Design and Analysis of a Highly Reliable Permanent Magnet Synchronous Machine for Flywheel Energy Storage
<p>Topology of proposed PMSM. (<b>a</b>) Stator. (<b>b</b>) Rotor.</p> "> Figure 2
<p>Winding connection.</p> "> Figure 3
<p>Different winding structures and slot vector star diagrams. (<b>a</b>) Conventional double-layer, three-phase winding. (<b>b</b>) Dual three-phase winding.</p> "> Figure 4
<p>Stator magnetomotive force distributions generated by each set of windings.</p> "> Figure 5
<p>Stator magnetomotive force distributions under the different winding structures. (<b>a</b>) Conventional double-layer three-phase winding. (<b>b</b>) Dual three-phase winding.</p> "> Figure 6
<p>Harmonic order of stator magnetomotive force distributions.</p> "> Figure 7
<p>Size of the auxiliary teeth.</p> "> Figure 8
<p>Variation of self-inductance and mutual inductance with length of auxiliary teeth.</p> "> Figure 9
<p>Variation of self-inductance and mutual inductance with width of auxiliary teeth.</p> "> Figure 10
<p>Variation of short-circuit current and torque with width of auxiliary teeth.</p> "> Figure 11
<p>Comparison of short-circuit current of PMSM. (<b>a</b>) Peak short-circuit current. (<b>b</b>) Steady state short-circuit current.</p> "> Figure 12
<p>Back electromotive force of PMSM. (<b>a</b>) Back electromotive force waveform. (<b>b</b>) Harmonic orders.</p> "> Figure 13
<p>Self-inductance and mutual inductance of PMSM.</p> "> Figure 14
<p>Torque performance of PMSM. (<b>a</b>) Cogging torque. (<b>b</b>) Torque.</p> "> Figure 15
<p>Mechanical stress and deformation of rotor core. (<b>a</b>) Mechanical stress. (<b>b</b>) Deformation.</p> "> Figure 16
<p>Prototype. (<b>a</b>) Stator. (<b>b</b>) Rotor.</p> "> Figure 17
<p>Experimental platform.</p> "> Figure 18
<p>Comparison of experimental and simulated results. (<b>a</b>) Back electromotive force of prototype. (<b>b</b>) Comparison of back electromotive force coefficient.</p> "> Figure 19
<p>Low-load experimental waveform.</p> ">
Abstract
:1. Introduction
2. Machine Topology
3. High-Reliability Design
3.1. Dual Three-Phase Winding
3.2. Design of Auxiliary Teeth
4. Performance Analysis
5. Experimental Validation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alkuhayli, A.; Noman, A.M.; Al-Shamma’a, A.A.; Abdurraqeeb, A.M.; Alharbi, M.; Hussein Farh, H.M.; Qamar, A. Enhancing photovoltaic-powered DC shunt motor performance for water pumping through fuzzy logic optimization. Machines 2024, 12, 442. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Scheduling of Photovoltaic Generators in Asymmetric Bipolar DC Grids Using a Robust Recursive Quadratic Convex Approximation. Machines 2023, 11, 177. [Google Scholar] [CrossRef]
- Kang, J.; Lee, J.; Ham, S.; Chun, Y.; Kim, H. A study on new straight shape design to reduce cogging torque of small wind power generator. Machines 2024, 12, 412. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, H.; Dai, J.; Tao, H.; Wang, X. Working condition identification method of wind turbine drivetrain. Machines 2023, 11, 495. [Google Scholar] [CrossRef]
- Tinnawat, H.; Matthew, O.T.C.; Chakkapong, C.; Ziv, B. Control system design for low power magnetic bearings in a flywheel energy storage system. Energy Eng. 2023, 120, 147–161. [Google Scholar]
- Murayama, M.; Kato, S.; Tsutsui, H.; Tsuji-Iio, S.; Shimada, R. Combination of flywheel energy storage system and boosting modular multilevel cascade converter. IEEE Trans. Appl. Supercond. 2018, 28, 1–4. [Google Scholar] [CrossRef]
- Abdeltawab, H.H.; Mohamed, Y.A.-R.I. Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints. IEEE Trans. Ind. Electron. 2016, 63, 4242–4254. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Wang, K.; Li, F. Design and analysis of permanent magnet homopolar machine for flywheel energy storage system. IEEE Trans. Magn. 2019, 55, 1–6. [Google Scholar] [CrossRef]
- Ye, C.; Yang, J.; Xu, W.; Xiong, F.; Liang, X. A novel multi-unit out-rotor homopolar inductor machine for flywheel energy storage system. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Li, X.; Anvari, B.; Palazzolo, A.; Wang, Z.; Toliyat, H. Autility-scale flywheel energy storage system with a shaftless, hubless, high-strength steel rotor. IEEE Trans. Ind. Electron. 2018, 65, 6667–6675. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, W.; Ji, J.; Chen, Q.; Liu, G. Auxiliary notching rotor design to minimize torque ripple for interior permanent magnet machines. IEEE Trans. Ind. Electron. 2024, 71, 12051–12062. [Google Scholar] [CrossRef]
- Ling, Z.; Zhao, W.; Ji, J.; Xu, M.; Sun, Y.; Hu, Q. Performance improvement in a linear primary permanent magnet vernier machine by modular unit shift effect. IEEE Trans. Transport. Electrific. 2023, 9, 4562–4570. [Google Scholar] [CrossRef]
- Ye, C.; Yu, D.; Liu, K.; Dai, Y.; Deng, C.; Yang, J.; Zhang, J. Research of a stator PM excitation solid rotor machine for flywheel energy storage system. IEEE Trans. Ind. Electron. 2022, 69, 12140–12151. [Google Scholar] [CrossRef]
- Li, W.; Chau, K.T.; Ching, T.W.; Wang, Y.; Chen, M. Design of a high-speed superconducting bearingless machine for flywheel energy storage systems. IEEE Trans. Appl. Supercond. 2015, 25, 1–4. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kim, H. A comparative study of pole–slot combination with fractional slot concentrated winding in outer rotor permanent magnet synchronous generator for hybrid drone system. Machines 2024, 12, 464. [Google Scholar] [CrossRef]
- Shah, S.H.; Wang, Y.-C.; Shi, D.; Shen, J.-X. Investigation of torque and reduction of torque ripples through assisted-poles in low-speed, high-torque density spoke-type PMSMs. Machines 2024, 12, 327. [Google Scholar] [CrossRef]
- Ling, Z.; Zhao, W.; Sun, Y.; Ji, J.; Xu, M. Characteristic analysis and harmonic function validation of 3-D modulation effect for magnetic lead screw transmission. IEEE Trans. Transport. Electrific. 2024; early access. [Google Scholar] [CrossRef]
- Oukrid, M.; Bernard, N.; Benkhoris, M.-F.; Ziane, D. Design and optimization of a five-phase permanent magnet synchronous machine exploiting the fundamental and third harmonic. Machines 2024, 12, 117. [Google Scholar] [CrossRef]
- El Hajji, T.; Hlioui, S.; Louf, F.; Gabsi, M.; Mermaz-Rollet, G.; Belhadi, M. Optimal design of high-speed electric machines for electric vehicles: A case study of 100 kW V-shaped interior PMSM. Machines 2023, 11, 57. [Google Scholar] [CrossRef]
- Wang, J.; Geng, W.; Li, Q.; Li, L.; Zhang, Z. A new flux-concentrating rotor of permanent magnet motor for electric vehicle application. IEEE Trans. Ind. Electron. 2022, 69, 10882–10892. [Google Scholar] [CrossRef]
- Kefalas, T.D.; Kladas, A.G. Thermal investigation of permanent-magnet synchronous motor for aerospace applications. IEEE Trans. Ind. Electron. 2014, 61, 4404–4411. [Google Scholar] [CrossRef]
- Hezzi, A.; Ben Elghali, S.; Bensalem, Y.; Zhou, Z.; Benbouzid, M.; Abdelkrim, M.N. ADRC-based robust and resilient control of a 5-phase PMSM driven electric vehicle. Machines 2020, 8, 17. [Google Scholar] [CrossRef]
- Meng, S.; Ling, Z.; Zhao, W.; Ji, J.; Xu, M. Design and analysis of a surface-inserted magnetic screw with minimum thrust force ripple. IEEE Trans. Transport. Electrific. 2024; early access. [Google Scholar] [CrossRef]
- Ling, Z.; Zhao, W.; Rasmussen, P.O.; Ji, J.; Jiang, Y.; Liu, Z. Design and manufacture of a linear actuator based on magnetic screw transmission. IEEE Trans. Ind. Electron. 2021, 68, 1095–1107. [Google Scholar] [CrossRef]
- Ling, Z.; Meng, S.; Zhao, W.; Ji, J.; Xu, M. Analysis and design of a high force low torque ratio magnetic field modulation screw. IEEE Trans. Ind. Electron. 2024, 71, 14620–14630. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Lv, Q.; Lv, D.; Yang, Y.; Zheng, J. Investigation of a high speed permanent magnet synchronous machine for magnetic suspended flywheel energy storage system. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration, Wuhan, China, 30 October–1 November 2020; pp. 2733–2737. [Google Scholar]
- Sun, M.; Xu, Y.; Han, K. Structure and optimization design of cup winding permanent magnet synchronous machine in flywheel energy storage system. IEEE Trans. Magn. 2023, 59, 1–5. [Google Scholar] [CrossRef]
- Qi, Y.; Bostanci, E.; Gurusamy, V.; Akin, B. A comprehensive analysis of short-circuit current behavior in PMSM interturn short-circuit faults. IEEE Trans. Power Electron. 2018, 33, 10784–10793. [Google Scholar] [CrossRef]
- Wan, Y.; Meng, N.; Jia, Y.; Zhu, L. Research on interturn short-circuit characteristic of the high-speed permanent-magnet machine with gramme-ring windings. IEEE Trans. Magn. 2022, 58, 1–6. [Google Scholar] [CrossRef]
- Dusek, J.; Arumugam, P.; Brunson, C.; Amankwah, E.K.; Hamiti, T.; Gerada, C. Impact of slot/pole combination on inter-turn short-circuit current in fault-tolerant permanent magnet machines. IEEE Trans. Magn. 2016, 52, 1–9. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Rotor speed/rpm | 3500 |
Direct current bus voltage/V | 750 |
Rated power/kW | 140 |
Stator slot number | 24 |
Rotor polo number | 20 |
Winding coefficient | 0.933 |
Stator outer diameter/mm | 370 |
Stator inner diameter/mm | 270 |
Air gap length/mm | 0.9 |
Axial length/mm | 80 |
Permanent magnet thickness/mm | 4 |
Stator yoke thickness/mm | 9 |
Item | Material |
---|---|
Stator core | B20AT1500 |
Rotor core | B35AH230 |
Magnet | N42UH |
PMSM | Average Torque | Peak to Peak of Torque | Torque Ripple |
---|---|---|---|
Without auxiliary teeth | 368 N·m | 9.6 N·m | 2.6% |
With auxiliary teeth | 354 N·m | 10.2 N·m | 2.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Zhang, L.; Li, F.; Zhao, Z. Design and Analysis of a Highly Reliable Permanent Magnet Synchronous Machine for Flywheel Energy Storage. Machines 2024, 12, 655. https://doi.org/10.3390/machines12090655
Jiang X, Zhang L, Li F, Zhao Z. Design and Analysis of a Highly Reliable Permanent Magnet Synchronous Machine for Flywheel Energy Storage. Machines. 2024; 12(9):655. https://doi.org/10.3390/machines12090655
Chicago/Turabian StyleJiang, Xinjian, Lei Zhang, Fuwang Li, and Zhenghui Zhao. 2024. "Design and Analysis of a Highly Reliable Permanent Magnet Synchronous Machine for Flywheel Energy Storage" Machines 12, no. 9: 655. https://doi.org/10.3390/machines12090655
APA StyleJiang, X., Zhang, L., Li, F., & Zhao, Z. (2024). Design and Analysis of a Highly Reliable Permanent Magnet Synchronous Machine for Flywheel Energy Storage. Machines, 12(9), 655. https://doi.org/10.3390/machines12090655