Clinician’s Guide to Epitranscriptomics: An Example of N1-Methyladenosine (m1A) RNA Modification and Cancer
"> Figure 1
<p>Comparative molecular structures of unmodified RNA nucleosides and ribose with some of the most common RNA modifications. Created with <a href="https://BioRender.com" target="_blank">https://BioRender.com</a> (accessed on 16 May 2024).</p> "> Figure 2
<p>Location of m<sup>1</sup>A modifications within the cloverleaf structure of tRNA molecule (in red). D-loop (in purple) is named after dihydrouridine (D or DHU), a modified nucleotide generally present in this region. The anticodon loop contains the anticodon (in dark green), which recognizes and binds to a specific codon on mRNA during protein translation. Variable loop (in magenta) varies from 3–21 bases and is used for classification of tRNAs. T-loop or TΨC loop (in light green) contains modified uridine, a pseudouridine (Ψ). Acceptor stem is formed by the base pairing of the 5′ end and the 3′ end of tRNA. Amino acid binding site or CCA tail (in blue) is a cytosine–cytosine–adenine motif at the 3′ end of tRNA, and amino acid is covalently bonded to it by aminoacyl tRNA synthetase. Created with <a href="https://BioRender.com" target="_blank">https://BioRender.com</a> (accessed on 28 June 2024).</p> "> Figure 3
<p>Some of the known readers (green), writers (blue), and erasers (ochre) of the m<sup>1</sup>A modification of the tRNA molecule. Created with <a href="https://BioRender.com" target="_blank">https://BioRender.com</a> (accessed on 17 May 2024).</p> ">
Abstract
:1. Introduction to the Indirect Flow of Genetic Information
2. Epitranscriptomics, a New Layer of Genetic Information Post-Transcriptionally Encoded into the RNA
2.1. The Origin of a New Omics
2.2. Readers, Writers, and Erasers
2.3. m1A—From Physiology to Oncology
3. Detection of Epitanscriptomic Marks (When You Want to Get Your Hands Dirty)
3.1. Liquid Chromatography
3.2. Dot Blot
3.3. Reverse Transcription (RT)
3.4. Next-Generation Sequencing (NGS)
4. Bioinformatics in Epitranscriptomic Research (Or When You Don’t Want to Get Your Hands Dirty)
5. Application of Epitranscriptomics in Clinical Oncology Practice (“with a Stethoscope”)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crick, F.H. On Protein Synthesis. Symp. Soc. Exp. Biol. 1958, 12, 138–163. [Google Scholar] [PubMed]
- Koonin, E.V. Does the Central Dogma Still Stand? Biol. Direct 2012, 7, 27. [Google Scholar] [CrossRef]
- Mattei, A.L.; Bailly, N.; Meissner, A. DNA Methylation: A Historical Perspective. Trends Genet. 2022, 38, 676–707. [Google Scholar] [CrossRef]
- Christofi, T.; Zaravinos, A. RNA Editing in the Forefront of Epitranscriptomics and Human Health. J. Transl. Med. 2019, 17, 319. [Google Scholar] [CrossRef]
- Schaefer, M.; Kapoor, U.; Jantsch, M.F. Understanding RNA Modifications: The Promises and Technological Bottlenecks of the ‘Epitranscriptome’. Open Biol. 2017, 7, 170077. [Google Scholar] [CrossRef] [PubMed]
- Charette, M.; Gray, M.W. Pseudouridine in RNA: What, Where, How, and Why. IUBMB Life 2000, 49, 341–351. [Google Scholar] [CrossRef]
- Borchardt, E.K.; Martinez, N.M.; Gilbert, W.V. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu. Rev. Genet. 2020, 54, 309–336. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.M.; Gershowitz, A.; Moss, B. Methylated Nucleotides Block 5′ Terminus of HeLa Cell Messenger RNA. Cell 1975, 4, 379–386. [Google Scholar] [CrossRef]
- Schwartz, S.; Agarwala, S.D.; Mumbach, M.R.; Jovanovic, M.; Mertins, P.; Shishkin, A.; Tabach, Y.; Mikkelsen, T.S.; Satija, R.; Ruvkun, G.; et al. High-Resolution Mapping Reveals a Conserved, Widespread, Dynamic mRNA Methylation Program in Yeast Meiosis. Cell 2013, 155, 1409–1421. [Google Scholar] [CrossRef]
- Cheng, Q.-Y.; Xiong, J.; Ma, C.-J.; Dai, Y.; Ding, J.-H.; Liu, F.-L.; Yuan, B.-F.; Feng, Y.-Q. Chemical Tagging for Sensitive Determination of Uridine Modifications in RNA. Chem. Sci. 2020, 11, 1878–1891. [Google Scholar] [CrossRef]
- Wiener, D.; Schwartz, S. The Epitranscriptome beyond m6A. Nat. Rev. Genet. 2021, 22, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T. The Expanding World of tRNA Modifications and Their Disease Relevance. Nat. Rev. Mol. Cell Biol. 2021, 22, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Guan, R.; Hong, W.; Huang, B.; Liu, P.; Guo, X.; Hu, S.; Yu, M.; Hou, B. Identification of m6A-Related Genes and m6A RNA Methylation Regulators in Pancreatic Cancer and Their Association with Survival. Ann. Transl. Med. 2020, 8, 387. [Google Scholar] [CrossRef] [PubMed]
- Smoczynski, J.; Yared, M.-J.; Meynier, V.; Barraud, P.; Tisné, C. Advances in the Structural and Functional Understanding of m1A RNA Modification. Accounts Chem. Res. 2024, 57, 429–438. [Google Scholar] [CrossRef]
- Li, X.; Xiong, X.; Zhang, M.; Wang, K.; Chen, Y.; Zhou, J.; Mao, Y.; Lv, J.; Yi, D.; Chen, X.-W.; et al. Base-Resolution Mapping Reveals Distinct m1A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts. Mol. Cell 2017, 68, 993–1005.e9. [Google Scholar] [CrossRef]
- Zhang, W.; Foo, M.; Eren, A.M.; Pan, T. tRNA Modification Dynamics from Individual Organisms to Metaepitranscriptomics of Microbiomes. Mol. Cell 2022, 82, 891–906. [Google Scholar] [CrossRef]
- Crick, F.H. Codon—Anticodon Pairing: The Wobble Hypothesis. J. Mol. Biol. 1966, 19, 548–555. [Google Scholar] [CrossRef]
- Han, X.; Wang, M.; Zhao, Y.-L.; Yang, Y.; Yang, Y.-G. RNA Methylations in Human Cancers. Semin. Cancer Biol. 2021, 75, 97–115. [Google Scholar] [CrossRef]
- Sergiev, P.V.; Aleksashin, N.A.; Chugunova, A.A.; Polikanov, Y.S.; Dontsova, O.A. Structural and Evolutionary Insights into Ribosomal RNA Methylation. Nat. Chem. Biol. 2018, 14, 226–235. [Google Scholar] [CrossRef]
- Seo, K.W.; Kleiner, R.E. YTHDF2 Recognition of N1-Methyladenosine (m1A)-Modified RNA Is Associated with Transcript Destabilization. ACS Chem. Biol. 2020, 15, 132–139. [Google Scholar] [CrossRef]
- Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, Writing and Erasing mRNA Methylation. Nat. Rev. Mol. Cell Biol. 2019, 20, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Oerum, S.; Dégut, C.; Barraud, P.; Tisné, C. m1A Post-Transcriptional Modification in tRNAs. Biomolecules 2017, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Huo, C.; Zhou, T.; Xie, S. m1A RNA Modification in Gene Expression Regulation. Genes 2022, 13, 910. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhu, Q. The Role of Demethylase AlkB Homologs in Cancer. Front. Oncol. 2023, 13, 1153463. [Google Scholar] [CrossRef]
- Dai, X.; Wang, T.; Gonzalez, G.; Wang, Y. Identification of YTH Domain-Containing Proteins as the Readers for N1-Methyladenosine in RNA. Anal. Chem. 2018, 90, 6380–6384. [Google Scholar] [CrossRef]
- Zou, Z.; Sepich-Poore, C.; Zhou, X.; Wei, J.; He, C. The Mechanism Underlying Redundant Functions of the YTHDF Proteins. Genome Biol. 2023, 24, 17. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Wang, H. N1-Methyladenosine Modification in Cancer Biology: Current Status and Future Perspectives. Comput. Struct. Biotechnol. J. 2022, 20, 6578–6585. [Google Scholar] [CrossRef] [PubMed]
- Agris, P.F.; Sierzputowska-Gracz, H.; Smith, C. Transfer RNA Contains Sites of Localized Positive Charge: Carbon NMR Studies of [13C]Methyl-Enriched Escherichia coli and Yeast tRNAPhe. Biochemistry 1986, 25, 5126–5131. [Google Scholar] [CrossRef]
- Kadaba, S.; Krueger, A.; Trice, T.; Krecic, A.M.; Hinnebusch, A.G.; Anderson, J. Nuclear Surveillance and Degradation of Hypomodified Initiator tRNAMet in S. cerevisiae. Genes Dev. 2004, 18, 1227–1240. [Google Scholar] [CrossRef]
- Helm, M.; Giegé, R.; Florentz, C. A Watson−Crick Base-Pair-Disrupting Methyl Group (m1A9) Is Sufficient for Cloverleaf Folding of Human Mitochondrial tRNALys. Biochemistry 1999, 38, 13338–13346. [Google Scholar] [CrossRef]
- Richter, U.; Evans, M.E.; Clark, W.C.; Marttinen, P.; Shoubridge, E.A.; Suomalainen, A.; Wredenberg, A.; Wedell, A.; Pan, T.; Battersby, B.J. RNA Modification Landscape of the Human Mitochondrial tRNALys Regulates Protein Synthesis. Nat. Commun. 2018, 9, 3966. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Clark, W.; Luo, G.; Wang, X.; Fu, Y.; Wei, J.; Wang, X.; Hao, Z.; Dai, Q.; Zheng, G.; et al. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell 2016, 167, 816–828.e16. [Google Scholar] [CrossRef] [PubMed]
- Dominissini, D.; Nachtergaele, S.; Moshitch-Moshkovitz, S.; Peer, E.; Kol, N.; Ben-Haim, M.S.; Dai, Q.; Di Segni, A.; Salmon-Divon, M.; Clark, W.C.; et al. The Dynamic N1-Methyladenosine Methylome in Eukaryotic Messenger RNA. Nature 2016, 530, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Kimsey, I.J.; Nikolova, E.N.; Sathyamoorthy, B.; Grazioli, G.; McSally, J.; Bai, T.; Wunderlich, C.H.; Kreutz, C.; Andricioaei, I.; et al. m1A and m1G Disrupt A-RNA Structure through the Intrinsic Instability of Hoogsteen Base Pairs. Nat. Struct. Mol. Biol. 2016, 23, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Rashad, S.; Han, X.; Sato, K.; Mishima, E.; Abe, T.; Tominaga, T.; Niizuma, K. The Stress Specific Impact of ALKBH1 on tRNA Cleavage and tiRNA Generation. RNA Biol. 2020, 17, 1092–1103. [Google Scholar] [CrossRef]
- Chen, Z.; Qi, M.; Shen, B.; Luo, G.; Wu, Y.; Li, J.; Lu, Z.; Zheng, Z.; Dai, Q.; Wang, H. Transfer RNA Demethylase ALKBH3 Promotes Cancer Progression via Induction of tRNA-Derived Small RNAs. Nucleic Acids Res. 2019, 47, 2533–2545. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Li, H.; Ye, X.; Xia, Y.; Yuan, S.; Lu, J.; Xie, X.; Wang, L.; Zhang, J. Integrated Analyses of m1A Regulator-Mediated Modification Patterns in Tumor Microenvironment-Infiltrating Immune Cells in Colon Cancer. Oncoimmunology 2021, 10, 1936758. [Google Scholar] [CrossRef]
- Li, J.; Zuo, Z.; Lai, S.; Zheng, Z.; Liu, B.; Wei, Y.; Han, T. Differential Analysis of RNA Methylation Regulators in Gastric Cancer Based on TCGA Data Set and Construction of a Prognostic Model. J. Gastrointest. Oncol. 2021, 12, 1384–1397. [Google Scholar] [CrossRef]
- Macari, F.; El-Houfi, Y.; Boldina, G.; Xu, H.; Khoury-Hanna, S.; Ollier, J.; Yazdani, L.; Zheng, G.; Bièche, I.; Legrand, N.; et al. TRM6/61 Connects PKCα with Translational Control through tRNAiMet Stabilization: Impact on Tumorigenesis. Oncogene 2016, 35, 1785–1796. [Google Scholar] [CrossRef]
- Shi, Q.; Xue, C.; Yuan, X.; He, Y.; Yu, Z. Gene Signatures and Prognostic Values of m1A-Related Regulatory Genes in Hepatocellular Carcinoma. Sci. Rep. 2020, 10, 15083. [Google Scholar] [CrossRef]
- Konishi, N.; Nakamura, M.; Ishida, E.; Shimada, K.; Mitsui, E.; Yoshikawa, R.; Yamamoto, H.; Tsujikawa, K. High Expression of a New Marker PCA-1 in Human Prostate Carcinoma. Clin. Cancer Res. 2005, 11, 5090–5097. [Google Scholar] [CrossRef]
- Woo, H.-H.; Chambers, S.K. Human ALKBH3-Induced m1A Demethylation Increases the CSF-1 mRNA Stability in Breast and Ovarian Cancer Cells. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Li, X.; Xiong, X.; Wang, J.; Zhou, Z.; Zhu, X.; Gu, Y.; Dominissini, D.; He, L.; et al. N1-Methyladenosine Methylation in tRNA Drives Liver Tumourigenesis by Regulating Cholesterol Metabolism. Nat. Commun. 2021, 12, 6314. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Z.; Xie, G.; Zhang, H.; Wang, Z.; Zhou, J.; Chen, F.; Li, J.; Chen, L.; Niu, H.; et al. RNA m1A Methylation Regulates Glycolysis of Cancer Cells through Modulating ATP5D. Proc. Natl. Acad. Sci. USA 2022, 119, e2119038119. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, M.; Shimada, K.; Kimura, H.; Tsujikawa, K.; Konishi, N. ALKBH3, a Human AlkB Homologue, Contributes to Cell Survival in Human Non-Small-Cell Lung Cancer. Br. J. Cancer 2011, 104, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Fujii, T.; Tsujikawa, K.; Anai, S.; Fujimoto, K.; Konishi, N. ALKBH3 Contributes to Survival and Angiogenesis of Human Urothelial Carcinoma Cells through NADPH Oxidase and Tweak/Fn14/VEGF Signals. Clin. Cancer Res. 2012, 18, 5247–5255. [Google Scholar] [CrossRef]
- Kogaki, T.; Ohshio, I.; Kawaguchi, M.; Kimoto, M.; Kitae, K.; Hase, H.; Ueda, Y.; Jingushi, K.; Tsujikawa, K. TP53 Gene Status Is a Critical Determinant of Phenotypes Induced by ALKBH3 Knockdown in Non-Small Cell Lung Cancers. Biochem. Biophys. Res. Commun. 2017, 488, 285–290. [Google Scholar] [CrossRef]
- Esteve-Puig, R.; Climent, F.; Piñeyro, D.; Domingo-Domènech, E.; Davalos, V.; Encuentra, M.; Rea, A.; Espejo-Herrera, N.; Soler, M.; Lopez, M.; et al. Epigenetic Loss of m1A RNA Demethylase ALKBH3 in Hodgkin Lymphoma Targets Collagen, Conferring Poor Clinical Outcome. Blood 2021, 137, 994–999. [Google Scholar] [CrossRef]
- Khoddami, V.; Yerra, A.; Mosbruger, T.L.; Fleming, A.M.; Burrows, C.J.; Cairns, B.R. Transcriptome-Wide Profiling of Multiple RNA Modifications Simultaneously at Single-Base Resolution. Proc. Natl. Acad. Sci. USA 2019, 116, 6784–6789. [Google Scholar] [CrossRef]
- Gatsiou, A.; Stellos, K. Dawn of Epitranscriptomic Medicine. Circ. Genom. Precis. Med. 2018, 11, e001927. [Google Scholar] [CrossRef]
- Vignon, M.; Bastide, A.; Attina, A.; David, A.; Bousquet, P.; Orti, V.; Vialaret, J.; Lehmann, S.; Periere, D.D.; Hirtz, C. Multiplexed LC-MS/MS Quantification of Salivary RNA Modifications in Periodontitis. J. Periodontal. Res. 2023, 58, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Evers, D.L.; Fowler, C.B.; Cunningham, B.R.; Mason, J.T.; O’Leary, T.J. The Effect of Formaldehyde Fixation on RNA. J. Mol. Diagn. 2011, 13, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Salehi, Z.; Najafi, M. RNA Preservation and Stabilization. Biochem. Physiol. Open Access 2014, 3, 126. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, L.; Li, X. Detection Technologies for RNA Modifications. Exp. Mol. Med. 2022, 54, 1601–1616. [Google Scholar] [CrossRef]
- Fang, Z.; Hu, Y.; Hong, X.; Zhang, X.; Pan, T.; Pan, C.; Zheng, S.; Guo, C. Simultaneous Determination of Methylated Nucleosides by HILIC–MS/MS Revealed Their Alterations in Urine from Breast Cancer Patients. Metabolites 2022, 12, 973. [Google Scholar] [CrossRef]
- Shen, L.; Liang, Z.; Yu, H. Dot Blot Analysis of N6-Methyladenosine RNA Modification Levels. Bio-Protocol 2017, 7, e2095. [Google Scholar] [CrossRef]
- Cheray, M.; Etcheverry, A.; Jacques, C.; Pacaud, R.; Bougras-Cartron, G.; Aubry, M.; Denoual, F.; Peterlongo, P.; Nadaradjane, A.; Briand, J.; et al. Cytosine Methylation of Mature microRNAs Inhibits Their Functions and Is Associated with Poor Prognosis in Glioblastoma Multiforme. Mol. Cancer 2020, 19, 36. [Google Scholar] [CrossRef]
- Motorin, Y.; Marchand, V. Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update. Genes 2021, 12, 278. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and Near Stop Codons. Cell 2012, 149, 1635–1646. [Google Scholar] [CrossRef]
- Li, X.; Xiong, X.; Wang, K.; Wang, L.; Shu, X.; Ma, S.; Yi, C. Transcriptome-Wide Mapping Reveals Reversible and Dynamic N1-Methyladenosine Methylome. Nat. Chem. Biol. 2016, 12, 311–316. [Google Scholar] [CrossRef]
- Geng, Y.; Long, X.; Zhang, Y.; Wang, Y.; You, G.; Guo, W.; Zhuang, G.; Zhang, Y.; Cheng, X.; Yuan, Z.; et al. FTO-Targeted siRNA Delivery by MSC-Derived Exosomes Synergistically Alleviates Dopaminergic Neuronal Death in Parkinson’s Disease via m6A-Dependent Regulation of ATM mRNA. J. Transl. Med. 2023, 21, 652. [Google Scholar] [CrossRef] [PubMed]
- Weichmann, F.; Hett, R.; Schepers, A.; Ito-Kureha, T.; Flatley, A.; Slama, K.; Hastert, F.D.; Angstman, N.B.; Cardoso, M.C.; König, J.; et al. Validation Strategies for Antibodies Targeting Modified Ribonucleotides. RNA 2020, 26, 1489–1506. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Chen, L.; Chen, Z.; Pang, J.; Huang, J.; Lin, J.; Zheng, L.; Li, B.; Qu, L.; Yang, J. RMBase v3.0: Decode the Landscape, Mechanisms and Functions of RNA Modifications. Nucleic Acids Res. 2024, 52, D273–D284. [Google Scholar] [CrossRef]
- Cappannini, A.; Ray, A.; Purta, E.; Mukherjee, S.; Boccaletto, P.; Moafinejad, S.N.; Lechner, A.; Barchet, C.; Klaholz, B.P.; Stefaniak, F.; et al. MODOMICS: A Database of RNA Modifications and Related Information. 2023 Update. Nucleic Acids Res. 2024, 52, D239–D244. [Google Scholar] [CrossRef]
- Liu, Q.; Gregory, R.I. RNAmod: An Integrated System for the Annotation of mRNA Modifications. Nucleic Acids Res. 2019, 47, W548–W555. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The Genotype-Tissue Expression (GTEx) Project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A Web Server for Cancer and Normal Gene Expression Profiling and Interactive Analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; et al. UALCAN: An Update to the Integrated Cancer Data Analysis Platform. Neoplasia 2022, 25, 18–27. [Google Scholar] [CrossRef]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Bourexis, D.; Brister, J.R.; Canese, K.; Comeau, D.C.; Funk, K.; Kim, S.; Klimke, W.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021, 49, D10–D17. [Google Scholar] [CrossRef] [PubMed]
- Carithers, L.J.; Ardlie, K.; Barcus, M.; Branton, P.A.; Britton, A.; Buia, S.A.; Compton, C.C.; DeLuca, D.S.; Peter-Demchok, J.; Gelfand, E.T.; et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv. Biobank 2015, 13, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, W.; Jia, D.; Zheng, S.; Gao, Y.; Wang, G. Establishment of a N1-Methyladenosine-Related Risk Signature for Breast Carcinoma by Bioinformatics Analysis and Experimental Validation. Breast Cancer 2023, 30, 666–684. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, J.; Wu, J. Development and Validation of a Novel Prognostic Signature Based on m6A/m5C/m1A-Related Genes in Hepatocellular Carcinoma. BMC Med. Genom. 2023, 16, 177. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Shi, Z.-Y. The Prognostic Value and Immune Landscapes of m1A/m5C/m6A-Associated lncRNA Signature in Osteosarcoma. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5868–5883. [Google Scholar] [CrossRef]
- Li, L.; Tan, H.; Zhou, J.; Hu, F. Predicting Response of Immunotherapy and Targeted Therapy and Prognosis Characteristics for Renal Clear Cell Carcinoma Based on m1A Methylation Regulators. Sci. Rep. 2023, 13, 12645. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Chu, Q.; Lou, Y.; Lv, P.; Wang, L.-J. RNA N1-Methyladenosine Regulator-Mediated Methylation Modification Patterns and Heterogeneous Signatures in Glioma. Front. Immunol. 2022, 13, 948630. [Google Scholar] [CrossRef]
- Wu, X.; Tang, J.; Cheng, B. Oral Squamous Cell Carcinoma Gene Patterns Connected with RNA Methylation for Prognostic Prediction. Oral Dis. 2024, 30, 408–421. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, M.; Chai, X.; Pan, F.; Xu, M.; Wang, Y.; Lan, L.; Hu, F.; Zhang, Z.; Chen, Z. Targeted Metabolomics Analysis of Nucleosides and the Identification of Biomarkers for Colorectal Adenomas and Colorectal Cancer. Front. Mol. Biosci. 2023, 10, 1163089. [Google Scholar] [CrossRef]
- Cayir, A. RNA Modifications as Emerging Therapeutic Targets. Wiley Interdiscip. Rev. RNA 2022, 13, e1702. [Google Scholar] [CrossRef]
- Kaniskan, H.Ü.; Jin, J. Selective Small-Molecule Inhibitors of Protein Methyltransferases. In Epigenetic Drug Discovery; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 201–220. ISBN 978-3-527-80925-7. [Google Scholar]
- Khan, C.; Pathe, N.; Fazal, S.; Lister, J.; Rossetti, J.M. Azacitidine in the Management of Patients with Myelodysplastic Syndromes. Ther. Adv. Hematol. 2012, 3, 355–373. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Chen, X.; Nie, S.; Chang, Y.; Meng, F.; Zhou, J.; Mao, C.; Li, T.; Yan, X.; Huang, J.; et al. Decitabine: An Effective and Safe Treatment for Myelodysplastic Syndrome and Acute Myeloid Leukemia. J. Cancer Res. Ther. 2019, 15, 1471–1476. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Hagemann, S.; Hanna, K.; Lyko, F. Azacytidine Inhibits RNA Methylation at DNMT2 Target Sites in Human Cancer Cell Lines. Cancer Res. 2009, 69, 8127–8132. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.-N.; Liu, Z.; Hong, L.-L.; Li, P.; Ling, Z.-Q. Methyltransferase-like Proteins in Cancer Biology and Potential Therapeutic Targeting. J. Hematol. Oncol. 2023, 16, 89. [Google Scholar] [CrossRef]
- Fiorentino, F.; Menna, M.; Rotili, D.; Valente, S.; Mai, A. METTL3 from Target Validation to the First Small-Molecule Inhibitors: A Medicinal Chemistry Journey. J. Med. Chem. 2023, 66, 1654–1677. [Google Scholar] [CrossRef]
- Oerum, S.; Catala, M.; Atdjian, C.; Brachet, F.; Ponchon, L.; Barraud, P.; Iannazzo, L.; Droogmans, L.; Braud, E.; Ethève-Quelquejeu, M.; et al. Bisubstrate Analogues as Structural Tools to Investigate m6A Methyltransferase Active Sites. RNA Biol. 2019, 16, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chai, K.; Zhu, H.; Luo, C.; Zou, X.; Zou, J.; Zhang, G. The Role of the Methyltransferase METTL3 in Prostate Cancer: A Potential Therapeutic Target. BMC Cancer 2024, 24, 8. [Google Scholar] [CrossRef]
- Moroz-Omori, E.V.; Huang, D.; Kumar Bedi, R.; Cheriyamkunnel, S.J.; Bochenkova, E.; Dolbois, A.; Rzeczkowski, M.D.; Li, Y.; Wiedmer, L.; Caflisch, A. METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem 2021, 16, 3035–3043. [Google Scholar] [CrossRef]
- Pomaville, M.; Chennakesavalu, M.; Wang, P.; Jiang, Z.; Sun, H.-L.; Ren, P.; Borchert, R.; Gupta, V.; Ye, C.; Ge, R.; et al. Small-Molecule Inhibition of the METTL3/METTL14 Complex Suppresses Neuroblastoma Tumor Growth and Promotes Differentiation. Cell Rep. 2024, 43, 114165. [Google Scholar] [CrossRef]
- Ofir-Rosenfeld, Y.; Vasiliauskaitė, L.; Saunders, C.; Sapetschnig, A.; Tsagkogeorga, G.; Albertella, M.; Carkill, M.; Self-Fordham, J.; Holz, J.B.; Rausch, O. STC-15, an Oral Small Molecule Inhibitor of the RNA Methyltransferase METTL3, Inhibits Tumour Growth through Activation of Anti-Cancer Immune Responses Associated with Increased Interferon Signalling, and Synergises with T Cell Checkpoint Blockade. Eur. J. Cancer 2022, 174, S123. [Google Scholar] [CrossRef]
- Maita, K.; Tsuda, S.; Shirasu, Y. Chronic Toxicity Studies with Thiram in Wistar Rats and Beagle Dogs. Fundam. Appl. Toxicol. 1991, 16, 667–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ye, F.; Yu, L.; Jia, G.; Huang, X.; Zhang, X.; Peng, S.; Chen, K.; Wang, M.; Gong, S.; et al. Development of Cell-Active N6-Methyladenosine RNA Demethylase FTO Inhibitor. J. Am. Chem. Soc. 2012, 134, 17963–17971. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Al-Kali, A.; Zhang, Z.; Liu, J.; Pang, J.; Zhao, N.; He, C.; Litzow, M.R.; Liu, S. A Dynamic N6-Methyladenosine Methylome Regulates Intrinsic and Acquired Resistance to Tyrosine Kinase Inhibitors. Cell Res. 2018, 28, 1062–1076. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Huang, Y.; Liu, X.; Gan, J.; Chen, H.; Yang, C.-G. Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage. J. Biol. Chem. 2016, 291, 11083–11093. [Google Scholar] [CrossRef]
- Singh, B.; Kinne, H.E.; Milligan, R.D.; Washburn, L.J.; Olsen, M.; Lucci, A. Important Role of FTO in the Survival of Rare Panresistant Triple-Negative Inflammatory Breast Cancer Cells Facing a Severe Metabolic Challenge. PLoS ONE 2016, 11, e0159072. [Google Scholar] [CrossRef]
- Huang, Y.; Su, R.; Sheng, Y.; Dong, L.; Dong, Z.; Xu, H.; Ni, T.; Zhang, Z.S.; Zhang, T.; Li, C.; et al. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell 2019, 35, 677–691.e10. [Google Scholar] [CrossRef]
- Su, R.; Dong, L.; Li, C.; Nachtergaele, S.; Wunderlich, M.; Qing, Y.; Deng, X.; Wang, Y.; Weng, X.; Hu, C.; et al. R-2HG Exhibits Anti-Tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell 2018, 172, 90–105.e23. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Dong, L.; Li, Y.; Gao, M.; Han, L.; Wunderlich, M.; Deng, X.; Li, H.; Huang, Y.; Gao, L.; et al. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell 2020, 38, 79–96.e11. [Google Scholar] [CrossRef]
- Huff, S.; Tiwari, S.K.; Gonzalez, G.M.; Wang, Y.; Rana, T.M. m6A-RNA Demethylase FTO Inhibitors Impair Self-Renewal in Glioblastoma Stem Cells. ACS Chem. Biol. 2021, 16, 324–333. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, G.; Xu, H.; Dong, W.; Dong, Z.; Qiu, Z.; Zhang, Z.; Li, F.; Huang, Y.; Li, Y.; et al. Tumors Exploit FTO-Mediated Regulation of Glycolytic Metabolism to Evade Immune Surveillance. Cell Metabolism. 2021, 33, 1221–1233.e11. [Google Scholar] [CrossRef]
- Nakao, S.; Mabuchi, M.; Shimizu, T.; Itoh, Y.; Takeuchi, Y.; Ueda, M.; Mizuno, H.; Shigi, N.; Ohshio, I.; Jinguji, K.; et al. Design and Synthesis of Prostate Cancer Antigen-1 (PCA-1/ALKBH3) Inhibitors as Anti-Prostate Cancer Drugs. Bioorg. Med. Chem. Lett. 2014, 24, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, M.; Shimizu, T.; Ueda, M.; Sasakawa, Y.; Nakao, S.; Ueda, Y.; Kawamura, A.; Tsujikawa, K.; Tanaka, A. Improving the Bioavailability and Anticancer Effect of the PCA-1/ALKBH3 Inhibitor HUHS015 Using Sodium Salt. In Vivo 2015, 29, 39–43. [Google Scholar] [PubMed]
- Micaelli, M.; Dalle Vedove, A.; Cerofolini, L.; Vigna, J.; Sighel, D.; Zaccara, S.; Bonomo, I.; Poulentzas, G.; Rosatti, E.F.; Cazzanelli, G.; et al. Small-Molecule Ebselen Binds to YTHDF Proteins Interfering with the Recognition of N6-Methyladenosine-Modified RNAs. ACS Pharmacol. Transl. Sci. 2022, 5, 872–891. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-G.; Yang, Z.; Chen, Y.; Liu, T.; Zheng, Y.; Zhou, C.; Wu, G.-C.; Chen, Y.; Xia, J.; Wen, R.; et al. The RNA m6A Reader YTHDF1 Is Required for Acute Myeloid Leukemia Progression. Cancer Res. 2023, 83, 845–860. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, S.; Deng, Y.; Yi, P.; Yu, J. Targeting the RNA m6A Modification for Cancer Immunotherapy. Mol. Cancer 2022, 21, 76. [Google Scholar] [CrossRef]
- Berdasco, M.; Esteller, M. Towards a Druggable Epitranscriptome: Compounds That Target RNA Modifications in Cancer. Br. J. Pharmacol. 2022, 179, 2868–2889. [Google Scholar] [CrossRef]
- Marikovsky, M. Thiram Inhibits Angiogenesis and Slows the Development of Experimental Tumours in Mice. Br. J. Cancer 2002, 86, 779–787. [Google Scholar] [CrossRef]
Resource | Web Address | Content | Reference |
---|---|---|---|
RMBase v3.0 | https://rna.sysu.edu.cn/rmbase3/ | An online platform with eight modules that provides resources and tools for analyzing RNA modifications. It contains data on thousands of epitranscriptomes pertaining to 73 RNA modifications in 63 species. | [63] |
MODOMICS | https://genesilico.pl/modomics/ | Database of RNA modifications, their structures, biosynthetic pathways, modifying enzymes, and location. | [64] |
RNAmod | https://rnainformatics.org.cn/RNAmod/ | Up-to-date database of naturally occurring RNA modifications that is constantly updated after the initial publication in 1994. | [65] |
TCGA | https://www.cancer.gov/ccg/research/genome-sequencing/tcga | Genomic project that sequenced genomes of 33 cancer types and matched healthy tissue samples from over 20,000 individuals. | [66] |
GEO | https://www.ncbi.nlm.nih.gov/geo/ | Public functional genomics array- and sequence-based data repository. | [67] |
GTEx | https://gtexportal.org/home/ | Public access database of whole genomes and transcriptomes of 54 healthy tissues collected from organ donors. | [68] |
GEPIA | http://gepia.cancer-pku.cn/ | A web server that provides user-friendly pan-cancer and cancer-specific analyses of expression and clinical data of 9736 tumors and 8587 normal tissue samples from the TCGA and the GTEx projects. | [69] |
UALCAN | https://ualcan.path.uab.edu/ | Web portal that provides user-friendly analysis of mRNA and protein expression, methylation, and survival data as well as visualization of the TCGA datasets. | [70] |
Study | Cancer Type | Used Datasets | Main Findings |
---|---|---|---|
Li et al. [73] | Breast carcinoma (BRCA) | TCGA-BRCA, GSE20685 | Eighty-five differentially expressed m1A-related genes were observed; six among them were selected as prognostic biomarkers; MEOX1, COL17A1, FREM1, TNN, and SLIT3 were significantly up-regulated in BRCA compared to normal tissues. |
Xiao et al. [74] | Liver hepatocellular carcinoma (HCC) | TCGA-LIHC, ICGC-HCC | Two m6A/m5C/m1A-related genes subtypes were identified; a higher tumor mutation burden (TMB) was observed in the high-risk group; high-risk group and patients with higher TMB showed a worse prognosis. |
Wu, Shi [75] | Osteosarcoma | TARGET | Risk signature based on m1A/m5C/m6A-associated long non-coding RNAs (lncRNAs) showed a correlation with immune infiltration, cancer microenvironment, and immune-associated genes. |
Li et al. [76] | Renal clear cell carcinoma (ccRCC) | TCGA-KIRC, ArrayExpress | Ten m1A-regulating genes included in analysis; YTHDF1, TRMT61B, TRMT10C, and ALKBH1 were identified as prognostic factors; high-risk group has worse survival; checkpoint inhibitors and small drugs A.443654, A.770041, ABT.888, AG.014699, and AMG.706 potentially useful for the high-risk group. |
Mao et al. [77] | Glioma | TCGA-GBM, CGGA | Four m1A modification-related patterns identified, with clear differences in survival, stemness, genomic heterogeneity, tumor microenvironment (TME), and immune cell infiltration; PLEK2 and ABCC3 were screened as the risk-hub genes; ABCC3 knockdown decreased glioma proliferation and reduced temozolomide (TMZ) resistance. |
Wu et al. [78] | Oral squamous cell carcinoma (OSCC) | TCGA-HNSC | Analyzed m6A/m1A/m5C/m7G/m6Am/Ψ-related genes; found 22 gene signatures; patients divided into low- and high-risk groups, with difference in immune cell infiltration, genetic mutation, and survival potential. |
Type of Inhibitor | Target Enzyme | Drug Name | Phase of Clinical Trial | Cancer Type | Reference |
---|---|---|---|---|---|
DNA methyltransferase inhibitors (writer inhibitors) | DNA methyltransferase | azacitidine | FDA-approved | myelodysplastic syndromes, AML | [82] |
DNA methyltransferase | decitabine | FDA-approved | myelodysplastic syndromes, AML | [83] | |
METTL3 | UZH1a | preclinical | AML, osteosarcoma, kidney | [89] | |
METTL3 | STM2457 | preclinical | AML, neuroblastoma | [90] | |
METTL3 | STC-15 | phase 1 | AML | [91] | |
tRNA methyltransferase inhibitors (writer inhibitor) | TRMT6/TRMT61A | thiram | preclinical | hepatocellular, glioma | [43,108] |
RNA demethylase inhibitors (eraser inhibitors) | FTO | rhein | preclinical | AML | [94] |
FTO | MO-I-500 | preclinical | breast | [96] | |
FTO | FB23-2 | preclinical | AML | [97] | |
FTO | R-2HG | preclinical | leukemia, glioma | [98] | |
FTO | CS1 | preclinical | AML | [99] | |
FTO | CS2 | preclinical | AML | [99] | |
FTO | FTO-04 | preclinical | glioblastoma | [100] | |
FTO | Dac51 | preclinical | melanoma | [101] | |
ALKBH3 | HUHS015 | preclinical | prostate | [103] | |
reader inhibitors | YTHDF YTHDF1 | ebselen tegaserod | preclinical preclinical | prostate AML | [104,105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kvolik Pavić, A.; Čonkaš, J.; Mumlek, I.; Zubčić, V.; Ozretić, P. Clinician’s Guide to Epitranscriptomics: An Example of N1-Methyladenosine (m1A) RNA Modification and Cancer. Life 2024, 14, 1230. https://doi.org/10.3390/life14101230
Kvolik Pavić A, Čonkaš J, Mumlek I, Zubčić V, Ozretić P. Clinician’s Guide to Epitranscriptomics: An Example of N1-Methyladenosine (m1A) RNA Modification and Cancer. Life. 2024; 14(10):1230. https://doi.org/10.3390/life14101230
Chicago/Turabian StyleKvolik Pavić, Ana, Josipa Čonkaš, Ivan Mumlek, Vedran Zubčić, and Petar Ozretić. 2024. "Clinician’s Guide to Epitranscriptomics: An Example of N1-Methyladenosine (m1A) RNA Modification and Cancer" Life 14, no. 10: 1230. https://doi.org/10.3390/life14101230
APA StyleKvolik Pavić, A., Čonkaš, J., Mumlek, I., Zubčić, V., & Ozretić, P. (2024). Clinician’s Guide to Epitranscriptomics: An Example of N1-Methyladenosine (m1A) RNA Modification and Cancer. Life, 14(10), 1230. https://doi.org/10.3390/life14101230