Periodic Waves and Ligaments on the Surface of a Viscous Exponentially Stratified Fluid in a Uniform Gravity Field
<p>The density–depth dependencies for exponential stratification (solid line) and for linear stratification (dotted line) for strongly stratified fluid (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> <mo> </mo> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ν</mi> <mo>=</mo> <mn>0.01</mn> <mo> </mo> <mo> </mo> <mi mathvariant="normal">St</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>72</mn> <mo> </mo> <mo> </mo> <mrow> <mrow> <mi>dyn</mi> </mrow> <mo>/</mo> <mrow> <mi>cm</mi> </mrow> </mrow> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mn>00</mn> </mrow> </msub> <mo>=</mo> <mn>1.0</mn> <mo> </mo> <mrow> <mi mathvariant="normal">g</mi> <mo>/</mo> <mrow> <msup> <mi>cm</mi> <mn>3</mn> </msup> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>The dependence of the wavelength on the frequency of wave motion in a viscous exponentially stratified fluid for a periodic solution. The curves indicated by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are constructed for a liquid with <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">ν</mi> <mo>=</mo> <mn>0.01</mn> <mo> </mo> <mo> </mo> <mi mathvariant="normal">St</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>72</mn> <mo> </mo> <mo> </mo> <mrow> <mrow> <mi>dyn</mi> </mrow> <mo>/</mo> <mrow> <mi>cm</mi> </mrow> </mrow> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mn>00</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo> </mo> <mrow> <mi mathvariant="normal">g</mi> <mo>/</mo> <mrow> <msup> <mi>cm</mi> <mn>3</mn> </msup> </mrow> </mrow> </mrow> </semantics></math>, and by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mi>G</mi> <mi>l</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>—for a liquid with glycerin parameters <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="sans-serif">ν</mi> <mo>=</mo> <mn>11.746</mn> <mo> </mo> <mo> </mo> <mi mathvariant="normal">St</mi> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mn>00</mn> </mrow> </msub> <mo>=</mo> <mn>1.26</mn> <mo> </mo> <mo> </mo> <mrow> <mi mathvariant="normal">g</mi> <mo>/</mo> <mrow> <msup> <mi>cm</mi> <mn>3</mn> </msup> </mrow> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>64.7</mn> <mo> </mo> <mo> </mo> <mrow> <mrow> <mi>dyn</mi> </mrow> <mo>/</mo> <mrow> <mi>cm</mi> </mrow> </mrow> </mrow> </semantics></math>). The numbers indicate a different degree of stratification. Index (1) corresponds to a weak pycnocline <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <mo> </mo> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, index (2) to a weakly stratified fluid <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>0.01</mn> <mo> </mo> <mo> </mo> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, and index (3) to a strongly stratified fluid <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> <mo> </mo> <mo> </mo> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> for water and glycerin.</p> "> Figure 3
<p>Dependences of the phase (dashed lines) and group (solid lines) velocities on the frequency of wave motion (<b>a</b>) and on the wavelength (<b>b</b>) in a viscous exponentially stratified fluid for a periodic solution. The curves indicated by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are constructed for a liquid with water parameters, and by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mi>G</mi> <mi>l</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>—for a liquid with glycerin parameters. The numbers indicate a different degree of stratification. Indexes (1) and (6) correspond to a weak pycnocline <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>0.001</mn> <mo> </mo> <mo> </mo> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, indexes (2) and (5) correspond to a weakly stratified liquid <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>0.01</mn> <mo> </mo> <mo> </mo> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> and indexes (3) and (4) correspond to a strongly stratified liquid <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> <mo> </mo> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 4
<p>Wavelength dependences of the wave solution (<b>a</b>) and the ligament solution (<b>b</b>) on the frequency in a viscous homogeneous fluid. The curves indicated by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are constructed for a liquid with water parameters, and by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mi>G</mi> <mi>l</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>—for a liquid with glycerin parameters.</p> "> Figure 5
<p>Dependences of the phase (dashed lines) and group (solid lines) velocities on the frequency of the wave solution (<b>a</b>) and the ligament solution (<b>b</b>) on the frequency in a viscous homogeneous fluid. The curves indicated by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are constructed for a liquid with water parameters, and by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mi>G</mi> <mi>l</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> for a liquid with glycerin parameters.</p> "> Figure 6
<p>Dependences of the phase (dashed lines) and group (solid lines) velocities on the wavelength of the wave solution (<b>a</b>) and the ligament solution (<b>b</b>) on the frequency in a viscous homogeneous fluid. The curves indicated by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>W</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are constructed for a liquid with water parameters, and by the letter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mi>G</mi> <mi>l</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> for a liquid with glycerin parameters.</p> ">
Abstract
:1. Introduction
2. Periodic Flows in a Viscous Exponentially Stratified Fluid
2.1. Equations of Periodic Flows and Dispersion Relations for Plane Infinitesimal Waves
2.2. Solution of the Dispersion Equation
2.3. Low Frequency Waves
2.4. Periodic Flows on the Surface of a Viscous Exponentially Stratified Liquid
3. Reduction to Approximation of Actually Homogeneous Fluid
4. Reduction to Inviscid Fluid
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernoulli, D. Hydrodynamica, Sive de Viribus et Motibus Fluidorum Commentarii, Opus Academicum; Sumptibus, J.R., Ed.; Argentorati: Dulseckeri, The Netherlands, 1738; 304p. [Google Scholar]
- D’Alembert, J.-L.R. Réflexions sur la Cause Générale des Vents; David: Paris, France, 1747; 372p. [Google Scholar]
- Euler, L. Principes généraux du mouvement des fluids. Mém. L’académie Des. Sci. Berl. 1757, 11, 274–315. [Google Scholar]
- Feistel, R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond. Ocean Sci. 2018, 14, 471–502. [Google Scholar] [CrossRef]
- Franklin, B. Behavior of oil on water. Letter to J. Pringle. In Experiments and Observations on Electricity; R. Cole: London, UK, 1769; pp. 142–144. [Google Scholar]
- Lamb, H. Treatise on the Mathematical Theory of the on the Motion of Fluids, 6th ed.; Cambridge University Press: Cambridge, UK, 1879; 258p. [Google Scholar]
- Rayleigh. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 1882, 1–14, 170–177. [Google Scholar] [CrossRef]
- Väisälä, V. Uber die Wirkung der Windschwankungen auf die Pilotbeoachtungen. Soc. Sci. Fenn. Commentat. Phys. Math. 1925, 2, 19–37. [Google Scholar]
- Brunt, D. The period of simple vertical oscillations in the atmosphere. Q. J. R. Meteorol. Soc. 1927, 53, 30–32. [Google Scholar] [CrossRef]
- Darrigol, O. Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl; Oxford University Press: Oxford, UK, 2005; 356p. [Google Scholar]
- Basile, R.; De Serio, F. Flow Field around a Vertical Cylinder in Presence of Long Waves: An Experimental Study. Water 2022, 14, 1945. [Google Scholar] [CrossRef]
- Gerstner, F.J. Theorie der Wellen. Abhandlunger der Königlichen Böhmischen Geselschaft der Wissenschaften, Prague. Ann. der Phys. 1809, 32, 412–445. [Google Scholar] [CrossRef]
- Rankine, W.J.M. On the exact form of waves near the surface of deep water. Philos. Trans. R. Soc. 1863, 153, 127–138. [Google Scholar]
- Rayleigh. On waves. Phil. Mag. Ser. 1876, 5, 257–279. [CrossRef]
- Kochin, N.E.; Kibel, I.A.; Rose, N.V. Theoretical Hydromechanics; Part 1; OGIZ. Gostekhizdat: Leningrad-Moscow, USSR, 1948; 728p. (In Russian) [Google Scholar]
- Henry, D. On Gerstner’s Water Wave. J. Nonlinear Math. Phys. 2008, 15, 87–95. [Google Scholar] [CrossRef]
- Ionescu-Kruse, D. On the particle paths and the stagnation points in small-amplitude deep-water. J. Math. Fluid Mech. 2013, 15, 41–54. [Google Scholar] [CrossRef]
- Russell, J.S. Report on Waves. Report of the Fourteenth Meeting of the British Association for the Advancement of Science; Murray, J., Street, A., Eds.; Scientific Research: London, UK, 1845; pp. 311–391. [Google Scholar]
- Boussinesq, J. Theorie de I’intumescence Liquid, Appleteonde Solitaire au de Translation, se Propageantdansun Canal Rectangulaire. Les Comptes Rendus De L’académie Des Sci. 1871, 72, 755–759. [Google Scholar]
- Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1895, 39, 422–443. [Google Scholar] [CrossRef]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley Interscience: New York, NY, USA, 1999; 660p. [Google Scholar]
- Stokes, G.G. On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 1847, 8, 441–455. [Google Scholar]
- Stokes, G.G. Supplement to a paper on the theory of oscillatory waves. In Mathematical and Physical Papers; CUP: Cambridge, UK, 1880; Volume I, pp. 314–326. [Google Scholar]
- Kistovich, A.V.; Chashechkin, Y.D. Propagating stationary surface potential waves in a deep ideal fluid. Water Resour. 2018, 45, 719–727. [Google Scholar] [CrossRef]
- Basset, B. A Treatise on Hydrodynamics with Numerous Examples; Deighton, Bell and Co.: Cambridge, UK, 1888; Volume II, 368p. [Google Scholar]
- Hough, S.S. On the Influence of Viscosity on Waves and Currents. Proc. Lond. Math. Soc. 1896, s1–28, 264–288. [Google Scholar] [CrossRef]
- Harrison, W.J. The Influence of Viscosity on the Oscillations of Superposed Fluids. Proc. Lond. Math. Soc. 1908, s2–6, 96–405. [Google Scholar] [CrossRef]
- Biesel, F. Calcul de l’amortissement d’une houle dans un liquide visqueux de profondeur finie. La Houille Blanche 1949, 4, 630–634. [Google Scholar] [CrossRef]
- Tyvand, P.A. A note on gravity waves in a viscous liquid with surface tension. Z. Angew. Math. Phys. 1984, 35, 592–597. [Google Scholar] [CrossRef]
- Antuono, M.; Colagross, A. The damping of viscous gravity waves. Wave Motion 2013, 50, 197–209. [Google Scholar] [CrossRef]
- Prandtl, L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Proceedings of the Verhandlungen des Dritten Internationalen Mathematiker-Kongresses, Heidelberg, Germany, 8–13 August 1904; Teubner: Leipzig, Germany, 1905; pp. 485–491. [Google Scholar]
- Schlichting, H. Boundary Layer Theory; McGraw Hill Co.: New York, NY, USA, 1955; 812p. [Google Scholar]
- Longuet-Higgins, M.S. Mass transport in water waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1953, 245, 535–581. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. Mass transport in the boundary layer at a free oscillating surface. J. Fluid Mech. 1960, 8, 293–306. [Google Scholar] [CrossRef]
- Liu, A.; Davis, S. Viscous attenuation of mean drift in water waves. J. Fluid Mech. 1977, 81, 63–84. [Google Scholar] [CrossRef]
- Robertson, S.; Rousseaux, G. Viscous dissipation of surface waves and its relevance to analogue gravity experiments. arXiv 2018, arXiv:1706.05255. [Google Scholar]
- Dore, B. Mass transport in layered fluid systems. J. Fluid Mech. 1970, 40, 113–126. [Google Scholar] [CrossRef]
- Thomson, W. Hydrokinetic solutions and observations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1871, 42, 362–377. [Google Scholar] [CrossRef]
- Kistovich, A.V.; Chashechkin, Y.D. Dynamics of gravity-capillary waves on the surface of a nonuniformly heated fluid. Izv. Atmos. Ocean. Phys. 2007, 43, 95–102. [Google Scholar] [CrossRef]
- Chen, X.; Duan, W.-Y.; Lu, D.Q. Gravity waves with effect of surface tension and fluid viscosity. J. Hydrodyn. 2006, 18, 171–176. [Google Scholar] [CrossRef]
- Caligny, A.F.H. Expériences sur les mouvements des molécules liquides des ondes courantes, considérées dans leur mode d’action sur la marche des navires. Compt. Rendu Acad. Sci. Paris 1878, 87, 1019–1023. [Google Scholar]
- Bagnold, R.A. Sand movement by waves: Some small-scale experiments with sand of very low density. J. Inst. Civ. Eng. 1947, 27, 447–469. [Google Scholar] [CrossRef]
- Van Dorn, W.G. Boundary dissipation of oscillatory waves. J. Fluid Mech. 1966, 24, 769–779. [Google Scholar] [CrossRef]
- Kalinichenko, V.A.; Chashechkin, Y.D. Structurization and restructurization of a homogeneous suspension in a standing wave field. Fluid Dyn. 2012, 47, 778–788. [Google Scholar] [CrossRef]
- Chashechkin, Y.D. Transfer of the Substance of a Colored Drop in a Liquid Layer with Travelling Plane Gravity–Capillary Waves. Izv. Atmos. Ocean. Phys. 2022, 58, 188–197. [Google Scholar] [CrossRef]
- Chashechkin, Y.D.; Ilinykh, A.Y. Drop decay into individual fibers at the boundary of the contact area with a target fluid. Dokl. Phys. 2021, 66, 101–105. [Google Scholar] [CrossRef]
- Toffoli, A.; Bitner-Gregersen, E.M. Types of ocean surface waves, wave classification. In Encyclopedia of Maritime and Offshore Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Hung, L.-P.; Tsa, W.-T. The Formation of parasitic capillary ripples on gravity–capillary waves and the underlying vortical structures. J. Phys. Oceanogr. 2009, 39, 263–289. [Google Scholar] [CrossRef]
- Kinsman, B. Wind Waves; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965; 676p. [Google Scholar]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007; 388p. [Google Scholar]
- Chashechkin, Y.D. Packets of capillary and acoustic waves of drop impact. Her. Bauman Mosc. State Technol. Univ. Ser. Nat. Sci. 2021, 1, 73–92. [Google Scholar] [CrossRef]
- Chashechkin, Y.D.; Prohorov, V.E. Evolution of the structure of acoustic signals caused by the impact of a falling drop on a liquid. Acoust. Phys. 2020, 66, 362–374. [Google Scholar] [CrossRef]
- Pumphrey, H.C.; Crum, L.A.; Bjorno, L. Underwater sound produced by individual drop impacts and rainfall. J. Acoust. Soc. Am. 1989, 85, 1518–1526. [Google Scholar] [CrossRef]
- Bjorno, L. Underwater rain noise: Sources, spectra and interpretations. J. De Phys. IV Proc. EDP Sci. 1994, 4, C5/1023–C5/1030. [Google Scholar] [CrossRef]
- Zhang, X. Enhanced dissipation of short gravity and gravity capillary waves due to parasitic capillaries. Phys. Fluids 2002, 14, L81. [Google Scholar] [CrossRef]
- Sergievskaya, I.A.; Ermakov, S.A.; Ermoshkin, A.V.; Kapustin, I.A.; Molkov, A.A.; Danilicheva, O.A.; Shomina, O.V. Modulation of dual-polarized x-band radar backscatter due to long wind waves. Remote Sens. 2019, 11, 423. [Google Scholar] [CrossRef]
- Slavchov, R.; Peychev, B.; Ismail, A.S. Characterization of capillary waves: A review and a new optical method. Phys. Fluids 2021, 33, 101303. [Google Scholar] [CrossRef]
- Falcon, E.; Mordant, N. Experiments in surface gravity-capillary wave turbulence. Annu. Rev. Fluid Mech. 2022, 54, 1–27. [Google Scholar] [CrossRef]
- Berhanu, M. Impact of the dissipation on the nonlinear interactions and turbulence of gravity-capillary waves. Fluids 2022, 7, 137. [Google Scholar] [CrossRef]
- Thorpe, S.A. An Introduction to Ocean Turbulence; Cambridge University Press: Bangor, UK, 2012; 244p. [Google Scholar]
- McWilliams, J.C.; François Colas, F.; Molemaker, M.J. Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett. 2009, 36, L18602. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics. V.6. Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1987; 560p. [Google Scholar]
- Müller, P. The Equations of Oceanic Motions; Cambridge University Press: Cambridge, UK, 2006; 291p. [Google Scholar]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2006; p. 745. [Google Scholar]
- Nayfeh, A.H. Introduction to Perturbation Technique; John Wiley & Sons: New York, NY, USA, 1993; 536p. [Google Scholar]
- Chashechkin, Y.D. Foundations of engineering mathematics applied for fluid flows. Axioms 2021, 10, 286. [Google Scholar] [CrossRef]
- Lighthill, J. Waves in Fluids; Cambridge University Press: Cambridge, UK, 1978; 524p. [Google Scholar]
- Bardakov, R.N.; Vasil’ev, A.Y.; Chashechkin, Y.D. Calculation and measurement of conical beams of three-dimensional periodic internal waves excited by a vertically oscillating piston. Fluid Dyn. 2007, 42, 612–626. [Google Scholar] [CrossRef]
- Kistovich, A.V.; Chashechkin, Y.D. Fine structure of a conical beam of periodical internal waves in a stratified fluid. Izv. Atmos. Ocean. Phys. 2014, 50, 103–110. [Google Scholar] [CrossRef]
- Zagumennyi, Y.V.; Chashechkin, Y.D. Pattern of unsteady vortex flow around plate under a zero angle of attack (two-dimensional problem). Fluid Dyn. 2016, 51, 53–70. [Google Scholar] [CrossRef]
- Prandtl, L. Führer Durch die Strömungslehre; Verlagskatalog Von Friedr; Vieweg & Sohn in Braunschweig: Berlin, Germany, 1942; 337p. [Google Scholar]
- Makarov, S.A.; Neklyudov, V.I.; Chashechkin, Y.D. Spatial structure of twodimensional monochromatic internal-wave beams in an exponentially stratified liquid. Izv. Atmos. Ocean. Phys. 1990, 26, 548–554. [Google Scholar]
- Kistovich, Y.V.; Chashechkin, Y.D. An exact solution of a linearized problem of the radiation of monochromatic internal waves in a viscous fluid. J. Appl. Maths Mech. 1999, 63, 587–594. [Google Scholar] [CrossRef]
- Kistovich, Y.V.; Chashechkin, Y.D. Linear theory of the propagation of internal wave beams in an arbitrarily stratified liquid. J. Appl. Mech. Technol. Phys. 1998, 39, 729–737. [Google Scholar] [CrossRef]
- Chashechkin, Y.D. Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation. Mathematics 2021, 9, 586. [Google Scholar] [CrossRef]
- Veeresha, P.; Baskonus, H.M.; Gao, W. Strong Interacting internal waves in rotating ocean: Novel fractional approach. Axioms 2021, 10, 123. [Google Scholar] [CrossRef]
- Lenain, L.; Pizzo, N. Modulation of surface gravity waves by internal waves. J. Phys. Oceanogr. 2021, 51, 2735–2748. [Google Scholar] [CrossRef]
Parameter | Fluids | |||
---|---|---|---|---|
Stratified (SF) | Homogeneous (HF) | |||
Strongly | Weakly | Potentially | Actually | |
1 | 0.01 | 0.00001 | 0.0 | |
6.28 s | 10.5 min | 7.3 days | ||
9.8 m | 100 km | km | ||
, cm | 2.14 | 200 | ||
Stokes microscale , cm | 0.1 | 1.0 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chashechkin, Y.D.; Ochirov, A.A. Periodic Waves and Ligaments on the Surface of a Viscous Exponentially Stratified Fluid in a Uniform Gravity Field. Axioms 2022, 11, 402. https://doi.org/10.3390/axioms11080402
Chashechkin YD, Ochirov AA. Periodic Waves and Ligaments on the Surface of a Viscous Exponentially Stratified Fluid in a Uniform Gravity Field. Axioms. 2022; 11(8):402. https://doi.org/10.3390/axioms11080402
Chicago/Turabian StyleChashechkin, Yuli D., and Artem A. Ochirov. 2022. "Periodic Waves and Ligaments on the Surface of a Viscous Exponentially Stratified Fluid in a Uniform Gravity Field" Axioms 11, no. 8: 402. https://doi.org/10.3390/axioms11080402
APA StyleChashechkin, Y. D., & Ochirov, A. A. (2022). Periodic Waves and Ligaments on the Surface of a Viscous Exponentially Stratified Fluid in a Uniform Gravity Field. Axioms, 11(8), 402. https://doi.org/10.3390/axioms11080402