Enhancement of Activated Carbon on Anaerobic Fermentation of Heavy-Metal-Contaminated Plants: Insights into Microbial Responses
<p>Cumulative biogas yields (<b>a</b>), daily biogas yields (<b>b</b>) and CH<sub>4</sub> contents (<b>c</b>) of the CD, CD+AM and CD+AM+AC groups during the fermentation. CD: cow dung only; CD+AM: cow dung and alfalfa; CD+AM+AC: cow dung, alfalfa and activated carbon.</p> "> Figure 2
<p>Scanning electron microscope (SEM) and Fourier transform infrared absorption spectros-copy (FTIR) of the AC. (<b>a</b>) SEM of the original AC; (<b>b</b>) SEM of AC collected on the daily biogas peak day; (<b>c</b>) FTIR of original and peak day AC.</p> "> Figure 3
<p>α-diversity indices of the microbial communities in the substrate without AC, the substrate with AC and on the surface of AC. (<b>a</b>,<b>e</b>) Observed species; (<b>b</b>,<b>f</b>) Chao 1 index; (<b>c</b>,<b>g</b>) Shannon index; (<b>d</b>,<b>h</b>) PD_whole_tree; (<b>a</b>–<b>d</b>) bacteria; (<b>e</b>–<b>h</b>) archaea. Different letters indicate the significant differences based on the ANOVA analysis.</p> "> Figure 4
<p>Bacterial (<b>a</b>) and methanogenic (<b>b</b>) genera in the substrate without AC, substrate with AC and on the surface of AC.</p> "> Figure 5
<p>The KEGG level 2 functional pathways predicted by PICRUSt2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Anaerobic Fermentation Experiment Set Up
2.3. Measurements
2.4. Data Analysis
3. Results and Discussion
3.1. Enhancement of AC on the Biogas Production of Metal Contaminated Alfalfa
3.2. Properties of Activated Carbon
3.3. Microbial Properties
3.3.1. Diversity of Microbial Communities
3.3.2. Structure of Microbial Communities
3.3.3. Predicted Functions of Bacterial Communities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal Contamination and Bioremediation of Agricultural Soils for Food Safety and Sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, Q.C.; Yan, C.A.; Tang, G.Y.; Zhang, M.Y.; Ma, L.Q.; Gu, R.H.; Xiang, P. Heavy Metal(loid)s in Agriculture Soils, Rice, and Wheat across China: Status Assessment and Spatiotemporal Analysis. Sci. Total Environ. 2023, 882, 163361. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tilman, D.; Jin, Z.; Smith, P.; Barrett, C.B.; Zhu, Y.G.; Burney, J.; D’Odorico, P.; Fantke, P.; Fargione, J.; et al. Climate Change Exacerbates the Environmental Impacts of Agriculture. Science 2024, 385, eadn3747. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Yang, Y.; Li, S.; Wang, T.; Oleksak, P.; Chrienova, Z.; Wu, Q.; Nepovimova, E.; Zhang, X.; et al. Phytoremediation of Heavy Metal Pollution: Hotspots and Future Prospects. Ecotoxicol. Environ. Saf. 2022, 234, 113403. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, S.; Wang, T.; Chang, Z.; Shen, Z.; Chen, Y. Using Contaminated Plants Involved in Phytoremediation for Anaerobic Digestion. Int. J. Phytoremediation 2015, 17, 201–207. [Google Scholar] [CrossRef]
- Mudhoo, A.; Kumar, S. Effects of Heavy Metals as Stress Factors on Anaerobic Digestion Processes and Biogas Production from Biomass. Int. J. Environ. Sci. Technol. 2013, 10, 1383–1398. [Google Scholar] [CrossRef]
- Glass, J.B.; Orphan, V.J. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide. Front. Microbiol 2012, 3, 61. [Google Scholar] [CrossRef] [PubMed]
- Kadam, R.; Khanthong, K.; Jang, H.; Lee, J.; Park, J. Occurrence, Fate, and Implications of Heavy Metals during Anaerobic Digestion: A Review. Energies 2022, 15, 8618. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Tian, Y.; Zheng, L.; Huang, H. Metal Speciation Distribution of Anaerobic Fermentation with Alfalfa Grass Harvested from Abandoned Iron Mine and the Influence of Metals Addition. Process Saf. Environ. Prot. 2021, 152, 527–535. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Wang, L.; Zhang, L.; Dai, L. Ecophysiological Characteristics and Biogas Production of Cadmium-Contaminated Crops. Bioresour. Technol. 2013, 146, 628–636. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, H.; Zuo, X.; Zhang, L.; Li, X. Adding Granular Activated Carbon and Zerovalent Iron to the High-Solid Anaerobic Digestion System of the Organic Fraction of Municipal Solid Waste: Anaerobic Digestion Performance and Microbial Community Analysis. ACS Omega 2024, 9, 3401–3411. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, S.; Zhang, K.; Liu, F.; Liu, R.; Gao, X.; Li, J.; Du, L. Comparing the Effects and Mechanisms of Granular Activated Carbon and Magnetite Nanoparticles in Dry Anaerobic Digestion: Focusing on Microbial Electron Transfer and Metagenomic Evidence. Chem. Eng. J. 2024, 497, 155705. [Google Scholar] [CrossRef]
- Nie, W.; He, S.; Lin, Y.; Cheng, J.J.; Yang, C. Functional Biochar in Enhanced Anaerobic Digestion: Synthesis, Performances, and Mechanisms. Sci. Total Environ. 2024, 906, 167681. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ma, J.; Zhai, L.; Luo, T.; Mei, Z.; Liu, H. Achievements of Biochar Application for Enhanced Anaerobic Digestion: A Review. Bioresour. Technol. 2019, 292, 122058. [Google Scholar] [CrossRef]
- Singhal, S.; Agarwal, S.; Singhal, N. Review of Performance Enhancement of Anaerobic Digestion with the Aid of Biochar and Future Perspectives. J. Renew. Sustain. Energy 2023, 15, 12702. [Google Scholar] [CrossRef]
- Devi, P.; Eskicioglu, C. Effects of Biochar on Anaerobic Digestion: A Review. Environ. Chem. Lett. 2024. [Google Scholar] [CrossRef]
- Sunyoto, N.M.S.; Zhu, M.; Zhang, Z.; Zhang, D. Effect of Biochar Addition on Hydrogen and Methane Production in Two-Phase Anaerobic Digestion of Aqueous Carbohydrates Food Waste. Bioresour. Technol. 2016, 219, 29–36. [Google Scholar] [CrossRef]
- Lei, Y.; Sun, D.; Dang, Y.; Feng, X.; Huo, D.; Liu, C.; Zheng, K.; Holmes, D.E. Metagenomic Analysis Reveals That Activated Carbon Aids Anaerobic Digestion of Raw Incineration Leachate by Promoting Direct Interspecies Electron Transfer. Water Res. 2019, 161, 570–580. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Edgar; Robert, C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; McGinnis, S.; Madden, T.L. BLAST: Improvements for Better Sequence Analysis. Nucleic Acids Res. 2006, 34, W6–W9. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.X.; Glckner, F.O. SILVA: A Comprehensive Online Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, G.; Jiang, S.; Liu, Y.X. Wekemo Bioincloud: A User-Friendly Platform for Meta-Omics Data Analyses. iMeta 2024, 3, e175. [Google Scholar] [CrossRef]
- Wang, T.; Qin, Y.; Cao, Y.; Han, B.; Ren, J. Simultaneous Addition of Zero-Valent Iron and Activated Carbon on Enhanced Mesophilic Anaerobic Digestion of Waste-Activated Sludge. Environ. Sci. Pollut. Res. 2017, 24, 22371–22381. [Google Scholar] [CrossRef]
- Deubelin, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; Deublein, D., Angelika, S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2008; ISBN 9783527318414. [Google Scholar]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Schoene, R.P.; Snyder, S.W. Producing Pipeline-Quality Biomethane via Anaerobic Digestion of Sludge Amended with Corn Stover Biochar with in-Situ CO2 Removal. Appl. Energy 2015, 158, 300–309. [Google Scholar] [CrossRef]
- Kanjanarong, J.; Giri, B.S.; Jaisi, D.P.; Oliveira, F.R.; Boonsawang, P.; Chaiprapat, S.; Singh, R.S.; Balakrishna, A.; Khanal, S.K. Removal of Hydrogen Sulfide Generated during Anaerobic Treatment of Sulfate-Laden Wastewater Using Biochar: Evaluation of Efficiency and Mechanisms. Bioresour. Technol. 2017, 234, 115–121. [Google Scholar] [CrossRef]
- Wu, F.; Xie, J.; Xin, X.; He, J. Effect of Activated Carbon/Graphite on Enhancing Anaerobic Digestion of Waste Activated Sludge. Front. Microbiol. 2022, 13, 999647. [Google Scholar] [CrossRef]
- Chacón, F.J.; Sánchez-Monedero, M.A.; Lezama, L.; Cayuela, M.L. Enhancing Biochar Redox Properties through Feedstock Selection, Metal Preloading and Post-Pyrolysis Treatments. Chem. Eng. J. 2020, 395, 125100. [Google Scholar] [CrossRef]
- Sharma, S.K.; Verma, D.S.; Khan, L.U.; Kumar, S.; Khan, S.B. Handbook of Materials Characterization; Springer: Cham, Switzerland, 2018; pp. 1–613. [Google Scholar]
- Baby, R.; Hussein, M.Z. Ecofriendly Approach for Treatment of Heavy-Metal-Contaminated Water Using Activated Carbon of Kernel Shell of Oil Palm. Materials 2020, 13, 11–13. [Google Scholar] [CrossRef]
- Baby, R.; Hussein, M.Z.; Zainal, Z.; Abdullah, A.H. Functionalized Activated Carbon Derived from Palm Kernel Shells for the Treatment of Simulated Heavy Metal-Contaminated Water. Nanomaterials 2021, 11, 3133. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liu, C.; Wang, J.; Peng, M.; Shen, R.; Zhang, W.; Mao, L. The Improvement in Methane Production, Nutrient Removal, and Heavy Metal Passivation during Anaerobic Digestion of Chicken Manure: The Role of Modified Porous Materials. Biomass Convers. Biorefinery 2024. [Google Scholar] [CrossRef]
- Huang, C.-C.; Liang, C.-M.; Yang, T.-I.; Chen, J.-L.; Wang, W.-K. Shift of Bacterial Communities in Heavy Metal-Contaminated Agricultural Land during a Remediation Process. PLoS ONE 2021, 16, e0255137. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, Q.; Rao, W.; Li, N.; Bai, Y.; Zhang, J.; Liang, S. Effect of Powder Activated Carbon (PAC) Addition on the Performance of Anaerobic Dynamic Membrane Bioreactor (AnDMBR): Stratification Analysis of Dynamic Membrane Characteristics. Chem. Eng. J. 2024, 499, 155889. [Google Scholar] [CrossRef]
- Bhat, S.A.; Cui, G.; Li, W.; Wei, Y.; Li, F. Effect of Heavy Metals on the Performance and Bacterial Profiles of Activated Sludge in a Semi-Continuous Reactor. Chemosphere 2020, 241, 125035. [Google Scholar] [CrossRef]
- Li, H.; Shen, Y.; He, Y.; Gao, T.; Li, G.; Zuo, M.; Ji, J.; Li, C.; Li, X.; Chen, Y.; et al. Effects of Heavy Metals on Bacterial Community Structures in Two Lead–Zinc Tailings Situated in Northwestern China. Arch. Microbiol. 2022, 204, 78. [Google Scholar] [CrossRef]
- Redwan, A.M.; Millerick, K. Anaerobic Bacterial Responses to Carbonaceous Materials and Implications for Contaminant Transformation: Cellular, Metabolic, and Community Level Findings. Bioresour. Technol. 2021, 341, 125738. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Z.; Zhang, Y.; Xiang, Y.; Xu, R.; Jia, M.; Cao, J.; Xiong, W. Effects of Different Conductive Nanomaterials on Anaerobic Digestion Process and Microbial Community of Sludge. Bioresour. Technol. 2020, 304, 123016. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Wei, D.; Chen, Z.; Wang, Q.; Song, Y.; Ma, Y.; Zhang, H. Tolerance of Anaerobic Digestion Sludge to Heavy Metals: COD Removal, Biogas Production, and Microbial Variation. J. Water Process Eng. 2023, 55, 104157. [Google Scholar] [CrossRef]
- Wang, M.; Wu, C.; Li, C. Anaerobic Co-Digestion of Chicken Manure and Corn Straw: Gas Production, Biogas Fertilizer Effectiveness, and Microbial Diversity. Water Air Soil Pollut. 2024, 235, 365. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, P.; Zhang, R.; Chang, J.; Chen, L.; Wang, G.; Tian, Y.; Zhang, G. Response of Rumen Microorganisms to pH during Anaerobic Hydrolysis and Acidogenesis of Lignocellulose Biomass. Waste Manag. 2024, 174, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; He, P.; Hao, L.; Lü, F.; Shao, L.; Zhang, H. Diverse Acetate-Oxidizing Syntrophs Contributing to Biogas Production from Food Waste in Full-Scale Anaerobic Digesters in China. Renew. Energy 2022, 193, 240–250. [Google Scholar] [CrossRef]
- Ruan, Y.; Shen, L.; Zou, Y.; Qi, Z.; Yin, J.; Jiang, J.; Guo, L.; He, L.; Chen, Z.; Tang, Z.; et al. Comparative Genome Analysis of Prevotella Intermedia Strain Isolated from Infected Root Canal Reveals Features Related to Pathogenicity and Adaptation. BMC Genom. 2015, 16, 122. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, R.; Chang, J.; Chen, L.; Nabi, M.; Zhang, H.; Zhang, G.; Zhang, P. Rumen Microbes, Enzymes, Metabolisms, and Application in Lignocellulosic Waste Conversion—A Comprehensive Review. Biotechnol. Adv. 2024, 71, 108308. [Google Scholar] [CrossRef]
- Fang, C.; Su, Y.; Liang, Y.; Han, L.; He, X.; Huang, G. Exploring the Microbial Mechanism of Reducing Methanogenesis during Dairy Manure Membrane-Covered Aerobic Composting at Industrial Scale. Bioresour. Technol. 2022, 354, 127214. [Google Scholar] [CrossRef]
- De Vrieze, J.; Hennebel, T.; Boon, N.; Verstraete, W. Methanosarcina: The Rediscovered Methanogen for Heavy Duty Biomethanation. Bioresour. Technol. 2012, 112, 1–9. [Google Scholar] [CrossRef]
- Paulo, L.M.; Stams, A.J.M.; Sousa, D.Z. Methanogens, Sulphate and Heavy Metals: A Complex System. Rev. Environ. Sci. Bio/Technol. 2015, 14, 537–553. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, H.; Zheng, L.; Li, S.; Hao, H.; Yin, M.; Cao, Y. Process Analysis of Anaerobic Fermentation Exposure to Metal Mixtures. Int. J. Environ. Res. Public Health 2019, 16, 2458. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Zhang, Y.; Si, D.; Chen, Q. Evolution of Microbial Community along with Increasing Solid Concentration during High-Solids Anaerobic Digestion of Sewage Sludge. Bioresour. Technol. 2016, 216, 87–94. [Google Scholar] [CrossRef]
- Lü, F.; Luo, C.; Shao, L.; He, P. Biochar Alleviates Combined Stress of Ammonium and Acids by Firstly Enriching Methanosaeta and Then Methanosarcina. Water Res. 2016, 90, 34–43. [Google Scholar] [CrossRef]
- Aryal, N.; Feng, L.; Wang, S.; Chen, X. Surface-Modified Activated Carbon for Anaerobic Digestion to Optimize the Microbe-Material Interaction. Sci. Total Environ. 2023, 886, 163985. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Zhang, H.; Zheng, L.; Cao, Y.; Tian, W. Enhancement of Activated Carbon on Anaerobic Fermentation of Heavy-Metal-Contaminated Plants: Insights into Microbial Responses. Microorganisms 2024, 12, 2131. https://doi.org/10.3390/microorganisms12112131
Tian Y, Zhang H, Zheng L, Cao Y, Tian W. Enhancement of Activated Carbon on Anaerobic Fermentation of Heavy-Metal-Contaminated Plants: Insights into Microbial Responses. Microorganisms. 2024; 12(11):2131. https://doi.org/10.3390/microorganisms12112131
Chicago/Turabian StyleTian, Yonglan, Huayong Zhang, Lei Zheng, Yudong Cao, and Wang Tian. 2024. "Enhancement of Activated Carbon on Anaerobic Fermentation of Heavy-Metal-Contaminated Plants: Insights into Microbial Responses" Microorganisms 12, no. 11: 2131. https://doi.org/10.3390/microorganisms12112131
APA StyleTian, Y., Zhang, H., Zheng, L., Cao, Y., & Tian, W. (2024). Enhancement of Activated Carbon on Anaerobic Fermentation of Heavy-Metal-Contaminated Plants: Insights into Microbial Responses. Microorganisms, 12(11), 2131. https://doi.org/10.3390/microorganisms12112131