The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality
<p>Comparative genomics of <span class="html-italic">B. bifidum</span> CNCM I-4319. (<b>A</b>) Hierarchical clustering heatmap representing the variability of <span class="html-italic">B. bifidum</span> in terms of presence/absence of gene families computed using all-vs.-all blastp alignment and MCL clustering. The number of core (present in all genomes) and dispensable (present in some genomes) gene families are also indicated. (<b>B</b>) Cluster of Orthologues (COG) classification of the <span class="html-italic">B. bifidum</span> families of orthologues. For each COG entry, the average percentage of hits among the species is indicated. COG classification: [D] cell cycle control, cell division, chromosome partitioning; [M] cell wall/membrane/envelope biogenesis; [N] cell motility; [O] post-translational modification, protein turnover, and chaperones; [T] signal transduction mechanisms; [U] intracellular trafficking, secretion, and vesicular transport; [V] defence mechanisms; [A] RNA processing and modification; [J] translation, ribosomal structure and biogenesis; [K] transcription; [L] Replication, recombination and repair; [C] energy production and conversion; [E] amino acid transport and metabolism; [F] nucleotide transport and metabolism; [G] carbohydrate transport and metabolism; [H] Coenzyme transport and metabolism; [I] lipid transport and metabolism; [P] inorganic ion transport and metabolism; [Q] secondary metabolites biosynthesis, transport, and catabolism; [R] general function prediction only; [S] function unknown. The most abundant families are highlighted in red and they are assigned to housekeeping functions.</p> "> Figure 2
<p>Adhesion and host-interacting features of <span class="html-italic">B. bifidum</span> CNCM I-4319. Heatmap showing the distribution of <span class="html-italic">B. bifidum</span> CNCM I-4319 gene clusters which are predicted to encode probiotic properties and/or responsible for host-interaction and gut colonisation. The green scale indicates sequence similarity (BLASTP alignment) of each identified CNCM I-4319 gene with its homologous in sequenced <span class="html-italic">B. bifidum</span> strains. Highlighted in blue represent clusters that are found to be variably distributed across members of the <span class="html-italic">B. bifidum</span> species.</p> "> Figure 3
<p>Visceral sensitivity and permeability measures in WAS model. Abdominal contractions in response to colorectal distension (<b>A</b>) and in vivo permeability measured by 51Cr-EDTA (<b>B</b>). Control no stressed (saline), control stressed (saline WAS), group no stressed treated with <span class="html-italic">B. bifidum</span> CNCM I-4319 strain (CNCM-I4319), group stressed treated with <span class="html-italic">B. bifidum</span> CNCM I-4319 strain (CNCM-I4319 WAS). *: <span class="html-italic">p</span> < 0.05; **: <span class="html-italic">p</span> < 0.01; ***: <span class="html-italic">p</span> < 0.001, ****: <span class="html-italic">p</span> < 0.0001.</p> "> Figure 4
<p>General health parameters in LGI model. Weight loss (<b>A</b>), macroscopic score (<b>B</b>), and colon and ileum MPO activity (<b>C</b>,<b>D</b>). Control non-inflamed (vehicle-PBS), control inflamed (dinitrobenzene sulfonic acid (DNBS)-PBS), <span class="html-italic">B. bifidum</span> CNCM I-4319 strain (DNBS-CNCM-I4319). *: <span class="html-italic">p</span> < 0.05; **: <span class="html-italic">p</span> < 0.01; ***: <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>In vivo permeability measurements and effect on Goblet cells and mucus production in LGI model. For in vivo measurements of gut permeability, animals were orally gavaged with FITC-dextran (<b>A</b>). Percentage of positive cells stained with AB (Alcian Blue) and mucus layer thickness measured by muc-2 immunohistochemistry (<b>B</b>,<b>C</b>). Control non-inflamed (vehicle-PBS), control inflamed (DNBS-PBS), <span class="html-italic">B. bifidum</span> CNCM I-4319 strain (DNBS-CNCM-I4319). *: <span class="html-italic">p</span> < 0.05 **: <span class="html-italic">p</span> < 0.01.</p> "> Figure 6
<p>MLN population levels in LGI model. CD3/CD4-positive cells and subsets detected by flow cytometry (<b>A</b>–<b>C</b>) and cytokine production in MLN cultures stimulated with CD3<sup>+</sup>/CD28<sup>+</sup> or PMA/IO (<b>D</b>,<b>E</b>). Control non-inflamed (vehicle-PBS), control inflamed (DNBS-PBS), <span class="html-italic">B. bifidum</span> CNCM I-4319 strain (DNBS-CNCM-I4319). * <span class="html-italic">p</span> < 0.05 ** <span class="html-italic">p</span> < 0.01 *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 7
<p>Splenocyte population levels in LGI model. CD3/CD4-positive cells and subsets detected by flow cytometry (<b>A</b>,<b>B</b>) and cytokine production in splenocyte cultures stimulated with CD3<sup>+</sup>/CD28<sup>+</sup> or PMA/IO (<b>C</b>,<b>D</b>). Control non-inflamed (vehicle-PBS), control inflamed (DNBS-PBS), <span class="html-italic">B. bifidum</span> CNCM I-4319 strain (DNBS-CNCM-I4319). *: <span class="html-italic">p</span> < 0.05, **: <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome Sequencing, Assembly, and Bioinformatic Analyses
2.2. Optimal Growth Conditions and Carbohydrate Utilisation Abilities of B. bifidum CNCM I-4319
2.3. Low-Grade Inflammation (LGI) Model
2.4. Water Avoidance Stress (WAS) Model and Visceral Sensitivity Measures
2.5. Intestinal Permeability Determinations in WAS and LGI Models
2.6. Histological Analysis
2.7. Analyses of Lymphoid Population
2.8. Statistical Analysis
3. Results and Discussion
3.1. General Features of B. bifidum CNCM I-4319
3.2. B. bifidum CNCM I-4319 Methylome Analysis
3.3. Carbohydrate Utilisation Profiles of B. bifidum CNCM I-4319
3.4. B. bifidum CNCM I-4319 Inhibits Visceral Sensitivity Due to Colorectal Distension in Rats
3.5. B. bifidum CNCM I-4319 Prevents the Increase in Gut Permeability in Rats
3.6. B. bifidum CNCM I-4319 Alleviates Moderate Inflammatory Symptoms Induced by a Chronic Low Dose DNBS Challenge in Mice
3.7. B. bifidum CNCM I-4319 Restores Colonic Permeability and Goblet Cell Populations Altered by DNBS Chronic Challenge and Increases Mucus Production in Mice
3.8. B. bifidum CNCM I-4319 Modulates CD3+/CD4+T-Cell Populations in Spleen and Mesenteric Lymphoid Nodes (MLN)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Milani, C.; Mangifesta, M.; Mancabelli, L.; Lugli, G.A.; James, K.; Duranti, S.; Turroni, F.; Ferrario, C.; Ossiprandi, M.C.; Van Sinderen, D.; et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 2017, 11, 2834–2847. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, A.; Van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Tannock, G.W.; Lawley, B.; Munro, K.; Pathmanathan, S.G.; Zhou, S.J.; Makrides, M.; Gibson, R.A.; Sullivan, T.; Prosser, C.G.; Lowry, D.; et al. Comparison of the Compositions of the Stool Microbiotas of Infants Fed Goat Milk Formula, Cow Milk-Based Formula, or Breast Milk. Appl. Environ. Microbiol. 2013, 79, 3040–3048. [Google Scholar] [CrossRef] [Green Version]
- Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R.P. Gut Bifidobacteria Populations in Human Health and Aging. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Milani, C.; Turroni, F.; Duranti, S.; Lugli, G.A.; Mancabelli, L.; Ferrario, C.; Van Sinderen, U.; Ventura, M. Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment. Appl. Environ. Microbiol. 2016, 82, 980–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milani, C.; Lugli, G.A.; Duranti, S.; Turroni, F.; Mancabelli, L.; Ferrario, C.; Mangifesta, M.; Hevia, A.; Viappiani, A.; Scholz, M.; et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci. Rep. 2015, 5, 15782. [Google Scholar] [CrossRef] [Green Version]
- Katayama, T.; Fujita, K.; Yamamoto, K. Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J. Biosci. Bioeng. 2005, 99, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Ashida, H.; Miyake, A.; Kiyohara, M.; Wada, J.; Yoshida, E.; Kumagai, H.; Katayama, T.; Yamamoto, K. Two distinct-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 2009, 19, 1010–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyohara, M.; Tanigawa, K.; Chaiwangsri, T.; Katayama, T.; Ashida, H.; Yamamoto, K. An exo-α-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 2010, 21, 437–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duranti, S.; Milani, C.; Lugli, G.A.; Mancabelli, L.; Turroni, F.; Ferrario, C.; Mangifesta, M.; Viappiani, A.; Sánchez, B.; Margolles, A.; et al. Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci. Rep. 2016, 6, 23971. [Google Scholar] [CrossRef] [Green Version]
- Duranti, S.; Milani, C.; Lugli, G.A.; Turroni, F.; Mancabelli, L.; Sánchez, B.; Ferrario, C.; Viappiani, A.; Mangifesta, M.; Mancino, W.; et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ. Microbiol. 2015, 17, 2515–2531. [Google Scholar] [CrossRef] [PubMed]
- Milani, C.; Lugli, G.A.; Duranti, S.; Turroni, F.; Bottacini, F.; Mangifesta, M.; Sánchez, B.; Viappiani, A.; Mancabelli, L.; Taminiau, B.; et al. Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium. Appl. Environ. Microbiol. 2014, 80, 6290–6302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odamaki, T.; Bottacini, F.; Kato, K.; Mitsuyama, E.; Yoshida, K.; Horigome, A.; Xiao, J.-Z.; Van Sinderen, U. Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Sci. Rep. 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Bottacini, F.; Morrissey, R.; Esteban-Torres, M.; James, K.; van Breen, J.; Dikareva, E.; Egan, M.; Lambert, J.; van Limpt, K.; Knol, J.; et al. Comparative genomics and genotype-phenotype associations in Bifidobacterium breve. Sci. Rep. 2018, 8, 10633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turroni, F.; Bottacini, F.; Foroni, E.; Mulder, I.; Kim, J.-H.; Zomer, A.; Sánchez, B.; Bidossi, A.; Ferrarini, A.; Giubellini, V.; et al. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc. Natl. Acad. Sci. USA 2010, 107, 19514–19519. [Google Scholar] [CrossRef] [Green Version]
- Kunz, C.; Rudloff, S.; Baier, W.; Klein, N.; Strobel, S. Oligosaccharides Inhumanmilk: Structural, Functional, and Metabolic Aspects. Annu. Rev. Nutr. 2000, 20, 699–722. [Google Scholar] [CrossRef]
- Asakuma, S.; Hatakeyama, E.; Urashima, T.; Yoshida, E.; Katayama, T.; Yamamoto, K.; Kumagai, H.; Ashida, H.; Hirose, J.; Kitaoka, M. Physiology of Consumption of Human Milk Oligosaccharides by Infant Gut-associated Bifidobacteria. J. Biol. Chem. 2011, 286, 34583–34592. [Google Scholar] [CrossRef] [Green Version]
- Garrido, D.; Ruiz-Moyano, S.; Kirmiz, N.; Davis, J.C.; Totten, S.M.; Lemay, D.G.; Ugalde, J.A.; German, J.B.; Lebrilla, C.B.; Mills, D.A. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci. Rep. 2016, 6, 35045. [Google Scholar] [CrossRef] [Green Version]
- Matsuki, T.; Yahagi, K.; Mori, H.; Matsumoto, H.; Hara, T.; Tajima, S.; Ogawa, E.; Kodama, H.; Yamamoto, K.; Yamada, T.; et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat. Commun. 2016, 7, 11939. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Wu, S.; Lebrilla, C.B.; Chapkin, R.S.; Ivanov, I.; Donovan, S.M. Fecal Microbiota Composition of Breast-Fed Infants Is Correlated with Human Milk Oligosaccharides Consumed. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Katayama, T. Host-Derived glycans serve as selected nutrients for the gut microbe: Human milk oligosaccharides and bifidobacteria. Biosci. Biotechnol. Biochem. 2016, 80, 621–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Palacio, S.D.; Montes, S.A.; Mancabelli, L.; et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Boil. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottacini, F.; Van Sinderen, D.; Ventura, M. Omics of bifidobacteria: Research and insights into their health-promoting activities. Biochem. J. 2017, 474, 4137–4152. [Google Scholar] [CrossRef] [PubMed]
- Turroni, F.; Duranti, S.; Milani, C.; Lugli, G.A.; Van Sinderen, D.; Ventura, M. Bifidobacterium bifidum: A Key Member of the Early Human Gut Microbiota. Microorganisms 2019, 7, 544. [Google Scholar] [CrossRef] [Green Version]
- Egan, M.; Motherway, M.O.; Kilcoyne, M.; Kane, M.; Joshi, L.; Ventura, M.; Van Sinderen, D. Cross-Feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol. 2014, 14, 282. [Google Scholar] [CrossRef] [Green Version]
- Turroni, F.; Milani, C.; Duranti, S.; Mahony, J.; Van Sinderen, D.; Ventura, M. Glycan Utilization and Cross-Feeding Activities by Bifidobacteria. Trends Microbiol. 2018, 26, 339–350. [Google Scholar] [CrossRef]
- Cheng, C.C.; Duar, R.M.; Lin, X.; Perez-Munoz, M.E.; Tollenaar, S.; Oh, J.-H.; Van Pijkeren, J.-P.; Li, F.; Van Sinderen, D.; Gänzle, M.G.; et al. Ecological Importance of Cross-Feeding of the Intermediate Metabolite 1,2-Propanediol between Bacterial Gut Symbionts. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef]
- Gotoh, A.; Katoh, T.; Sakanaka, M.; Ling, Y.; Yamada, C.; Asakuma, S.; Urashima, T.; Tomabechi, Y.; Katayama-Ikegami, A.; Kurihara, S.; et al. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci. Rep. 2018, 8, 13958. [Google Scholar] [CrossRef]
- Katoh, T.; Ojima, M.N.; Sakanaka, M.; Ashida, H.; Gotoh, A.; Katayama, T. Enzymatic Adaptation of Bifidobacterium bifidum to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules. Microorganisms 2020, 8, 481. [Google Scholar] [CrossRef] [Green Version]
- Duranti, S.; Lugli, G.A.; Milani, C.; James, K.; Mancabelli, L.; Turroni, F.; Alessandri, G.; Mangifesta, M.; Mancino, W.; Ossiprandi, M.C.; et al. Bifidobacterium bifidum and the infant gut microbiota: An intriguing case of microbe-host co-evolution. Environ. Microbiol. 2019, 21, 3683–3695. [Google Scholar] [CrossRef]
- Natividad, J.M.; Huang, X.; Slack, E.; Jury, J.; Sanz, Y.; David, C.; Denou, E.; Yang, P.; Murray, J.A.; McCoy, K.D.; et al. Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice. PLoS ONE 2009, 4, e6472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madara, J.L.; Stafford, J. Interferon-Gamma directly affects barrier function of cultured intestinal epithelial monolayers. J. Clin. Investig. 1989, 83, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Yang, P.-C.; Darmoul, D.; Amadesi, S.; Saito, T.; Cottrell, G.S.; Coelho, A.-M.; Singh, P.; Grady, E.F.; Perdue, M.; et al. Mast Cell Tryptase Controls Paracellular Permeability of the Intestine. J. Boil. Chem. 2005, 280, 31936–31948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öhman, L.; Simren, M. New insights into the pathogenesis and pathophysiology of irritable bowel syndrome. Dig. Liver Dis. 2007, 39, 201–215. [Google Scholar] [CrossRef]
- Natividad, J.M.; Verdu, E.F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol. Res. 2013, 69, 42–51. [Google Scholar] [CrossRef]
- Partty, A.; Kalliomaki, M.; Salminen, S. Isolauri E: Infantile Colic Is Associated with Low-Grade Systemic Inflammation. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 691–695. [Google Scholar] [CrossRef]
- Camilleri, M.; Coulie, B.; Tack, J. Visceral hypersensitivity: Facts, speculations, and challenges. Gut 2001, 48, 125–131. [Google Scholar] [CrossRef]
- Distrutti, E.; Cipriani, S.; Mencarelli, A.; Renga, B.; Fiorucci, S. Probiotics VSL#3 Protect against Development of Visceral Pain in Murine Model of Irritable Bowel Syndrome. PLoS ONE 2013, 8, e63893. [Google Scholar] [CrossRef]
- Agostini, S.; Goubern, M.; Tondereau, V.; Salvador-Cartier, C.; Bezirard, V.; Leveque, M.; Keranen, H.; Theodorou, V.; Bourdu-Naturel, S.; Goupil-Feuillerat, N.; et al. A marketed fermented dairy product containing Bifidobacterium lactis CNCM I-2494 suppresses gut hypersensitivity and colonic barrier disruption induced by acute stress in rats. Neurogastroenterol. Motil. 2012, 24. [Google Scholar] [CrossRef]
- Ukena, S.N.; Singh, A.; Dringenberg, U.; Engelhardt, R.; Seidler, U.; Hansen, W.; Bleich, A.; Bruder, D.; Franzke, A.; Rogler, G.; et al. Probiotic Escherichia coli Nissle 1917 Inhibits Leaky Gut by Enhancing Mucosal Integrity. PLoS ONE 2007, 2, e1308. [Google Scholar] [CrossRef]
- Mennigen, R.; Nolte, K.; Rijcken, E.; Utech, M.; Loeffler, B.; Senninger, N.; Bruewer, M. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am. J. Physiol. Liver Physiol. 2009, 296, G1140–G1149. [Google Scholar] [CrossRef]
- Donato, K.A.; Gareau, M.G.; Wang, Y.J.; Sherman, P.M. Lactobacillus rhamnosus GG attenuates interferon-{gamma} and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling. Microbiology 2010, 156, 3288–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natividad, J.M.M.; Hayes, C.L.; Motta, J.-P.; Jury, J.; Galipeau, H.J.; Philip, V.; Garcia-Rodenas, C.L.; Kiyama, H.; Bercik, P.; Verdú, E.F. Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium breve NCC2950. Appl. Environ. Microbiol. 2013, 79, 7745–7754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laval, L.; Martín, R.; Natividad, J.; Chain, F.; Miquel, S.; De Maredsous, C.D.; Capronnier, S.; Sokol, H.; Verdu, E.; Vlieg, J.V.H.; et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Punta, M.; Coggill, P.C.; Eberhardt, R.Y.; Mistry, J.; Tate, J.; Boursnell, C.; Pang, N.; Forslund, K.; Ceric, G.; Clements, J.; et al. The Pfam protein families database. Nucleic Acids Res. 2012, 40, D290–D301. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, K.; Parkhill, J.; Crook, J.; Horsnell, T.; Rice, P.; Rajandream, M.A.; Barrell, B. Artemis: Sequence visualization and annotation. Bioinformatics 2000, 16, 944–945. [Google Scholar] [CrossRef] [Green Version]
- Bottacini, F.; Morrissey, R.; Roberts, R.J.; James, K.; Van Breen, J.; Egan, M.; Lambert, J.; Van Limpt, K.; Knol, J.; Motherway, M.O.; et al. Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve. Nucleic Acids Res. 2017, 46, 1860–1877. [Google Scholar] [CrossRef]
- Enright, A.J.; Van Dongen, S.; Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002, 30, 1575–1584. [Google Scholar] [CrossRef]
- Motherway, M.O.; Watson, D.; Bottacini, F.; Clark, T.A.; Roberts, R.J.; Korlach, J.; Garault, P.; Chervaux, C.; Vlieg, J.E.T.V.H.; Smokvina, T.; et al. Identification of Restriction-Modification Systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT Sequencing and Associated Methylome Analysis. PLoS ONE 2014, 9, e94875. [Google Scholar] [CrossRef] [Green Version]
- Martín, R.; Laval, L.; Chain, F.; Miquel, S.; Natividad, J.; Cherbuy, C.; Sokol, H.; Verdu, E.F.; Vlieg, J.V.H.; Bermúdez-Humarán, L.G.; et al. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef]
- Larauche, M.; Mulak, A.; Kim, Y.S.; Labus, J.; Million, M.; Tache, Y. Visceral analgesia induced by acute and repeated water avoidance stress in rats: Sex difference in opioid involvement. Neurogastroenterol. Motil. 2012, 24, 1031-e547. [Google Scholar] [CrossRef] [Green Version]
- Morteau, O.; Hachet, T.; Caussette, M.; Bueno, L. Experimental colitis alters visceromotor response to colorectal distension in awake rats. Dig. Dis. Sci. 1994, 39, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Bjarnason, I.; MacPherson, A.; Hollander, D. Intestinal permeability: An overview. Gastroenterology 1995, 108, 1566–1581. [Google Scholar] [CrossRef]
- Perrier, C.; Corthesy, B. Gut permeability and food allergies. Clin. Exp. Allergy 2011, 41, 20–28. [Google Scholar] [CrossRef]
- Wrzosek, L.; Miquel, S.; Noordine, M.-L.; Bouet, S.; Chevalier-Curt, M.J.; Robert, V.; Philippe, C.; Bridonneau, C.; Cherbuy, C.; Robbe-Masselot, C.; et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Boil. 2013, 11, 61. [Google Scholar] [CrossRef] [Green Version]
- Bottacini, F.; Medini, D.; Pavesi, A.; Turroni, F.; Foroni, E.; Riley, D.; Giubellini, V.; Tettelin, H.; Van Sinderen, D.; Ventura, M. Comparative genomics of the genus Bifidobacterium. Microbiology 2010, 156, 3243–3254. [Google Scholar] [CrossRef] [Green Version]
- Motherway, M.O.; Zomer, A.; Leahy, S.C.; Reunanen, J.; Bottacini, F.; Claesson, M.J.; O’Brien, F.; Flynn, K.; Casey, P.G.; Munoz, J.A.M.; et al. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc. Natl. Acad. Sci. USA 2011, 108, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Motherway, M.O.; Houston, A.; O’Callaghan, G.; Reunanen, J.; O’Brien, F.; O’Driscoll, T.; Casey, P.G.; De Vos, W.M.; Van Sinderen, U.; Shanahan, F. A Bifidobacterial pilus-associated protein promotes colonic epithelial proliferation. Mol. Microbiol. 2018, 111, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Turroni, F.; Serafini, F.; Foroni, E.; Duranti, S.; Motherway, M.O.; Taverniti, V.; Mangifesta, M.; Milani, C.; Viappiani, A.; Roversi, T.; et al. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions. Proc. Natl. Acad. Sci. USA 2013, 110, 11151–11156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kainulainen, V.; Reunanen, J.; Hiippala, K.; Guglielmetti, S.; Vesterlund, S.; Palva, A.; Satokari, R. BopA Does Not Have a Major Role in the Adhesion of Bifidobacterium bifidum to Intestinal Epithelial Cells, Extracellular Matrix Proteins, and Mucus. Appl. Environ. Microbiol. 2013, 79, 6989–6997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleinser, M.; Grimm, V.; Zhurina, D.S.; Yuan, J.; Riedel, C.U. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA. Microb. Cell Factories 2012, 11, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglielmetti, S.; Tamagnini, I.; Mora, D.; Minuzzo, M.; Scarafoni, A.; Arioli, S.; Hellman, J.; Karp, M.; Parini, C. Implication of an Outer Surface Lipoprotein in Adhesion of Bifidobacterium bifidum to Caco-2 Cells. Appl. Environ. Microbiol. 2008, 74, 4695–4702. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.J. REBASE: Restriction enzymes and methyltransferases. Nucleic Acids Res. 2003, 31, 418–420. [Google Scholar] [CrossRef] [Green Version]
- Turroni, F.; Duranti, S.; Bottacini, F.; Guglielmetti, S.; Van Sinderen, D.; Ventura, M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Yvon, S.; Schwebel, L.; Belahcen, L.; Tormo, H.; Peter, M.; Haimoud-Lekhal, D.A.; Eutamene, H.; Jard, G. Effects of thermized donkey milk with lysozyme activity on altered gut barrier in mice exposed to water-avoidance stress. J. Dairy Sci. 2019, 102, 7697–7706. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, B.; Verne, G.N. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain 2009, 146, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Weström, B.; Sureda, E.A.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.-J. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Martín, R.; Chamignon, C.; Mhedbi-Hajri, N.; Chain, F.; Derrien, M.; Escribano-Vázquez, U.; Garault, P.; Cotillard, A.; Pham, H.-P.; Chervaux, C.; et al. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep. 2019, 9, 5398. [Google Scholar] [CrossRef] [Green Version]
- Lopetuso, L.R.; Scaldaferri, F.; Bruno, G.; Petito, V.; Franceschi, F.; Gasbarrini, A. The therapeutic management of gut barrier leaking: The emerging role for mucosal barrier protectors. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1068–1076. [Google Scholar] [PubMed]
- Denker, B.M.; Nigam, S.K. Molecular structure and assembly of the tight junction. Am. J. Physiol. Content 1998, 274, F1–F9. [Google Scholar] [CrossRef] [PubMed]
- Fyderek, K.; Strus, M.; Kowalska-Duplaga, K.; Gosiewski, T.; Wędrychowicz, A.; Jedynak-Wasowicz, U.; Sładek, M.; Pieczarkowski, S.; Adamski, P.; Kochan, P.; et al. Mucosal bacterial microflora and mucus layer thickness inadolescents with inflammatory bowel disease. World J. Gastroenterol. 2009, 15, 5287–5294. [Google Scholar] [CrossRef] [Green Version]
- Gaudier, E.; Michel, C.; Segain, J.-P.; Cherbut, C.; Hoebler, C. The VSL# 3 Probiotic Mixture Modifies Microflora but Does Not Heal Chronic Dextran-Sodium Sulfate–Induced Colitis or Reinforce the Mucus Barrier in Mice. J. Nutr. 2005, 135, 2753–2761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Ouwehand, A.C.; Hashimoto, H.; Isolauri, E.; Benno, Y.; Salminen, S. Adhesion of Bifidobacterium Spp. to Human Intestinal Mucus. Microbiol. Immunol. 2001, 45, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Yuan, K.T.; Yu, L.; Meng, Q.H.; Chung, P.C.; Yang, D.H. Bifidobacterium infantis attenuates colitis by regulating T cell subset responses. World J. Gastroenterol. 2014, 20, 18316–18329. [Google Scholar] [CrossRef]
- López, P.; González-Rodríguez, I.; Gueimonde, M.; Margolles, A.; Suárez, A. Immune Response to Bifidobacterium bifidum Strains Support Treg/Th17 Plasticity. PLoS ONE 2011, 6, e24776. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.L.X.; Qin, H.-Y.; Tsang, S.W.; Zuo, X.; Che, S.; Chow, C.F.W.; Li, X.; Xiao, H.-T.; Zhao, L.; Huang, T.; et al. Early life stress disrupts intestinal homeostasis via NGF-TrkA signaling. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kentner, A.C.; Cryan, J.F.; Brummelte, S. Resilience priming: Translational models for understanding resiliency and adaptation to early life adversity. Dev. Psychobiol. 2019, 61, 350–375. [Google Scholar] [CrossRef] [PubMed]
Genome | ORF Number | Genome Size | GC Content (%) | TUG Number | Accession Number |
---|---|---|---|---|---|
B. bifidum CNCM I-4319 | 1759 | 2,193,720 | 62.70 | 11 | CP058603.1 |
B. bifidum PRL2010 | 1706 | 2,214,656 | 62.70 | 21 | CP001840.1 |
B. bifidum LMG 13195 | 2106 | 2,261,666 | 62.60 | 94 | AP018131.1 |
B. bifidum S17 | 1715 | 2,186,882 | 62.80 | 25 | CP002220.1 |
B. bifidum BGN4 | 1727 | 2,223,664 | 62.60 | 26 | CP001361.1 |
B. bifidum JCM 1255 | 1723 | 2,211,039 | 62.70 | 9 | AP012323.1 |
B. bifidum BF3 | 1696 | 2,210,370 | 62.60 | 30 | CP010412.1 |
B. bifidum PRI1 | 1718 | 2,243,572 | 62.70 | 32 | CP018757.1 |
B. bifidum S6 | 1771 | 2,311,342 | 62.70 | 79 | CP022723.1 |
B. bifidum TMC3115 | 1612 | 2,178,894 | 62.80 | 38 | AP018132.1 |
B. bifidum NCTC 13001 | 1736 | 2,211,032 | 62.70 | 13 | LR134344.1 |
Type | Motif | Modified Position | Methylation |
---|---|---|---|
I | GGCANNNNNCTC | 4 | m6A |
I | GAGANNNNNTGCC | 2 | m6A |
I | CAAYNNNNNCTG | 3 | m6A |
I | CAGNNNNNRTTG | 2 | m6A |
I | CGYANNNNNNNTCC | 4 | m6A |
I | GGANNNNNNNTRCG | 3 | m6A |
I | GGANNNNNNNTCC | 3 | m6A |
Carbohydrate Source | Level of Growth |
---|---|
mMRS: no sugar | − |
Glucose | +++ |
Galactose | + |
Arabinose | − |
Mannose | − |
Xylose | − |
Ribose | − |
Fructose | +++ |
Rhamnose | − |
Fucose | − |
N-acetylglucosamine | + |
Sialic acid | − |
Glucuronic acid | − |
Galacturonic acid | − |
Sorbitol | − |
Mannitol | − |
Arabitol | − |
Xylitol | − |
Lactose | +++ |
Lactulose | +++ |
Maltose | + |
Isomaltulose | − |
Sucrose | − |
Cellobiose | − |
Turanose | − |
Melibiose | + |
Raffinose | − |
Melezitose | − |
6′ sialyllactose | +++ |
2′-fucosyllactose | +++ |
3-fucosyllactose | +++ |
Lacto-N-tetraose | +++ |
Lacto-N-neotetraose | +++ |
Lactosamine-HCl | +++ |
Xylo-oligosaccharides | − |
Arabinoxylan | − |
Xylan | − |
Arabinan | − |
Arabinogalactan | − |
Galactan | − |
Starch | − |
Pullulan | − |
Mucin | ++ |
Inulin | − |
Galacto-oligosaccharides | +++ |
Glycogen | − |
Amylopectin | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, R.; Bottacini, F.; Egan, M.; Chamignon, C.; Tondereau, V.; Moriez, R.; Knol, J.; Langella, P.; Eutamene, H.; Smokvina, T.; et al. The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality. Microorganisms 2020, 8, 1313. https://doi.org/10.3390/microorganisms8091313
Martín R, Bottacini F, Egan M, Chamignon C, Tondereau V, Moriez R, Knol J, Langella P, Eutamene H, Smokvina T, et al. The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality. Microorganisms. 2020; 8(9):1313. https://doi.org/10.3390/microorganisms8091313
Chicago/Turabian StyleMartín, Rebeca, Francesca Bottacini, Muireann Egan, Celia Chamignon, Valérie Tondereau, Raphaël Moriez, Jan Knol, Philippe Langella, Hélène Eutamene, Tamara Smokvina, and et al. 2020. "The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality" Microorganisms 8, no. 9: 1313. https://doi.org/10.3390/microorganisms8091313
APA StyleMartín, R., Bottacini, F., Egan, M., Chamignon, C., Tondereau, V., Moriez, R., Knol, J., Langella, P., Eutamene, H., Smokvina, T., & van Sinderen, D. (2020). The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality. Microorganisms, 8(9), 1313. https://doi.org/10.3390/microorganisms8091313