Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation
"> Figure 1
<p>HCV NS5A induces the engulfment of mitochondria within autophagic vacuoles: (<b>A</b>) Huh7 cells were transduced with lentiviruses expressing RFP-LC3 and Mito-GFP, as described in the “Materials and Methods” section, to generate Huh7/RFP-LC3/Mito-GFP cells. Then, Huh7/RFP-LC3/Mito-GFP cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The degree of colocalization between RFP-LC3-labeled autophagic vacuoles and Mito-GFP-expressing mitochondria was quantified. The data are presented as means ± SEMs (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001). (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the sequestration of Mito-GFP-labeled mitochondria by RFP-LC3 puncta. (<b>D</b>–<b>G</b>) CLEM analysis of mitochondrial sequestration by autophagic vacuoles in HCV NS5A-expressing cells. (<b>D</b>) Huh7/RFP-LC3/Mito-GFP cells were transduced with lentiviruses expressing HCV NS5A-mTagBFP2 for forty-eight hours and then processed for confocal microscopy. (<b>E</b>) The assembled Z-stacks of the confocal micrographs in (<b>D</b>) were reconstituted into a 3-D image. The white dashed boxes indicate the engulfment of Mito-GFP-expressing mitochondria within RFP-LC3 puncta. (<b>F</b>) The aligned image of the confocal micrograph (IF) and electron micrograph (EM) from the CLEM analysis of cells in (<b>D</b>) is shown. The white dashed boxes in the left panel are enlarged and shown in the magnified images in the right panel. The white arrowheads indicate the sequestration of mitochondria within autophagic vacuoles. (<b>G</b>) The enlarged images show the magnified white dashed boxes in the EM of (<b>F</b>). The white arrows indicate the phagophores wrapped around deformed mitochondria.</p> "> Figure 2
<p>HCV NS5A induces the translocation of Parkin to mitochondria: (<b>A</b>) Huh7 cells were transduced with lentiviruses harboring RFP-Parkin and Mito-GFP, according to the procedure described in the “Materials and Methods” section, to establish Huh7/RFP-Parkin/Mito-GFP cells. Huh7/RFP-LC3/Mito-GFP cells were transduced with (+) or without (−) pTRIP-HCV NS5A-miRFP670 lentiviruses for forty-eight hours and then analyzed via confocal microscopy. (<b>B</b>) The degree of colocalization between RFP-LC3-Parkin and Mito-GFP-labeled mitochondria was quantified. The data are presented as means ± SEMs (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001). (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the translocation of RFP-Parkin to Mito-GFP-expressing mitochondria. (<b>D</b>–<b>F</b>) CLEM analysis of the mitochondrial translocation of RFP-Parkin in HCV NS5A-expressing cells. (<b>D</b>) Huh7/RFP-Parkin/Mito-GFP cells were transduced with lentiviruses expressing HCV NS5A-miRFP670. Forty-eight hours later, the cells were analyzed via confocal microscopy. (<b>E</b>) The Z-stacks of the confocal micrograph shown in (<b>D</b>) were assembled and deconvoluted into a 3-D image. The white dashed boxes indicate the Mito-GFP-expressing mitochondria with RFP-Parkin translocation. (<b>F</b>) The aligned IF and CLEM image of the cells from (<b>D</b>) is presented. The white dashed boxes in the left panel are enlarged and shown in the magnified images in the right panel. The white arrowheads indicate the degradative mitochondria in which Parkin translocates.</p> "> Figure 3
<p>HCV NS5A induces mitolysosome formation: (<b>A</b>) Huh7 cells were transduced with pTRIP-Mito-QC lentiviruses, as described in the “Materials and Methods” section, generating Huh7/Mito-QC cells. Huh7/Mito-QC cells were transduced with (+) or without (−) pTRIP-HCV NS5A-miRFP670 lentiviruses. After forty-eight hours, the cells were analyzed via confocal microscopy. (<b>B</b>) The number of RFP<sup>+</sup>/GFP<sup>−</sup> mitolysosomes was quantified with Image J, as described previously [<a href="#B33-pathogens-13-01139" class="html-bibr">33</a>]. The data are presented as means ± SEMs (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001). (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the formation of RFP<sup>+</sup>/GFP<sup>−</sup> mitolysosomes. (<b>D</b>–<b>F</b>) CLEM analysis of mitolysosome formation in HCV NS5A-expressing cells. (<b>D</b>) Huh7/Mito-QC cells were transduced with lentiviruses expressing HCV NS5A-miRFP670 for forty-eight hours and then processed for confocal microscopy. (<b>E</b>) The Z-stacks of the confocal micrograph shown in (<b>D</b>) were assembled and deconvoluted into a 3-D image. The white dashed boxes indicate the loci of RFP<sup>+</sup>/GFP<sup>−</sup> mitolysosomes. (<b>F</b>) The aligned IF and CLEM image of the cells from (<b>D</b>) is shown. The white dashed boxes in the left panel are enlarged and shown in the magnified images in the right panel. The white arrowheads indicate the loci of mitolysosomes.</p> "> Figure 4
<p>HCV NS5A enhances mitophagic flux and induces ubiquitin recruitment to mitochondria: (<b>A</b>) Huh7 cells were transduced with pTRIP-MT-Keima lentiviruses, according to the procedure described in the “Materials and Methods” section, to establish Huh7/MT-Keima cells. Then, Huh7/MT-Keima cells were transduced with (+) or without (−) pTRIP-HCV NS5A-miRFP670 lentiviruses. Forty-eight hours later, the cells were analyzed via confocal microscopy at short (488 nm) and long (561 nm) excitation wavelengths. (<b>B</b>) The percentage of cells containing acidic MT-Keima (excitation at 561 nm) was quantified, as described previously [<a href="#B33-pathogens-13-01139" class="html-bibr">33</a>]. The data are presented as means ± SEMs (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001). (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the cells expressing acidic MT-Keima. (<b>D</b>) Huh7 cells were transduced with lentiviruses expressing RFP-LC3, GFP-Ub, or Mito-miRFP670, as described in the “Materials and Methods” section, generating Huh7/RFP-LC3/GFP-Ub/Mito-miRFP670 cells. Huh7/RFP-LC3/GFP-Ub/Mito-miRFP670 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and then analyzed via confocal microscopy. (<b>E</b>) The number of RFP-LC3 puncta containing GFP-Ub on Mito-miRFP670-labeled mitochondria was quantified. The data are presented as means ± SEMs (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001). (<b>F</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the recruitment of GFP-Ub to Mito-miRFP670-expressing mitochondria and the subsequent sequestration of RFP-LC3-labeled autophagic vacuoles.</p> "> Figure 5
<p>HCV NS5A induces ubiquitin Ser65 phosphorylation and PINK1 stabilization in mitochondria: (<b>A</b>,<b>B</b>) (<b>A</b>) Huh7/RFP-LC3/Mito-GFP cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses. Forty-eight hours later, the cells were immunostained with a phospho-ubiquitin (Ub; Ser65) antibody and analyzed via confocal microscopy. (<b>B</b>) Foci of phospho-ubiquitin (Ser65) recruited onto mitophagosomes in which RFP-LC3 puncta sequestered Mito-GFP-labeled mitochondria were quantified. (<b>C</b>,<b>D</b>) (<b>C</b>) Huh7/RFP-Parkin/Mito-GFP cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours. Then, the cells were immunostained with an anti-phospho-ubiquitin (Ser65) antibody and analyzed via confocal microscopy. (<b>D</b>) Foci of phosphor-Ub recruited to RFP-Parkin-translocated Mito-GFP-expressing mitochondria were quantified. (<b>E</b>,<b>F</b>) (<b>E</b>) Huh7/RFP-LC3/Mito-GFP cells were transduced with lentiviruses expressing PINK1-miRFP670, generating Huh7/RFP-LC3/Mito-miRFP670/PINK1-miRFP670 cells. Then, the cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>F</b>) Foci of PINK1-miRFP670 stabilized on mitophagosomes, in which RFP-LC3 puncta sequestered Mito-GFP-expressing mitochondria were quantified. (<b>G</b>,<b>H</b>) (<b>G</b>) Huh7/RFP-Parkin/Mito-GFP cells were transduced with lentiviruses expressing PINK1-miRFP670 to establish Huh7/RFP-LC3/Mito-miRFP670/PINK1-miRFP670 cells. Then, the cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>H</b>) The number of MiRFP670-PINK1 foci recruited onto the RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. The data shown in (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001). The magnified field-1 and magnified field-2 in (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>) show enlarged images of white dashed boxes 1 and 2 in the top and bottom panels. The white arrowheads indicate colocalized signals.</p> "> Figure 6
<p>Recruitment of NDP52 and OPTN into HCV NS5A-activated mitophagy: (<b>A,B</b>) (<b>A</b>) Huh7 cells were transduced with lentiviruses expressing RFP-LC3, Mito-miRFP670, or GFP-NDP52, as described in the “Materials and Methods” section, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-NDP52 cells. Then, the cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The number of GFP-NDP52 molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequestered Mito-miRFP670-expressing mitochondria, was quantified. (<b>C</b>,<b>D</b>) (<b>C</b>) Huh7 cells were transduced with lentiviruses expressing RFP-LC3, Mito-miRFP670, or GFP-OPTN, as described in the “Materials and Methods” section, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-OPTN cells. Then, the cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>D</b>) The number of GFP-OPTN molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequestered Mito-miRFP670-expressing mitochondria, was quantified. (<b>E</b>,<b>F</b>) (<b>E</b>) Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with lentiviruses expressing GFP-NDP52, generating Huh7/RFP-Parkin/Mito-miRFP670/GFP-NDP52 cells. Then, the cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>F</b>) The number of GFP-NDP52 molecules recruited to RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. (<b>G</b>,<b>H</b>) (<b>G</b>) Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with lentiviruses expressing GFP-OPTN to establish Huh7/RFP-Parkin/Mito-miRFP670/GFP-OPTN cells. Then, the cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (H) The number of GFP-OPTN molecules recruited to RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. The data shown in (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001). The magnified field-1 and magnified field-2 in (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>) show enlarged images of white dashed boxes 1 and 2 in the top and bottom panels. The white arrowheads indicate colocalized signals.</p> "> Figure 7
<p>Recruitment of ATG5 into close proximity to mitochondria for HCV NS5A-induced mitophagy: (<b>A</b>) Huh7 cells were transduced with lentiviruses expressing RFP-LC3 and mito-miRFP670 to establish Huh7/RFP-LC3/Mito-miRFP670 cells. Huh7/RFP-LC3/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ATG5, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-ATG5 cells. Then, Huh7/RFP-LC3/Mito-miRFP670/GFP-ATG5 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The number of GFP-ATG5 molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequestered Mito-miRFP670-expressing mitochondria, was quantified. (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the recruitment of GFP-ATG5 to Mito-miRFP670-labeled mitochondria before sequestration by RFP-LC3 puncta. (<b>D</b>) Huh7 cells were transduced with lentiviruses expressing RFP-Parkin and Mito-miRFP670 to establish Huh7/RFP-Parkin/Mito-miRFP670 cells. Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ATG5, generating Huh7/RFP-Parkin/Mito-miRFP670/GFP-ATG5 cells. Then, Huh7/RFP-Parkin/Mito-miRFP670/GFP-ATG5 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>E</b>) The number of GFP-ATG5 molecules recruited to RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. (<b>F</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>D</b>). The white arrowheads indicate the recruitment of GFP-ATG5 to Mito-miRFP670-labeled mitochondria after translocation by RFP-Parkin. The data shown in (<b>B</b>,<b>E</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 7 Cont.
<p>Recruitment of ATG5 into close proximity to mitochondria for HCV NS5A-induced mitophagy: (<b>A</b>) Huh7 cells were transduced with lentiviruses expressing RFP-LC3 and mito-miRFP670 to establish Huh7/RFP-LC3/Mito-miRFP670 cells. Huh7/RFP-LC3/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ATG5, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-ATG5 cells. Then, Huh7/RFP-LC3/Mito-miRFP670/GFP-ATG5 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The number of GFP-ATG5 molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequestered Mito-miRFP670-expressing mitochondria, was quantified. (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the recruitment of GFP-ATG5 to Mito-miRFP670-labeled mitochondria before sequestration by RFP-LC3 puncta. (<b>D</b>) Huh7 cells were transduced with lentiviruses expressing RFP-Parkin and Mito-miRFP670 to establish Huh7/RFP-Parkin/Mito-miRFP670 cells. Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ATG5, generating Huh7/RFP-Parkin/Mito-miRFP670/GFP-ATG5 cells. Then, Huh7/RFP-Parkin/Mito-miRFP670/GFP-ATG5 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>E</b>) The number of GFP-ATG5 molecules recruited to RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. (<b>F</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>D</b>). The white arrowheads indicate the recruitment of GFP-ATG5 to Mito-miRFP670-labeled mitochondria after translocation by RFP-Parkin. The data shown in (<b>B</b>,<b>E</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 8
<p>Recruitment of DFCP1 into the proximity of mitochondria for HCV NS5A-induced mitophagy: (<b>A</b>) Huh7/RFP-LC3/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-DFCP1, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-DFCP1 cells. Then, Huh7/RFP-LC3/Mito-miRFP670/GFP-DFCP1 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The number of GFP-DFCP1 molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequestered Mito-miRFP670-expressing mitochondria, was quantified. (<b>C</b>) The frames of selected live images show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the recruitment of GFP-DFCP1 to Mito-miRFP670-labeled mitochondria before sequestration by RFP-LC3 puncta. (<b>D</b>) Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-DFCP1, generating Huh7/RFP-Parkin/Mito-miRFP670/GFP-DFCP1 cells. Then, Huh7/RFP-Parkin/Mito-miRFP670/GFP-DFCP1 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>E</b>) The number of GFP-DFCP1 molecules recruited to RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. (<b>F</b>) The frames of selected live images show the magnified area in the white dashed box of the top panel in (<b>D</b>). The white arrowheads indicate the recruitment of GFP-DFCP1 to Mito-miRFP670-labeled mitochondria after translocation by RFP-Parkin. The data shown in (<b>B</b>,<b>E</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 8 Cont.
<p>Recruitment of DFCP1 into the proximity of mitochondria for HCV NS5A-induced mitophagy: (<b>A</b>) Huh7/RFP-LC3/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-DFCP1, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-DFCP1 cells. Then, Huh7/RFP-LC3/Mito-miRFP670/GFP-DFCP1 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The number of GFP-DFCP1 molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequestered Mito-miRFP670-expressing mitochondria, was quantified. (<b>C</b>) The frames of selected live images show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the recruitment of GFP-DFCP1 to Mito-miRFP670-labeled mitochondria before sequestration by RFP-LC3 puncta. (<b>D</b>) Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-DFCP1, generating Huh7/RFP-Parkin/Mito-miRFP670/GFP-DFCP1 cells. Then, Huh7/RFP-Parkin/Mito-miRFP670/GFP-DFCP1 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>E</b>) The number of GFP-DFCP1 molecules recruited to RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. (<b>F</b>) The frames of selected live images show the magnified area in the white dashed box of the top panel in (<b>D</b>). The white arrowheads indicate the recruitment of GFP-DFCP1 to Mito-miRFP670-labeled mitochondria after translocation by RFP-Parkin. The data shown in (<b>B</b>,<b>E</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 9
<p>Translocation of ATG14 into close proximity to mitochondria for HCV NS5A-induced mitophagy: (<b>A</b>) Huh7/RFP-LC3/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ATG14, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-ATG14 cells. Then, Huh7/RFP-LC3/Mito-miRFP670/GFP-ATG14 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The number of GFP-ATG14 molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequester Mito-miRFP670-expressing mitochondria, was quantified. (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the recruitment of GFP-ATG14 to Mito-miRFP670-labeled mitochondria before sequestration by RFP-LC3 puncta. (<b>D</b>) Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ATG14, generating Huh7/RFP-Parkin/Mito-miRFP670/GFP-ATG14 cells. Then, Huh7/RFP-Parkin/Mito-miRFP670/GFP-ATG14 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>E</b>) The number of GFP-ATG14 molecules recruited to RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. (<b>F</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>D</b>). The white arrowheads indicate the recruitment of GFP-ATG14 to Mito-miRFP670-labeled mitochondria after RFP-Parkin translocation. The data shown in (<b>B</b>,<b>E</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 9 Cont.
<p>Translocation of ATG14 into close proximity to mitochondria for HCV NS5A-induced mitophagy: (<b>A</b>) Huh7/RFP-LC3/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ATG14, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-ATG14 cells. Then, Huh7/RFP-LC3/Mito-miRFP670/GFP-ATG14 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The number of GFP-ATG14 molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequester Mito-miRFP670-expressing mitochondria, was quantified. (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the recruitment of GFP-ATG14 to Mito-miRFP670-labeled mitochondria before sequestration by RFP-LC3 puncta. (<b>D</b>) Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ATG14, generating Huh7/RFP-Parkin/Mito-miRFP670/GFP-ATG14 cells. Then, Huh7/RFP-Parkin/Mito-miRFP670/GFP-ATG14 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>E</b>) The number of GFP-ATG14 molecules recruited to RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. (<b>F</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>D</b>). The white arrowheads indicate the recruitment of GFP-ATG14 to Mito-miRFP670-labeled mitochondria after RFP-Parkin translocation. The data shown in (<b>B</b>,<b>E</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 10
<p>Translocation of ULK1 into the proximity of mitochondria for HCV NS5A-activated mitophagy: (<b>A</b>) Huh7/RFP-LC3/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ULK1, generating Huh7/RFP-LC3/Mito-miRFP670/GFP-ULK1 cells. Then, Huh7/RFP-LC3/Mito-miRFP670/GFP-ULK1 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>B</b>) The number of GFP-ULK1 molecules recruited onto mitophagosomes, in which RFP-LC3 puncta sequestered Mito-miRFP670-expressing mitochondria, was quantified. (<b>C</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>A</b>). The white arrowheads indicate the recruitment of GFP-ULK1 to Mito-miRFP670-labeled mitochondria before sequestration by RFP-LC3 puncta. (<b>D</b>) Huh7/RFP-Parkin/Mito-miRFP670 cells were transduced with retroviruses expressing GFP-ULK1, generating Huh7/RFP-Parkin/Mito-miRFP670/GFP-ULK1 cells. Then, Huh7/RFP-Parkin/Mito-miRFP670/GFP-ULK1 cells were transduced with (+) or without (−) pTRIP-HCV NS5A-mTagBFP2 lentiviruses for forty-eight hours and analyzed via confocal microscopy. (<b>E</b>) The number of GFP-ULK1 molecules recruited to the RFP-Parkin-translocated Mito-miRFP670-labeled mitochondria was quantified. (<b>F</b>) The selected live imaging frames show the magnified area in the white dashed box of the top panel in (<b>D</b>). The white arrowheads indicate the recruitment of GFP-ULK1 to Mito-miRFP670-labeled mitochondria after RFP-Parkin translocation. The data shown in (<b>B</b>,<b>E</b>) represent the mean ± SEM (<span class="html-italic">n</span> = 10, *** <span class="html-italic">p</span> < 0.001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture, Chemicals, and Antibodies
2.2. Plasmid Construction
2.3. Generation of Lentiviruses and Retroviruses and Virus-Mediated Gene Delivery
2.4. Confocal Microscopy and Live-Cell Imaging
2.5. Correlative Light and Electron Microscopy
2.6. SDS-PAGE and Western Blotting
3. Results
3.1. HCV NS5A Induces the Sequestration of Mitochondria Within Autophagic Vacuoles
3.2. HCV NS5A Triggers the Translocation of Parkin to Mitochondria
3.3. HCV NS5A Activates Mitophagy to Degrade Mitochondria
3.4. HCV NS5A Induces the Translocation of Ubiquitin and the Stabilization of PINK1 on Mitochondria
3.5. HCV NS5A Activates PINK1/Parkin-Dependent Mitophagy Through NDP52 and OPTN
3.6. Proximal Nascent Formation of Autophagosomes to Mitochondria for HCV NS5A-Induced PINK1/Parkin-Dependent Mitophagy
3.7. The Recruitment of the Autophagy Initiation Machinery near Mitochondria for HCV NS5A-Induced PINK1/Parkin-Dependent Mitophagy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cadwell, K.; Cecconi, F.; Choi, A.M.K.; et al. Autophagy in major human diseases. EMBO J. 2021, 40, e108863. [Google Scholar] [CrossRef]
- Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef]
- Kawabata, T.; Yoshimori, T. Autophagosome biogenesis and human health. Cell Discov. 2020, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Zhang, S.; Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023, 24, 382–400. [Google Scholar] [CrossRef]
- Melia, T.J.; Lystad, A.H.; Simonsen, A. Autophagosome biogenesis: From membrane growth to closure. J. Cell Biol. 2020, 219, e202002085. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhou, C.; Que, H.; Wang, Y.; Rong, Y. The fate of autophagosomal membrane components. Autophagy 2023, 19, 370–371. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, F.; Jian, F.; Rong, Y. Recent progresses in the late stages of autophagy. Cell Insight 2024, 3, 100152. [Google Scholar] [CrossRef] [PubMed]
- Adriaenssens, E.; Ferrari, L.; Martens, S. Orchestration of selective autophagy by cargo receptors. Curr. Biol. 2022, 32, R1357–R1371. [Google Scholar] [CrossRef]
- Vargas, J.N.S.; Hamasaki, M.; Kawabata, T.; Youle, R.J.; Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell Biol. 2023, 24, 167–185. [Google Scholar] [CrossRef]
- Anding, A.L.; Baehrecke, E.H. Cleaning House: Selective Autophagy of Organelles. Dev. Cell 2017, 41, 10–22. [Google Scholar] [CrossRef]
- Okamoto, K. Organellophagy: Eliminating cellular building blocks via selective autophagy. J. Cell Biol. 2014, 205, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Narendra, D.P.; Youle, R.J. The role of PINK1-Parkin in mitochondrial quality control. Nat. Cell Biol. 2024, 26, 1639–1651. [Google Scholar] [CrossRef]
- Uoselis, L.; Nguyen, T.N.; Lazarou, M. Mitochondrial degradation: Mitophagy and beyond. Mol. Cell 2023, 83, 3404–3420. [Google Scholar] [CrossRef] [PubMed]
- Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.W.; Yang, W.Y. Omegasome-proximal PtdIns(4,5)P2 couples F-actin mediated mitoaggregate disassembly with autophagosome formation during mitophagy. Nat. Commun. 2019, 10, 969. [Google Scholar] [CrossRef]
- Zachari, M.; Gudmundsson, S.R.; Li, Z.; Manifava, M.; Cugliandolo, F.; Shah, R.; Smith, M.; Stronge, J.; Karanasios, E.; Piunti, C.; et al. Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform. Dev. Cell 2019, 50, 627–643.e5. [Google Scholar] [CrossRef]
- Adriaenssens, E.; Nguyen, T.N.; Sawa-Makarska, J.; Khuu, G.; Schuschnig, M.; Shoebridge, S.; Skulsuppaisarn, M.; Watts, E.M.; Csalyi, K.D.; Padman, B.S.; et al. Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD. Nat. Struct. Mol. Biol. 2024, 31, 1717–1731. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.; Sliter, D.A.; Herhaus, L.; Stolz, A.; Wang, C.; Beli, P.; Zaffagnini, G.; Wild, P.; Martens, S.; Wagner, S.A.; et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, 4039–4044. [Google Scholar] [CrossRef]
- Manns, M.P.; Buti, M.; Gane, E.; Pawlotsky, J.M.; Razavi, H.; Terrault, N.; Younossi, Z. Hepatitis C virus infection. Nat. Rev. Dis. Primers 2017, 3, 17006. [Google Scholar] [CrossRef] [PubMed]
- Chisari, F.V. Unscrambling hepatitis C virus-host interactions. Nature 2005, 436, 930–932. [Google Scholar] [CrossRef]
- Gao, B.; Hong, F.; Radaeva, S. Host factors and failure of interferon-alpha treatment in hepatitis C virus. Hepatology 2004, 39, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Manns, M.P.; Maasoumy, B. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 533–550. [Google Scholar] [CrossRef]
- Sarrazin, C. Treatment failure with DAA therapy: Importance of resistance. J. Hepatol. 2021, 74, 1472–1482. [Google Scholar] [CrossRef]
- Howe, A.Y.M.; Rodrigo, C.; Cunningham, E.B.; Douglas, M.W.; Dietz, J.; Grebely, J.; Popping, S.; Sfalcin, J.A.; Parczewski, M.; Sarrazin, C.; et al. Characteristics of hepatitis C virus resistance in an international cohort after a decade of direct-acting antivirals. JHEP Rep. 2022, 4, 100462. [Google Scholar] [CrossRef]
- Chu, J.Y.K.; Ou, J.-H.J. Autophagy in HCV Replication and Protein Trafficking. Int. J. Mol. Sci. 2021, 22, 1089. [Google Scholar] [CrossRef] [PubMed]
- Ke, P.Y. The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions. Int. J. Mol. Sci. 2018, 19, 3940. [Google Scholar] [CrossRef] [PubMed]
- Moradpour, D.; Penin, F.; Rice, C.M. Replication of hepatitis C virus. Nat. Rev. Microbiol. 2007, 5, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Dubuisson, J.; Cosset, F.L. Virology and cell biology of the hepatitis C virus life cycle: An update. J. Hepatol. 2014, 61 (Suppl. S1), S3–S13. [Google Scholar] [CrossRef]
- Macdonald, A.; Harris, M. Hepatitis C virus NS5A: Tales of a promiscuous protein. J. Gen. Virol. 2004, 85 Pt 9, 2485–2502. [Google Scholar] [CrossRef]
- Ross-Thriepland, D.; Harris, M. Hepatitis C virus NS5A: Enigmatic but still promiscuous 10 years on! J. Gen. Virol. 2015, 96 Pt 4, 727–738. [Google Scholar] [CrossRef]
- Siu, G.K.Y.; Zhou, F.; Yu, M.K.; Zhang, L.; Wang, T.; Liang, Y.; Chen, Y.; Chan, H.C.; Yu, S. Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation. Sci. Rep. 2016, 6, 23464. [Google Scholar] [CrossRef] [PubMed]
- Jassey, A.; Liu, C.H.; Changou, C.A.; Richardson, C.D.; Hsu, H.Y.; Lin, L.T. Hepatitis C Virus Non-Structural Protein 5A (NS5A) Disrupts Mitochondrial Dynamics and Induces Mitophagy. Cells 2019, 8, 290. [Google Scholar] [CrossRef]
- Ke, P.Y.; Chang, C.W.; Hsiao, Y.C. Baicalein Activates Parkin-Dependent Mitophagy through NDP52 and OPTN. Cells 2022, 11, 1132. [Google Scholar] [CrossRef]
- Wakita, T.; Pietschmann, T.; Kato, T.; Date, T.; Miyamoto, M.; Zhao, Z.; Murthy, K.; Habermann, A.; Krausslich, H.G.; Mizokami, M.; et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 2005, 11, 791–796. [Google Scholar] [CrossRef]
- Evans, M.J.; von Hahn, T.; Tscherne, D.M.; Syder, A.J.; Panis, M.; Wolk, B.; Hatziioannou, T.; McKeating, J.A.; Bieniasz, P.D.; Rice, C.M. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007, 446, 801–805. [Google Scholar] [CrossRef]
- Ke, P.Y.; Chen, S.S. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Investig. 2011, 121, 37–56. [Google Scholar] [CrossRef]
- Rosignol, I.; Villarejo-Zori, B.; Teresak, P.; Sierra-Filardi, E.; Pereiro, X.; Rodriguez-Muela, N.; Vecino, E.; Vieira, H.L.A.; Bell, K.; Boya, P. The mito-QC Reporter for Quantitative Mitophagy Assessment in Primary Retinal Ganglion Cells and Experimental Glaucoma Models. Int. J. Mol. Sci. 2020, 21, 1882. [Google Scholar] [CrossRef]
- Sun, N.; Malide, D.; Liu, J.; Rovira, I.I.; Combs, C.A.; Finkel, T. A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat. Protoc. 2017, 12, 1576–1587. [Google Scholar] [CrossRef]
- Razi, M.; Tooze, S.A. Correlative light and electron microscopy. Methods Enzymol. 2009, 452, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Reddick, L.E.; Alto, N.M. Correlative light and electron microscopy (CLEM) as a tool to visualize microinjected molecules and their eukaryotic sub-cellular targets. J. Vis. Exp. 2012, 63, e3650. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Kahlhofer, J.; Baylac, N.; Kallio, K.; Eskelinen, E.L. Correlative Light and Electron Microscopy of Autophagosomes. Methods Mol. Biol. 2019, 1880, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Noda, T.; Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3, 452–460. [Google Scholar] [CrossRef]
- Narendra, D.; Tanaka, A.; Suen, D.F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.F.G.; Toth, R.; James, J.; Ganley, I.G. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 2013, 14, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, T.G.; Prescott, A.R.; Allen, G.F.; Tamjar, J.; Munson, M.J.; Thomson, C.; Muqit, M.M.; Ganley, I.G. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 2016, 214, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Sliter, D.A.; Shammas, M.K.; Huang, X.; Wang, C.; Calvelli, H.; Maric, D.S.; Narendra, D.P. Mt-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than mito-QC. Autophagy 2021, 17, 3753–3762. [Google Scholar] [CrossRef] [PubMed]
- Pi, H.; Xu, S.; Zhang, L.; Guo, P.; Li, Y.; Xie, J.; Tian, L.; He, M.; Lu, Y.; Li, M.; et al. Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy 2013, 9, 1780–1800. [Google Scholar] [CrossRef]
- McLelland, G.L.; Goiran, T.; Yi, W.; Dorval, G.; Chen, C.X.; Lauinger, N.D.; Krahn, A.I.; Valimehr, S.; Rakovic, A.; Rouiller, I.; et al. Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. eLife 2018, 7, e32866. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]
- Moehlman, A.T.; Youle, R.J. Mitochondrial Quality Control and Restraining Innate Immunity. Annu. Rev. Cell Dev. Biol. 2020, 36, 265–289. [Google Scholar] [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef]
- Itakura, E.; Kishi-Itakura, C.; Koyama-Honda, I.; Mizushima, N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 2012, 125 Pt 6, 1488–1499. [Google Scholar] [CrossRef]
- Vargas, J.N.S.; Wang, C.; Bunker, E.; Hao, L.; Maric, D.; Schiavo, G.; Randow, F.; Youle, R.J. Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy. Mol. Cell 2019, 74, 347–362.e6. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Sugita, H.; Yoshimori, T.; Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 1998, 273, 33889–33892. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Noda, T.; Yoshimori, T.; Tanaka, Y.; Ishii, T.; George, M.D.; Klionsky, D.J.; Ohsumi, M.; Ohsumi, Y. A protein conjugation system essential for autophagy. Nature 1998, 395, 395–398. [Google Scholar] [CrossRef]
- Suzuki, K.; Kirisako, T.; Kamada, Y.; Mizushima, N.; Noda, T.; Ohsumi, Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 2001, 20, 5971–5981. [Google Scholar] [CrossRef]
- Nakatogawa, H.; Ichimura, Y.; Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007, 130, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.G.; Codogno, P.; Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 2021, 22, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Itoh, T.; Omori, H.; Fukuda, M.; Noda, T.; Yoshimori, T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 2008, 19, 2092–2100. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Noda, T.; Ohsumi, Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 1999, 18, 3888–3896. [Google Scholar] [CrossRef]
- Kuma, A.; Mizushima, N.; Ishihara, N.; Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 2002, 277, 18619–18625. [Google Scholar] [CrossRef]
- Hanada, T.; Noda, N.N.; Satomi, Y.; Ichimura, Y.; Fujioka, Y.; Takao, T.; Inagaki, F.; Ohsumi, Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 2007, 282, 37298–37302. [Google Scholar] [CrossRef]
- Xie, Z.; Nair, U.; Klionsky, D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 2008, 19, 3290–3298. [Google Scholar] [CrossRef]
- Nieto-Torres, J.L.; Leidal, A.M.; Debnath, J.; Hansen, M. Beyond Autophagy: The Expanding Roles of ATG8 Proteins. Trends Biochem. Sci. 2021, 46, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Axe, E.L.; Walker, S.A.; Manifava, M.; Chandra, P.; Roderick, H.L.; Habermann, A.; Griffiths, G.; Ktistakis, N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008, 182, 685–701. [Google Scholar] [CrossRef]
- Nahse, V.; Raiborg, C.; Tan, K.W.; Mork, S.; Torgersen, M.L.; Wenzel, E.M.; Nager, M.; Salo, V.T.; Johansen, T.; Ikonen, E.; et al. ATPase activity of DFCP1 controls selective autophagy. Nat. Commun. 2023, 14, 4051. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Sawa-Makarska, J.; Khuu, G.; Lam, W.K.; Adriaenssens, E.; Fracchiolla, D.; Shoebridge, S.; Bernklau, D.; Padman, B.S.; Skulsuppaisarn, M.; et al. Unconventional initiation of PINK1/Parkin mitophagy by Optineurin. Mol. Cell 2023, 83, 1693–1709.e9. [Google Scholar] [CrossRef] [PubMed]
- Yamano, K.; Kikuchi, R.; Kojima, W.; Hayashida, R.; Koyano, F.; Kawawaki, J.; Shoda, T.; Demizu, Y.; Naito, M.; Tanaka, K.; et al. Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. J. Cell Biol. 2020, 219, e201912144. [Google Scholar] [CrossRef]
- Kim, S.J.; Syed, G.H.; Khan, M.; Chiu, W.W.; Sohail, M.A.; Gish, R.G.; Siddiqui, A. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl. Acad. Sci. USA 2014, 111, 6413–6418. [Google Scholar] [CrossRef]
- Reiss, S.; Rebhan, I.; Backes, P.; Romero-Brey, I.; Erfle, H.; Matula, P.; Kaderali, L.; Poenisch, M.; Blankenburg, H.; Hiet, M.S.; et al. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 2011, 9, 32–45. [Google Scholar] [CrossRef]
- Berger, K.L.; Cooper, J.D.; Heaton, N.S.; Yoon, R.; Oakland, T.E.; Jordan, T.X.; Mateu, G.; Grakoui, A.; Randall, G. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc. Natl. Acad. Sci. USA 2009, 106, 7577–7582. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, E.; Griparic, L.; Shurland, D.L.; van der Bliek, A.M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 2001, 12, 2245–2256. [Google Scholar] [CrossRef]
- Nagashima, S.; Tabara, L.C.; Tilokani, L.; Paupe, V.; Anand, H.; Pogson, J.H.; Zunino, R.; McBride, H.M.; Prudent, J. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 2020, 367, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Boutry, M.; Kim, P.K. ORP1L mediated PI(4)P signaling at ER-lysosome-mitochondrion three-way contact contributes to mitochondrial division. Nat. Commun. 2021, 12, 5354. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, S.; Sakai, Y.; Matsui, T.; Uematsu, M.; Koyama-Honda, I.; Sakamaki, J.I.; Yamamoto, H.; Mizushima, N. Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation. eLife 2024, 12, RP92189. [Google Scholar] [CrossRef] [PubMed]
- Judith, D.; Jefferies, H.B.J.; Boeing, S.; Frith, D.; Snijders, A.P.; Tooze, S.A. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J. Cell Biol. 2019, 218, 1634–1652. [Google Scholar] [CrossRef]
- Reiss, S.; Harak, C.; Romero-Brey, I.; Radujkovic, D.; Klein, R.; Ruggieri, A.; Rebhan, I.; Bartenschlager, R.; Lohmann, V. The lipid kinase phosphatidylinositol-4 kinase III alpha regulates the phosphorylation status of hepatitis C virus NS5A. PLoS Pathog. 2013, 9, e1003359. [Google Scholar] [CrossRef]
- Kim, S.J.; Syed, G.H.; Siddiqui, A. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog. 2013, 9, e1003285. [Google Scholar] [CrossRef]
- Fu, C.; Cao, N.; Liu, W.; Zhang, Z.; Yang, Z.; Zhu, W.; Fan, S. Crosstalk between mitophagy and innate immunity in viral infection. Front. Microbiol. 2022, 13, 1064045. [Google Scholar] [CrossRef] [PubMed]
- Ke, P.Y. Crosstalk between Autophagy and RLR Signaling. Cells 2023, 12, 956. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Ren, C.; Yang, S.; Tian, S.; Chen, H.; Jin, M.; Zhou, H. Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy 2021, 17, 496–511. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, S.; Liu, M.; Wei, Y.; Wang, Q.; Shen, W.; Lei, C.Q.; Zhu, Q. The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy. Autophagy 2023, 19, 1916–1933. [Google Scholar] [CrossRef]
- Liu, K.; Lee, J.; Kim, J.Y.; Wang, L.; Tian, Y.; Chan, S.T.; Cho, C.; Machida, K.; Chen, D.; Ou, J.-H.J. Mitophagy Controls the Activities of Tumor Suppressor p53 to Regulate Hepatic Cancer Stem Cells. Mol. Cell 2017, 68, 281–292.e5. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ding, P.; Song, Y.; Zhou, J.; Chen, X.; Peng, C.; Liu, S. FDX1 downregulation activates mitophagy and the PI3K/AKT signaling pathway to promote hepatocellular carcinoma progression by inducing ROS production. Redox Biol. 2024, 75, 103302. [Google Scholar] [CrossRef] [PubMed]
- Miyanari, Y.; Atsuzawa, K.; Usuda, N.; Watashi, K.; Hishiki, T.; Zayas, M.; Bartenschlager, R.; Wakita, T.; Hijikata, M.; Shimotohno, K. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 2007, 9, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Camus, G.; Herker, E.; Modi, A.A.; Haas, J.T.; Ramage, H.R.; Farese, R.V., Jr.; Ott, M. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J. Biol. Chem. 2013, 288, 9915–9923. [Google Scholar] [CrossRef]
- Salloum, S.; Wang, H.; Ferguson, C.; Parton, R.G.; Tai, A.W. Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog. 2013, 9, e1003513. [Google Scholar] [CrossRef]
- Vogt, D.A.; Camus, G.; Herker, E.; Webster, B.R.; Tsou, C.L.; Greene, W.C.; Yen, T.S.; Ott, M. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog. 2013, 9, e1003302. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Liu, S.; Li, G.; Wang, Q.; Zhang, J.; Zhang, M.; Li, M.; Gao, P.; Feng, S.; Cheng, J. A functional role for NS5ATP9 in the induction of HCV NS5A-mediated autophagy. J. Viral Hepat. 2014, 21, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Matsui, C.; Deng, L.; Minami, N.; Abe, T.; Koike, K.; Shoji, I. Hepatitis C Virus NS5A Protein Promotes the Lysosomal Degradation of Hepatocyte Nuclear Factor 1α via Chaperone-Mediated Autophagy. J. Virol. 2018, 92, e00639-18. [Google Scholar] [CrossRef]
- Yuliandari, P.; Matsui, C.; Deng, L.; Abe, T.; Mori, H.; Taguwa, S.; Ono, C.; Fukuhara, T.; Matsuura, Y.; Shoji, I. Hepatitis C virus NS5A protein promotes the lysosomal degradation of diacylglycerol O-acyltransferase 1 (DGAT1) via endosomal microautophagy. Autophagy Rep. 2022, 1, 264–285. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, Y.-C.; Chang, C.-W.; Yeh, C.-T.; Ke, P.-Y. Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation. Pathogens 2024, 13, 1139. https://doi.org/10.3390/pathogens13121139
Hsiao Y-C, Chang C-W, Yeh C-T, Ke P-Y. Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation. Pathogens. 2024; 13(12):1139. https://doi.org/10.3390/pathogens13121139
Chicago/Turabian StyleHsiao, Yuan-Chao, Chih-Wei Chang, Chau-Ting Yeh, and Po-Yuan Ke. 2024. "Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation" Pathogens 13, no. 12: 1139. https://doi.org/10.3390/pathogens13121139
APA StyleHsiao, Y. -C., Chang, C. -W., Yeh, C. -T., & Ke, P. -Y. (2024). Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation. Pathogens, 13(12), 1139. https://doi.org/10.3390/pathogens13121139