Garcia, J.C.; Kurtz, I.; Hazen, S.L.; Bergeron, N.; Krauss, R.M.; Lusis, A.J. Impact of individual traits, saturated fat, and protein source on the gut microbiome. mBio 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; et al. Human genetics shape the gut microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, B.; McCormack, L.; Fardin-Kia, A.R.; Juenemann, R.; Nichenametla, S.; Clapper, J.; Specker, B.; Dey, M. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci. Rep. 2016, 6, 28797. [Google Scholar] [CrossRef]
- Crovesy, L.; Ostrowski, M.; Ferreira, D.; Rosado, E.L.; Soares-Mota, M. Effect of Lactobacillus on body weight and body fat in overweight subjects: A systematic review of randomized controlled clinical trials. Int. J. Obes. 2017, 41, 1607–1614. [Google Scholar] [CrossRef]
- Million, M.; Maraninchi, M.; Henry, M.; Armougom, F.; Richet, H.; Carrieri, P.; Valero, R.; Raccah, D.; Vialettes, B.; Raoult, D. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. 2012, 36, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Van Gaal, L.; Scheen, A. Weight management in type 2 diabetes: Current and emerging approaches to treatment. Diabetes Care 2015, 38, 1161–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jura, M.; Kozak, L.P. Obesity and related consequences to ageing. Age 2016, 38, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaRose, J.G.; Leahey, T.M.; Hill, J.O.; Wing, R.R. Differences in motivations and weight loss behaviors in young adults and older adults in the National Weight Control Registry. Obesity 2013, 21, 449–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, E.; Tseng, E.; Durkin, N.; Jerome, G.J.; Dalcin, A.; Appel, L.J.; Clark, J.M.; Gudzune, K.A. Factors associated with early dropout in an employer-based commercial weight-loss program. Obes. Sci. Pract. 2018, 4, 545–553. [Google Scholar] [CrossRef]
- Kootte, R.S.; Levin, E.; Salojarvi, J.; Smits, L.P.; Hartstra, A.V.; Udayappan, S.D.; Hermes, G.; Bouter, K.E.; Koopen, A.M.; Holst, J.J.; et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017, 26, 611–619.e616. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.Y.; Kim, H.N.; Lee, S.H.; Kim, S.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.L.; Lee, J.H. Association between neutrophil-to-lymphocyte ratio and gut microbiota in a large population: A retrospective cross-sectional study. Sci. Rep. 2018, 8, 16031. [Google Scholar] [CrossRef]
- Lopez-Contreras, B.E.; Moran-Ramos, S.; Villarruel-Vazquez, R.; Macias-Kauffer, L.; Villamil-Ramirez, H.; Leon-Mimila, P.; Vega-Badillo, J.; Sanchez-Munoz, F.; Llanos-Moreno, L.E.; Canizalez-Roman, A.; et al. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits. Pediatr. Obes. 2018, 13, 381–388. [Google Scholar] [CrossRef]
- Terzo, S.; Mule, F.; Caldara, G.F.; Baldassano, S.; Puleio, R.; Vitale, M.; Cassata, G.; Ferrantelli, V.; Amato, A. Pistachio consumption alleviates inflammation and improves gut microbiota composition in mice fed a high-fat diet. Int. J. Mol. Sci. 2020, 21, 365. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, M.F.; Roager, H.M.; Larsen, T.M.; Poulsen, S.K.; Licht, T.R.; Bahl, M.I.; Zohar, Y.; Astrup, A. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int. J. Obes. 2018, 42, 580–583. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, M.F.; Christensen, L.; Larsen, T.M.; Roager, H.M.; Krych, L.; Kot, W.; Nielsen, D.S.; Ritz, C.; Astrup, A. Pretreatment Prevotella-to-Bacteroides ratio and salivary amylase gene copy number as prognostic markers for dietary weight loss. Am. J. Clin. Nutr. 2020, 111, 1079–1086. [Google Scholar] [CrossRef]
- Christensen, L.; Vuholm, S.; Roager, H.M.; Nielsen, D.S.; Krych, L.; Kristensen, M.; Astrup, A.; Hjorth, M.F. prevotella abundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet Ad libitum: A post hoc analysis of a 6-Wk randomized controlled trial. J. Nutr. 2019, 149, 2174–2181. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Zeevi, D.; Korem, T.; Segal, E.; Elinav, E. Taking it Personally: Personalized utilization of the human microbiome in health and disease. Cell Host Microbe 2016, 19, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Costea, P.I.; Hildebrand, F.; Arumugam, M.; Bäckhed, F.; Blaser, M.J.; Bushman, F.D.; de Vos, W.M.; Ehrlich, S.D.; Fraser, C.M.; Hattori, M.; et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 2018, 3, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef]
- O’Connor, A.; Quizon, P.M.; Albright, J.E.; Lin, F.T.; Bennett, B.J. Responsiveness of cardiometabolic-related microbiota to diet is influenced by host genetics. Mamm. Genome 2014, 25, 583–599. [Google Scholar] [CrossRef] [Green Version]
- Van den Abbeele, P.; Roos, S.; Eeckhaut, V.; MacKenzie, D.A.; Derde, M.; Verstraete, W.; Marzorati, M.; Possemiers, S.; Vanhoecke, B.; Van Immerseel, F.; et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 2012, 5, 106–115. [Google Scholar] [CrossRef] [Green Version]
Nutrients | All Participants (ALL, n = 36) | High-Response Group (HIres, n = 18) | Low-Response Group (LOres, n = 18) | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week-12 | p | Baseline | Week-12 | p | Baseline | Week-12 | p | |
Caloric Intake, kcal/d | 2327 ± 1163 | 1818 ± 669 | <0.01 | 2254 ± 1284 | 1722 ± 699 | <0.01 | 2400 ± 1061 | 1914 ± 643 | <0.01 |
Protein (%E) | 17.9 ± 10.9 | 24.0 ± 9.1 | <0.01 | 18.8 ± 14.4 | 26.1 ± 11.5 | <0.01 | 17.0 ± 6.0 | 21.9 ± 5.3 | <0.01 |
Carbohydrate (%E) | 41.7 ± 14.2 | 38.1 ± 8.8 | 0.01 | 44.8 ± 15.5 | 39.9 ± 9.4 | 0.01 | 38.6 ± 12.3 | 36.3 ± 8.1 | 0.01 |
Total Fat (%E) | 40.3 ± 12.9 | 38.3 ± 8.2 | NS | 38.2 ± 13.6 | 36.3 ± 9.2 | NS | 42.5 ± 12.1 | 40.3 ± 6.7 | NS |
Fiber, g/d | 18.5 ± 9.5 | 17.8 ± 6.0 | NS | 19.9 ± 10.8 | 18.5 ± 7.0 | NS | 18.1 ± 8.3 | 17.2 ± 4.8 | NS |
ALL (36) | Age Group (n) | Sex Group (n) | BMI Group (n) | Android:Gynoid Group (n) | Weight-Loss Response Group (n) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
YA (20) | OA (16) | Male (9) | Female (27) | HIBMI (24) | LOBMI (12) | HIAG (23) | LOAG (13) | HIres (18) | LOres (18) | ||
Age (year) | 45.7 ± 15.8 | 33.0 ± 6.9 * | 61.6 ± 5.9 * | 44.9 ± 17.7 | 46.0 ± 15.4 | 42.8 ± 15.0 | 51.5 ± 16.3 | 50.0 ± 16.1 * | 38.0 ± 12.1 * | 44.0 ± 16.3 | 47.4 ± 15.5 |
Body weight (kg) | 101.6 ± 24.5 | 106.1 ± 24.8 | 96.0 ± 23.6 | 115.9 ± 32.5 * | 96.9 ± 19.7 * | 112.2 ± 23.0 * | 80.4 ± 8.1 * | 106.9 ± 27.3 | 92.4 ± 15.3 | 113.2 ± 27.0 * | 90.1 ± 14.8 * |
BMI (kg/m2) | 34.6 ± 7.2 | 35.1 ± 7.1 | 33.9 ± 7.5 | 35.1 ± 8.6 | 34.4 ± 6.8 | 38.2 ± 6.0 * | 27.3 ± 1.8 * | 36.0 ± 7.6 | 32.1 ± 5.9 | 37.8 ± 7.6 * | 31.4 ± 5.3 * |
Hip (cm) | 120.3 ± 14.4 | 123.2 ± 13.0 | 116.7 ± 15.7 | 117.2 ± 13.0 | 121.3 ± 15.0 | 126.9 ± 12.9 * | 107.1 ± 5.4 * | 120.0 ± 15.6 | 120.9 ± 12.7 | 125.9 ± 14.0 * | 114.7 ± 12.8 * |
Waist (cm) | 112.7 ± 18.2 | 113.0 ± 18.1 | 112.2 ± 18.9 | 119.5 ± 22.6 | 110.4 ± 16.4 | 119.9 ± 18.0 * | 98.2 ± 5.8 * | 118.3 ± 19.2 * | 102.7 ± 11.3 * | 121.4 ± 17.6 * | 103.9 ± 14.5 * |
Waist:hip | 0.9 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.1 * | 0.9 ± 0.1 * | 0.9 ± 0.1 | 0.9 ± 0.04 | 1.0 ± 0.1 * | 0.9 ± 0.1 * | 1.0 ± 0.1 $ | 0.9 ± 0.1 $ |
Total FM (kg) | 41.2 ± 14.4 | 43.4 ± 14.7 | 38.4 ± 13.9 | 39.4 ± 18.7 | 41.8 ± 13.0 | 47.3 ± 13.6 * | 28.9 ± 5.0 * | 42.9 ± 16.3 | 38.2 ± 10.1 | 46.7 ± 16.5 * | 35.7 ± 9.4 * |
Total FFM (kg) | 61.1 ± 13.2 | 63.4 ± 12.9 | 58.2 ± 13.3 | 77.1 ± 14.5 * | 55.7 ± 7.1 * | 65.3 ± 13.5 * | 52.5 ± 7.0 * | 64.4 ± 14.8 * | 55.1 ± 6.7 * | 66.9 ± 14.0 * | 55.2 ± 9.5 * |
Total body fat% | 39.7 ± 6.9 | 40.0 ± 7.1 | 39.2 ± 6.8 | 32.5 ± 6.3 * | 42.0 ± 5.2 * | 41.7 ± 6.7 * | 35.6 ± 5.2 * | 39.3 ± 7.7 | 40.3 ± 5.4 | 40.3 ± 7.6 | 39.0 ± 6.2 |
Android FM (kg) | 3.7 ± 1.5 | 3.8 ± 1.6 | 3.6 ± 1.4 | 4.1 ± 2.1 | 3.6 ± 1.3 | 4.3 ± 1.5 * | 2.6 ± 0.6 * | 4.1 ± 1.6 * | 3.0 ± 0.9 * | 4.4 ± 1.7 * | 3.0 ± 1.0 * |
Android FFM (kg) | 5.1 ± 1.3 | 5.1 ± 1.2 | 5.1 ± 1.4 | 6.5 ± 1.5 * | 4.6 ± 0.8 * | 5.5 ± 1.3 * | 4.3 ± 0.7 * | 5.5 ± 1.4 * | 4.3 ± 0.6 * | 5.7 ± 1.5 * | 4.5 ± 0.8 * |
Android Fat% | 8.9 ± 1.3 | 8.6 ± 1.3 | 9.3 ± 1.3 | 10.2 ± 1.2 * | 8.5 ± 1.1 * | 9.0 ± 1.4 | 8.8 ± 1.2 | 9.6 ± 1.1 * | 7.8 ± 0.9 * | 9.4 ± 1.3 * | 8.5 ± 1.3 * |
Gynoid FM (kg) | 6.7 ± 2.3 | 7.3 ± 2.3 | 6.0 ± 2.1 | 5.9 ± 2.4 | 7.0 ± 2.3 | 7.7 ± 2.2 * | 4.8 ± 0.9 * | 6.6 ± 2.5 | 7.0 ± 2.0 | 7.5 ± 2.6 * | 6.0 ± 1.8 * |
Gynoid FFM (kg) | 9.9 ± 2.3 | 10.5 ± 2.5 | 9.3 ± 2.0 | 12.3 ± 2.7 * | 9.2 ± 1.6 * | 10.8 ± 2.3 * | 8.3 ± 1.1 * | 10.4 ± 2.6 | 9.1 ± 1.5 | 11.0 ± 2.5 * | 8.9 ± 1.6 * |
Gynoid Fat% | 16.4 ± 2.1 | 17.0 ± 2.2 $ | 15.8 ± 1.8 $ | 15.5 ± 2.0 | 16.7 ± 2.0 | 16.2 ± 2.2 | 16.8 ± 1.7 | 15.4 ± 1.7 * | 18.3 ± 1.3 * | 16.1 ± 2.1 | 16.7 ± 2.1 |
Android:gynoid fat | 0.6 ± 0.1 | 0.5 ± 0.1 $ | 0.6 ± 0.1 $ | 0.7 ± 0.1 * | 0.5 ± 0.1 * | 0.6 ± 0.2 | 0.5 ± 0.1 | 0.6 ± 0.1 * | 0.4 ± 0.1 * | 0.6 ± 0.2 $ | 0.5 ± 0.1 $ |
A1C (%) | 5.6 ± 0.5 | 5.4 ± 0.4 * | 5.8 ± 0.5 * | 5.5 ± 0.3 | 5.6 ± 0.5 | 5.6 ± 0.4 | 5.6 ± 0.5 | 5.7 ± 0.4 * | 5.3 ± 0.4 * | 5.6 ± 0.5 | 5.6 ± 0.5 |
Systolic BP (mmHg) | 139.0 ± 16.4 | 134.9 ± 16.8 $ | 144.5 ± 14.5 $ | 144.9 ± 18.6 | 137.0 ± 15.4 | 140.3 ± 17.1 | 136.5 ± 15.3 | 145.8 ± 15.2 * | 127.5 ± 11.2 * | 140.2 ± 17.4 | 137.9 ± 15.8 |
Diastolic BP (mmHg) | 83.4 ± 9.3 | 82.9 ± 10.5 | 84.1 ± 7.7 | 86.6 ± 13.0 | 82.3 ± 7.7 | 84.6 ± 9.9 | 81.1 ± 7.9 | 86.7 ± 9.2 * | 77.8 ± 6.5* | 83.9 ± 11.5 | 82.9 ± 6.9 |
Heart rate (bpm) | 77.3 ± 14.1 | 84.6 ± 12.2 * | 67.5 ± 10.0 * | 78.4 ± 16.2 | 76.8 ± 13.6 | 79.4 ± 12.5 | 73.2 ± 16.5 | 75.4 ± 14.2 | 80.4 ± 13.8 | 79.4 ± 15.4 | 75.2 ± 12.8 |
ALL (36) | Age Group (n) | Sex Group (n) | BMI Group (n) | Android:Gynoid Fat Group(n) | Weight-Loss Response Group(n) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
YA (20) | OA (16) | Male (9) | Female (27) | HIBMI (24) | LOBMI (12) | HIAG (23) | LOAG (13) | HIres (18) | LOres (18) | ||
Age (year) | 45.7 ± 15.8 | 33.0 ± 6.9 * | 61.6 ± 5.9 * | 44.9 ± 17.7 | 46.0 ± 15.4 | 42.8 ± 15.0 | 51.5 ± 16.3 | 50.0 ± 16.1 * | 38.0 ± 12.1 * | 44.0 ± 16.3 | 47.4 ± 15.5 |
Body weight (kg) | 91.4 ± 22.2 | 95.7 ± 22.3 | 86.1 ± 21.5 | 101.2 ± 29.6 | 88.2 ± 18.6 | 100.8 ± 21.0 * | 72.7 ± 7.9 * | 95.4 ± 24.8 | 84.4 ± 14.8 | 98.7 ± 25.6 * | 84.2 ± 15.7 * |
BMI (kg/m2) | 31.1 ± 6.6 | 31.6 ± 6.5 | 30.5 ± 7.0 | 30.6 ± 7.4 | 31.3 ± 6.5 | 34.3 ± 5.8 * | 24.7 ± 1.7 * | 32.1 ± 7.1 | 29.4 ± 5.7 | 32.9 ± 7.2 | 29.3 ± 5.7 |
Hip (cm) | 113.0 ± 14.5 | 115.4 ± 12.4 | 110.0 ± 16.6 | 109.7 ± 10.9 | 114.1 ± 15.5 | 118.7 ± 14.3 * | 101.7 ± 5.2 * | 113.2 ± 16.2 | 112.7 ± 11.3 | 116.2 ± 14.5 | 109.9 ± 14.1 |
Waist (cm) | 103.6 ± 16.4 | 104.6 ± 16.3 | 102.4 ± 16.9 | 106.9 ± 20.9 | 102.5 ± 14.9 | 109.9 ± 16.0 * | 91.0 ± 7.7 * | 107.5 ± 18.1 $ | 96.7 ± 9.9 $ | 109.7 ± 17.8 * | 97.5 ± 12.5 * |
Waist:hip | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.1 * | 0.9 ± 0.1 * | 0.9 ± 0.1 | 0.9 ± 0.03 | 0.9 ± 0.1 * | 0.9 ± 0.1* | 0.9 ± 0.1* | 0.9 ± 0.1* |
Total FM (kg) | 34.8 ± 13.1 | 36.7 ± 13.1 | 32.5 ± 13.3 | 30.5 ± 15.8 | 36.3 ± 12.1 | 40.4 ± 12.2 * | 23.7 ± 5.8 * | 35.9 ± 14.5 | 33.0 ± 10.5 | 37.5 ± 15.3 | 32.1 ± 10.3 |
Total FFM (kg) | 57.5 ± 12.4 | 60.0 ± 12.7 | 54.5 ± 11.8 | 71.7 ± 14.6 * | 52.8 ± 7.1 * | 61.3 ± 13.0 * | 50.1 ± 6.8 * | 60.3 ± 14.3 $ | 52.6 ± 5.6 $ | 62.1 ± 13.8 * | 53.0 ± 9.2 * |
Total body fat% | 36.9 ± 7.8 | 37.2 ± 7.8 | 36.5 ± 8.0 | 28.3 ± 6.7 * | 39.7 ± 5.9 * | 39.3 ± 7.3 * | 32.0 ± 6.7 * | 36.5 ± 8.5 | 37.7 ± 6.7 | 36.6 ± 8.6 | 37.2 ± 7.2 |
Android FM (kg) | 2.9 ± 13.7 | 3.0 ± 1.4 | 2.8 ± 1.4 | 2.9 ± 1.9 | 2.9 ± 1.2 | 3.5 ± 1.4 * | 1.9 ± 0.6 * | 3.3 ± 1.5 $ | 2.4 ± 0.8 $ | 3.3 ± 1.6 | 2.6 ± 1.1 |
Android FFM (kg) | 4.6 ± 1.2 | 4.6 ± 1.2 | 4.6 ± 1.3 | 5.7 ± 1.7 * | 4.3 ± 0.8 * | 5.0 ± 1.3 * | 3.9 ± 0.8 * | 5.0 ± 1.3 * | 3.9 ± 0.6 * | 5.1 ± 1.5 * | 4.2 ± 0.7 * |
Android Fat% | 8.3 ± 1.3 | 8.1 ± 1.4 | 8.5 ± 1.2 | 9.0 ± 1.6 * | 8.0 ± 1.2 * | 8.5 ± 1.4 | 7.9 ± 1.2 | 8.9 ± 1.1 * | 7.1 ± 1.0 * | 8.6 ± 1.3 | 8.0 ± 1.4 |
Gynoid FM (kg) | 5.7 ± 2.2 | 6.2 ± 2.2 | 5.1 ± 1.9 | 4.6 ± 2.2 | 6.0 ± 2.1 | 6.5 ± 2.1 * | 4.0 ± 0.8* | 5.5 ± 2.2 | 6.0 ± 2.1 | 6.0 ± 2.4 | 5.4 ± 1.9 |
Gynoid FFM (kg) | 9.2 ± 2.1 | 9.6 ± 2.2 | 8.6 ± 1.9 | 11.1 ± 2.7 * | 8.5 ± 1.5 * | 9.9 ± 2.2 * | 7.7 ± 1.1 * | 9.5 ± 2.4 | 8.5 ± 1.3 | 9.9 ± 2.4 * | 8.4 ± 1.6 * |
Gynoid Fat% | 16.4 ± 2.1 | 16.9 ± 2.2 | 15.8 ± 2.0 | 15.7 ± 2.1 | 16.7 ± 2.1 | 16.1 ± 2.3 | 17.1 ± 1.6 | 15.4 ± 1.7 * | 18.2 ± 1.6 * | 16.0 ± 2.2 | 16.8 ± 2.1 |
Android:gynoid fat | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.2 * | 0.5 ± 0.1 * | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.6 ± 0.1 * | 0.4 ± 0.1 * | 0.6 ± 0.1 | 0.5 ± 0.1 |
A1C (%) | 5.3 ± 0.4 | 5.2 ± 0.4 | 5.4 ± 0.5 | 5.2 ± 0.3 | 5.3 ± 0.5 | 5.3 ± 0.4 | 5.2 ± 0.5 | 5.4 ± 0.4 * | 5.1 ± 0.5 * | 5.2 ± 0.4 | 5.4 ± 0.5 |
Systolic BP (mmHg) | 127.9 ± 18.2 | 124.6 ± 17.1 | 132.1 ± 19.2 | 131.2 ± 14.9 | 126.8 ± 19.3 | 130.3 ± 19.4 | 123.0 ± 15.0 | 132.3 ± 18.5 * | 120.1 ± 15.2 * | 129.2 ± 21.3 | 126.6 ± 15.0 |
DiastolicBP (mmHg) | 75.4 ± 9.7 | 73.4 ± 9.2 | 77.9 ± 10.0 | 78.8 ± 7.2 | 74.3 ± 10.2 | 76.1 ± 9.9 | 73.9 ± 9.5 | 78.2 ± 8.7* | 70.5 ± 9.6 * | 76.4 ± 10.1 | 74.4 ± 9.5 |
Heart rate (bpm) | 74.0 ± 12.4 | 77.6 ± 11.2 * | 69.6 ± 12.7 * | 68.6 ± 11.9 | 75.8 ± 12.2 | 75.2 ± 11.9 | 71.6 ± 13.6 | 73.7 ± 14.4 | 74.5 ± 8.3 | 72.8 ± 12.7 | 75.2 ± 12.3 |
1. Male (p, pre vs. post) | 2. Female (p, pre vs. post) | p, 1 vs. 2 | 3. HIBMI (p, pre vs. post) | 4. LOBMI (p, pre vs. post) | p, 3 vs. 4 | 5. HIAG (p, pre vs. post) | 6. LOAG (p, pre vs. post) | p, 5 vs. 6 | 7. HIres (p, pre vs. post) | 8. LOres (p, pre vs. post) | p, 7 vs. 8 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Body weight | 12.9 ± 4.9 (<0.01) | 9.0 ± 4.3 (<0.01) | 0.03 | 10.2 ± 5.4 (<0.01) | 9.6 ± 2.7 (<0.01) | NS | 10.8 ± 4.4 (<0.01) | 8.6 ± 5.1 (<0.01) | NS | 13.2 ± 3.6 (<0.01) | 6.8 ± 3.3 (<0.01) | <0.01 |
BMI | 12.9 ± 4.9 (<0.01) | 9.03 ± 4.29 (<0.01) | 0.03 | 10.2 ± 5.44 (<0.01) | 9.6 ± 2.7 (<0.01) | NS | 10.8 ± 4.36 (<0.01) | 8.6 ± 5.1 (<0.01) | NS | 13.7 ± 5.0 (<0.01) | 6.8 ± 3.3 (<0.01) | <0.01 |
Hip | 6.3 ± 3.3 (<0.01) | 5.9 ± 4.2 (<0.01) | NS | 6.5 ± 4.4 (<0.01) | 5.1 ± 2.6 (<0.01) | NS | 5.7 ± 4.1 (<0.01) | 6.7 ± 3.6 (<0.01) | NS | 7.8 ± 4.0 (<0.01) | 4.3 ± 3.1 (<0.01) | <0.01 |
Waist | 10.6 ± 3.8 (<0.01) | 7.0 ± 5.3 (<0.01) | 0.07 | 8.1 ± 6.0 (<0.01) | 7.4 ± 3.3 (<0.01) | NS | 9.1 ± 4.7 (<0.01) | 5.7 ± 5.5 (<0.01) | 0.06 | 9.8 ± 4.7 (<0.01) | 5.9 ± 5.0 (<0.01) | 0.02 |
Waist:hip | 4.6 ± 2.9 (<0.01) | 1.0± 5.6 (NS) | 0.07 | 1.6 ± 6.2 (0.09) | 2.5 ± 2.8 (0.01) | NS | 3.6 ± 3.8 (<0.01) | −1.1 ± 6.2 (NS) | <0.01 | 2.2 ± 4.9 (0.04) | 1.6 ± 5.7 (NS) | NS |
Total FM | 24.1 ± 9.3 (<0.01) | 13.9 ± 7.1 (<0.01) | <0.01 | 15.1 ± 8.6 (<0.01) | 19.1 ± 9.1 (<0.01) | NS | 17.4 ± 8.6 (<0.01) | 14.8 ± 9.3 (<0.01) | NS | 21.4 ± 7.6 (<0.01) | 11.5 ± 7.1 (<0.01) | <0.01 |
Total FFM | 7.2 ± 4.7 (<0.01) | 5.1 ± 3.8 (<0.01) | NS | 6.2 ± 4.7 (<0.01) | 4.6 ± 2.1 (<0.01) | NS | 6.4± 4.1 (<0.01) | 4.4 ± 3.9 (<0.01) | NS | 7.4 ± 4.0 (<0.01) | 4.0 ± 3.6 (<0.01) | 0.01 |
Body fat% | 13.3 ± 7.3 (<0.01) | 5.7 ± 4.9 (<0.01) | <0.01 | 6.1 ± 4.9 (<0.01) | 10.8 ± 8.0 (<0.01) | 0.04 | 7.9 ± 6.5 (<0.01) | 7.2 ± 6.4 (<0.01) | NS | 10.0 ± 6.3 (<0.01) | 5.2 ± 5.7 (<0.01) | 0.02 |
Android FM | 32.5 ± 16.8 (<0.01) | 18.5 ± 8.3 (<0.01) | <0.01 | 19.4 ± 11.3 (<0.01) | 27.3 ± 13.2 (<0.01) | 0.07 | 22.4 ± 12.7 (<0.01) | 21.3 ± 12.2 (<0.01) | NS | 27.4 ± 13.5 (<0.01) | 16.6 ± 8.4 (<0.01) | <0.01 |
AndroidFFM | 12.6 ± 10.0 (<0.01) | 7.6 ± 5.4 (<0.01) | 0.07 | 9.3 ± 7.5 (<0.01) | 8.0 ± 6.0 (<0.01) | NS | 9.4 ± 7.0 (<0.01) | 7.9 ± 7.2 (<0.01) | NS | 11.5 ± 7.8 (<0.01) | 6.2 ± 5.0 (<0.01) | 0.02 |
AndroidFat% | 12.2 ± 12.4 (0.02) | 5.5 ± 4.8 (<0.01) | 0.02 | 5.3 ± 7.1 (<0.01) | 10.8 ± 8.2 (< 0.01) | 0.05 | 6.7 ± 8.3 (<0.01) | 8.0 ± 7.0 (<0.01) | NS | 8.4 ± 10.1 (<0.01) | 5.9 ± 4.4 (<0.01) | NS |
Gynoid FM | 23.2 ± 10.7 (<0.01) | 14.2 ± 7.1 (<0.01) | <0.01 | 15.9 ± 9.1 (<0.01) | 17.5 ± 8.9 (<0.01) | NS | 17.2 ± 9.1 (<0.01) | 15.1 ± 8.7 (<0.01) | NS | 21.8 ± 8.1 (<0.01) | 11.1 ± 6.1 (<0.01) | <0.01 |
Gynoid FFM | 10.0 ± 7.4 (<0.01) | 6.8 ± 5.5 (<0.01) | NS | 8.0 ± 6.6 (<0.01) | 6.9 ± 4.9 (<0.01) | NS | 8.5 ± 6.1 (<0.01) | 6.0 ± 5.8 (<0.01) | NS | 9.4 ± 6.0 (<0.01) | 5.9 ± 5.7 (<0.01) | 0.08 |
Gynoid Fat% | −1.08 ± 5.16 (NS) | 0.3±5.2 (NS) | NS | 0.9 ± 4.5 (NS) | −2.1 ± 5.9 (NS) | NS | −0.3 ± 5.7 (NS) | 0.2 ± 4.1 (NS) | NS | 0.6 ± 4.3 (NS) | −0.7 ± 5.9 (NS) | NS |
AG | 13.1 ± 11.9 (<0.01) | 5.0 ± 7.5 (<0.01) | 0.02 | 4.3 ± 7.9 (0.02) | 12.3 ± 9.9 (<0.01) | 0.01 | 6.6 ± 10.2 (<0.01) | 7.7 ± 7.7 (<0.01) | NS | 7.7 ± 11.3 (0.01) | 6.3±7.0 (<0.01) | NS |
A1C | 6.1 ± 8.6 (0.08) | 4.7 ± 8.4 (<0.01) | NS | 4.6 ± 8.1 (0.01) | 5.9 ± 9.2 (0.04) | NS | 5.4 ± 9.3(0.01) | 4.4 ± 6.7 (0.04) | NS | 6.5 ± 9.0 (<0.01) | 3.2 ± 7.5 (0.07) | NS |
Systolic BP | 8.9 ± 9.1 (0.02) | 8.2 ± 11.2 (<0.01) | NS | 7.9 ± 9.8 (<0.01) | 9.2 ± 12.3 (0.03) | NS | 10.0±10.6 (<0.01) | 5.7 ± 10.4 (0.07) | NS | 9.1 ± 10.6 (<0.01) | 7.7 ± 10.8 (<0.01) | NS |
Diastolic BP | 7.9 ± 10.5 (0.05) | 10.5 ± 10.6 (<0.01) | NS | 10.6 ± 9.2 (< 0.01) | 8.3 ± 12.9 (0.05) | NS | 10.2±10.0 (<0.01) | 9.3 ± 11.7 (0.02) | NS | 9.6 ± 10.7 (<0.01) | 10.0 ± 10.7 (<0.01) | NS |
Heart rate | 11.0 ± 14.1 (0.06) | −0.3 ± 14.6 (NS) | 0.05 | 3.9 ± 14.9 (NS) | 0.1 ± 16.1 (NS) | NS | 1.3 ± 13.3 (NS) | 4.8 ± 18.3 (NS) | NS | 6.5 ± 15.1 (0.08) | 1.1 ± 14.6 (NS) | NS |
Operational Taxonomic Units (OTU) | Log2 Fold Change (Standard Error) | Adjusted p |
---|---|---|
(A) OTU change in ALL from baseline to Week 12 * +ve value denotes increase while –ve value denotes decrease at Week 12 | ||
Parabacteroides distasonis | 1.185 (0.25) | <0.001 |
Prevotella 97otu8549 | 3.76 (0.93) | 0.010 |
(B) TU change in High-response group from baseline to Week 12 * | ||
Coprococcus 97otu39504 | 3.55 (1.00) | 0.04 |
Prevotella copri | 5.60(1.02) | <0.001 |
Prevotella 97otu94784 | 5.24 (0.99) | <0.001 |
(C) OTU change in Low-response group from baseline to Week 12 * | ||
Bacteroides eggerthii | 9.17 (2.12) | 0.002 |
Prevotella copri | −3.52 (0.94) | 0.014 |
Ruminococcus 97otu96826 | 4.97 (0.99) | <0.001 |
Ruminococcus 97otu31137 | 5.91 (1.00) | <0.001 |
(D) OTU differences between High and Low-response groups at baseline ** +ve value denotes higher abundance in HI group while −ve value denotes higher abundance in LO group | ||
Acidaminococcus unclassified | 4.85 (1.48) | 0.030 |
Akkermansia muciniphila | −4.11 (0.85) | <0.001 |
Bacteroides eggerthii | 5.72 (1.47) | 0.005 |
Bacteroides plebeius | −3.20 (0.97) | 0.030 |
Dorea unclassified | −2.20 (0.67) | 0.030 |
Eubacterium biforme | −3.73 (0.99) | 0.008 |
(E) OTU differences between High and Low-response groups at Week 12 ** | ||
Akkermansia muciniphila | −3.74 (0.88) | 0.003 |
Bacteroides uniformis | −2.59 (0.80) | 0.030 |
Coprococcus eutactus | 4.11 (1.04) | 0.004 |
Parabacteroides 97otu73285 | 5.18 (1.21) | 0.003 |
Prevotella 97otu94784 | 3.56 (1.02) | 0.021 |
Baseline Differences between Age Groups | ||
---|---|---|
Operational Taxonomic Unit (OTU) | Log2 Fold change (SE) | Adjusted p |
Anaerostipes 97otu18915 | −3.51 (0.99) | 0.017 |
Bacteroides eggerthii | −4.78 (1.25) | 0.009 |
Bacteroides plebeius | −4.84 (1.18) | 0.005 |
Eubacterium biforme | −5.90 (1.06) | <0.001 |
Odoribacter unclassified | 5.03 (1.33) | 0.009 |
Parabacteroides distasonis | −1.91 (0.60) | 0.035 |
Paraprevotella 97otu964 | −4.58 (1.37) | 0.025 |
Prevotella | −4.03 (1.17) | 0.019 |
Ruminococcus 97otu31137 | −4.30 (1.05) | 0.005 |
Week-12 Differences between Age Groups | ||
Acidaminococcus unclassified | −4.49 (1.31) | 0.024 |
Bacteroides fragilis | −3.24 (0.93) | 0.022 |
Bacteroides plebeius | −4.60 (1.30) | 0.018 |
Coprobacillus | 2.02 (0.70) | 0.059 |
Coprococcus eutactus | 2.47 (0.77) | 0.029 |
Eubacterium biforme | −3.30 (1.01) | 0.028 |
Lachnospira | −1.77 (0.47) | 0.013 |
Odoribacter unclassified | 5.91 (1.14) | <0.001 |
Oscillospira 97otu16206 | 1.52 (0.47) | 0.028 |
Oscillospira 97otu71987 | 2.10 (0.67) | 0.040 |
Paraprevotella unclassified | −4.92 (1.05) | <0.001 |
Paraprevotella 97otu964 | −4.34 (1.17) | 0.011 |
Prevotella | −3.65 (1.21) | 0.049 |
Roseburia | −1.92 (0.64) | 0.050 |
Sutterella 97otu3927 | −4.63 (1.14) | 0.004 |
Groups | Pearson’s Coefficient (r) |
---|---|
ALL | Body fat%: Turicibacter (b, r = −0.55, p = 0.001), Christensenella (b, r = −0.61, p = 0.01) Weight-loss (change between Week 0 and 12): *Bacteroides eggerthii (r = 0.54, p = 0.0007) |
High-response group | Weight-loss (change between Week 0 and 12): *Bacteroides eggerthii (r = 0.60, p = 0.008) |
Older Adults | Glycated hemoglobin: Anaerotruncus (pd, r = −0.61, p = 0.01), Parabacteroides distasonis (b, r = −0.76, p = 0.01) Body fat%: Christensenella (b, r = −0.76, p = 0.01) Android fat%: Dorea formicigenerans (pd, r = −0.62, p = 0.01), Prevotella (pd, r = −0.63, p = 0.01; b, r = −0.53, p = 0.03), Eubacterium biforme (pd, r = −0.54, p = 0.069; b, r = −0.54, p = 0.069), Anaerotruncus (b, r = −0.50, p = 0.048) |
Young Adults | Body fat%: Turicibacter (b, r = −0.66, p = 0.002), Ruminococcus torques (b, r = −0.52, p = 0.02), Anaerostipes (pd, r = −0.59, p = 0.03) |
Name of Pathways from KEGG Database | Baseline % Mean | Week12 % Mean | p, Change |
---|---|---|---|
path:map01100 Metabolic pathways | 16.21 | 16.31 | 0.024 |
path:map01120 Microbial metabolism in diverse environments | 4.54 | 4.62 | 0.065 |
path:map02010 ABC transporters | 2.82 | 2.63 | 0.005 |
path:map01200 Carbon metabolism | 2.58 | 2.63 | 0.004 |
path:map02024 Quorum sensing | 1.55 | 1.47 | 0.007 |
path:map00500 Starch and sucrose metabolism | 1.32 | 1.26 | 0.001 |
path:map00010 Glycolysis/Gluconeogenesis | 1.19 | 1.21 | 0.052 |
path:map00620 Pyruvate metabolism | 0.93 | 0.97 | <0.001 |
path:map00190 Oxidative phosphorylation | 0.84 | 0.88 | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhakal, S.; McCormack, L.; Dey, M. Association of the Gut Microbiota with Weight-Loss Response within a Retail Weight-Management Program. Microorganisms 2020, 8, 1246. https://doi.org/10.3390/microorganisms8081246
Dhakal S, McCormack L, Dey M. Association of the Gut Microbiota with Weight-Loss Response within a Retail Weight-Management Program. Microorganisms. 2020; 8(8):1246. https://doi.org/10.3390/microorganisms8081246
Chicago/Turabian StyleDhakal, Samitinjaya, Lacey McCormack, and Moul Dey. 2020. "Association of the Gut Microbiota with Weight-Loss Response within a Retail Weight-Management Program" Microorganisms 8, no. 8: 1246. https://doi.org/10.3390/microorganisms8081246
APA StyleDhakal, S., McCormack, L., & Dey, M. (2020). Association of the Gut Microbiota with Weight-Loss Response within a Retail Weight-Management Program. Microorganisms, 8(8), 1246. https://doi.org/10.3390/microorganisms8081246