Hydroclimate and Paleoenvironmental Variability from the Tonle Sap Lake Basin during the Angkor Period
<p>Location of Heyndan cave and other climate proxy sites cited in the text. (<b>a</b>) Correlations of monthly mean anomalies of precipitation [<a href="#B18-minerals-14-00581" class="html-bibr">18</a>] with the NINO3 (150°–90° W, 5°S–5° N) index [<a href="#B19-minerals-14-00581" class="html-bibr">19</a>] from November 1981 to November 2010, the interval of overlap of the two data products [<a href="#B20-minerals-14-00581" class="html-bibr">20</a>]. The general locations of the ITCZ from June to August (JJA: black dashed line) and from December to February (DJF: white dashed line) are shown in the figure. Locations of the cave site (red star) in this study and cited speleothem (red dot) from Laos [<a href="#B5-minerals-14-00581" class="html-bibr">5</a>] and Thailand [<a href="#B6-minerals-14-00581" class="html-bibr">6</a>,<a href="#B7-minerals-14-00581" class="html-bibr">7</a>], and tree ring (red triangle) records from southern Vietnam [<a href="#B3-minerals-14-00581" class="html-bibr">3</a>,<a href="#B4-minerals-14-00581" class="html-bibr">4</a>] are shown. (<b>b</b>) Sketch of Heyndan 5 Cave (H5); the sampling positions are marked by red boxes.</p> "> Figure 2
<p>Halved sections of the stalagmites with depths for dating and age modeling. (<b>a</b>,<b>c</b>) are the dating results of H5-1 and H5-2 (<a href="#app1-minerals-14-00581" class="html-app">Table S1</a>; black square); age–depth models are calculated by Mod-age [<a href="#B24-minerals-14-00581" class="html-bibr">24</a>] (black line) with ±2 SD (yellow shading) range of error. Relative age model (red line) and range of error (green shade) for H5-2 were established based on the bright–dark coupled laminae. (<b>b</b>,<b>d</b>) are photos of H5-1 and H5-2, and the localized enlargement of the layers is shown below (<b>e</b>).</p> "> Figure 3
<p>Speleothem records during the Angkor Period from Mainland Southeast Asia. (<b>a</b>) Stalagmite δ<sup>18</sup>O (VPDP, ‰) records of H5-1 with H5-2 from this research and (<b>b</b>) δ<sup>18</sup>O record of TM-17 [<a href="#B5-minerals-14-00581" class="html-bibr">5</a>]. The H5-1 record was tuned to H5-2 so that the extreme value of oxygen isotopes in the H5-1 record (−6.2‰) has an age around 1600 AD (pink shadow). (<b>c</b>) to (<b>e</b>) are stalagmite δ<sup>13</sup>C (VPDP‰) records of TM-17 [<a href="#B5-minerals-14-00581" class="html-bibr">5</a>], KPC1 [<a href="#B7-minerals-14-00581" class="html-bibr">7</a>], and H5-1 with H5-2, respectively. (<b>f</b>) shows the Mg/Ca ratios of H5-1 with H5-2. Stalagmite δ<sup>13</sup>C values and Mg/Ca ratios mark one wet (blue triangle) and two dry (red triangle) periods.</p> "> Figure 4
<p>Paleoenvironmental and paleoclimate records during the Angkor Period from Mainland Southeast Asia. (<b>a</b>) Local water balance record from north Laos [<a href="#B5-minerals-14-00581" class="html-bibr">5</a>] and linear regression trend (gray dashed line). (<b>b</b>,<b>c</b>) Reconstructed environmental wet and dry conditions in the Tonle Sap Lake Basin according to this research and linear regression trend (gray dashed line). (<b>d</b>) Early monsoon season from March to May (MAM) Palmer Drought Severity Index from South Vietnam [<a href="#B3-minerals-14-00581" class="html-bibr">3</a>,<a href="#B4-minerals-14-00581" class="html-bibr">4</a>]. (<b>e</b>) Reconstructed ITCZ shift index record [<a href="#B6-minerals-14-00581" class="html-bibr">6</a>]. (<b>f</b>) Reconstructed Southern Oscillation Index [<a href="#B20-minerals-14-00581" class="html-bibr">20</a>]. Three periods (long gray bars) are marked, corresponding to the reigns of Jayavarman V (968–1000 AD) and Jayavarman VII (1125–1215 AD), the ancient Cambodian monarchs mentioned above, and the “Angkor Drought” [<a href="#B3-minerals-14-00581" class="html-bibr">3</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. 230Th-U Dating and Microlayer Count Method
2.3. Stable Isotope and Trace Element Analysis
3. Results
3.1. Chronology Model
3.2. Interpretation of the Stalagmite δ18O, δ13C, and Trace Element Records
4. Discussion
4.1. Drought Event from the Early Angkor Period
4.2. Anomalous Wet Period during the 12th Century
4.3. Potential Anthropogenic Influence on the Regional Environment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandler, D. A History of Cambodia, 4th ed.; Xu, L., Translator; Encyclopedia of China Publishing House: Beijing, China, 2013; p. 27. [Google Scholar]
- Hua, Q.; Cook, D.; Fohlmeister, J.; Penny, D.; Bishop, P.; Buckman, S. Radiocarbon Dating of a Speleothem Record of Paleoclimate for Angkor, Cambodia. Radiocarbon 2017, 59, 1873–1890. [Google Scholar] [CrossRef]
- Buckley, B.M.; Anchukaitis, K.J.; Penny, D.; Fletcher, R.; Cook, E.R.; Sano, M.; Nam, L.C.; Wichienkeeo, A.; Minh, T.T.; Hong, T.M. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl. Acad. Sci. USA 2010, 107, 6748–6752. [Google Scholar] [CrossRef]
- Buckley, B.M.; Fletcher, R.; Wang, S.Y.S.; Zottoli, B.; Pottier, C. Monsoon extremes and society over the past millennium on mainland Southeast Asia. Quat. Sci. Rev. 2014, 95, 1–19. [Google Scholar] [CrossRef]
- Wang, J.K.; Johnson, K.R.; Borsato, A.; Amaya, D.J.; Griffiths, M.L.; Henderson, G.M.; Frisia, S.; Mason, A. Hydroclimatic variability in Southeast Asia over the past two millennia, Earth Planet. Sci. Lett. 2019, 525, 115737. [Google Scholar]
- Tan, L.; Shen, C.C.; Löwemark, L.; Chawchai, S.; Edwards, R.L.; Cai, Y.; Breitenbach, S.F.; Cheng, H.; Chou, Y.C.; Duerrast, H.; et al. Rainfall variations in central Indo-Pacific over the past 2,700 y. Proc. Natl. Acad. Sci. USA 2019, 116, 17201–17206. [Google Scholar] [CrossRef] [PubMed]
- Chawchai, S.; Liu, G.; Bissen, R.; Scholz, D.; Riechelmann, D.F.; Vonhof, H.; Mertz-Kraus, R.; Chiang, H.W.; Tan, L.; Wang, X. Hydroclimate variability of western Thailand during the last 1400 years. Quat. Sci. Rev. 2020, 241, 106423. [Google Scholar] [CrossRef]
- Day, M.B.; Hodell, D.A.; Brenner, M.; Chapman, H.J.; Curtis, J.H.; Kenney, W.F.; Kolata, A.L.; Peterson, L.C. Paleoenvironmental history of the West Baray, Angkor (Cambodia). Proc. Natl. Acad. Sci. USA 2012, 109, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Chawchai, S.; Chabangborn, A.; Fritz, S.; Väliranta, M.; Mörth, C.M.; Blaauw, M.; Reimer, P.J.; Krusic, P.J.; Löwemark, L.; Wohlfarth, B. Hydroclimatic shifts in northeast Thailand during the last two millennia e the record of Lake Pa Kho. Quat. Sci. Rev. 2015, 111, 62–71. [Google Scholar] [CrossRef]
- Yamoah, K.A.; Chabangborn, A.; Chawchai, S.; Schenk, F.; Wohlfarth, B.; Smittenberg, R.H. A 2000-year leaf wax-based hydrogen isotope record from Southeast Asia suggests low frequency ENSO-like teleconnections on a centennial timescale. Quat. Sci. Rev. 2016, 148, 44–53. [Google Scholar] [CrossRef]
- Yamoah, K.A.; Higham, C.F.; Wohlfarth, B.; Chabangborn, A.; Chawchai, S.; Schenk, F.; Smittenberg, R.H. Societal response to monsoonal fluctuations in NE Thailand during the demise of Angkor Civilisation. Holocene 2017, 27, 1455–1464. [Google Scholar] [CrossRef]
- Fletcher, R.; Penny, D.; Evans, D.; Pottier, C.; Barbetti, M.; Kummu, M.; Lustig, T. Authority for the Protection and Management of Angkor and the Region of Siem Reap (APSARA) Department of Monuments and Archaeology Team; The water management network of Angkor, Cambodia. Antiquity 2008, 82, 658–670. [Google Scholar] [CrossRef]
- Penny, D.; Zachreson, C.; Fletcher, R.; Lau, D.; Lizier, J.T.; Fischer, N.; Evans, D.; Pottier, C.; Prokopenko, M. The demise of Angkor: Systemic vulnerability of urban infrastructure to climatic variations. Sci. Adv. 2018, 4, eaau4029. [Google Scholar] [CrossRef] [PubMed]
- Penny, D.; Hall, T.; Evans, D.; Polkinghorne, M. Geoarchaeological evidence from Angkor, Cambodia, reveals a gradual decline rather than a catastrophic 15th-century collapse. Proc. Natl. Acad. Sci. USA 2019, 116, 4871–4876. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, X.; Chiang, H.W.; Cheng, H.; Yuan, S.; Chawchai, S.; He, S.; Lu, Y.; Aung, L.T.; Maung, P.M.; et al. On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records. Sci. Adv. 2020, 6, eaay8189. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.L.; Johnson, K.R.; Pausata, F.S.; White, J.C.; Henderson, G.M.; Wood, C.T.; Yang, H.; Ersek, V.; Conrad, C.; Sekhon, N. End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia. Nat. Commun. 2020, 11, 4204. [Google Scholar] [CrossRef] [PubMed]
- Sophady, H.; Forestier, H.; Zeitoun, V.; Puaud, S.; Frère, S.; Celiberti, V.; Westaway, K.; Mourer, R.; Mourer-Chauviré, C.; Than, H.; et al. Laang Spean cave (Battambang province): A tale of occupation in Cambodia from the Late Upper Pleistocene to Holocene. Quat. Int. 2016, 416, 162–176. [Google Scholar] [CrossRef]
- Janowiak, J.E.; Xie, P. CAMS-OPI: A global satellite-rain gauge merged product for real-time precipitation monitoring applications. J. Clim. 1999, 12, 3335–3342. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W.Q. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Yan, H.; Sun, L.; Wang, Y.; Huang, W.; Qiu, S.; Yang, C. A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat. Geosci. 2011, 4, 611–614. [Google Scholar] [CrossRef]
- Edwards, R.L.; Chen, J.H.; Wasserburg, G.J. 238U, 234U, 230Th, 232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 1987, 81, 175–192. [Google Scholar]
- Cheng, H.; Edwards, R.L.; Shen, C.-C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Alexander, E.C., Jr. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 2013, 3710372, 82–91. [Google Scholar]
- Cheng, H.; Edwards, R.L.; Broecker, W.S.; Denton, G.H.; Kong, X.G.; Wang, Y.J.; Zhang, R.; Wang, X.F., Jr. Ice Age Terminations. Science 2009, 326, 248–252. [Google Scholar]
- Hercman, H.; Pawlak, J. MOD-AGE: An age-depth model construction algorithm. Quat. Geochronol. 2012, 12, 1–10. [Google Scholar] [CrossRef]
- Dorale, J.A.; Edwards, R.L.; Ito, E.; Gonza´lez, L.A. Climate and Vegetation History of the Midcontinent from 75 to 25 ka: A Speleothem Record from Crevice Cave, Missouri, USA. Science 1998, 282, 1871–1873. [Google Scholar] [CrossRef] [PubMed]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Johnson, K.R.; Hu, C.Y.; Belshaw, N.S.; Henderson, G.M. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high- resolution paleomonsoon reconstruction. Earth Planet. Sci. Lett. 2006, 244, 394–407. [Google Scholar] [CrossRef]
- Martín-Chivelet, J.; Muñoz-García, M.B.; Edwards, R.L.; Turrero, M.J.; Ortega, A.I. Land surface temperature changes in Northern Iberia since 4000yrBP, based on δ13C of speleothems. Glob. Planet. Change 2011, 77, 1–12. [Google Scholar] [CrossRef]
- Fohlmeister, J.; Scholz, D.; Kromer, B.; Mangini, A. Modelling carbon isotopes of carbonates in cave drip water. Geochim. Cosmochim. Acta 2011, 75, 5219–5228. [Google Scholar] [CrossRef]
- Fohlmeister, J.; Voarintsoa, N.R.G.; Lechleitner, F.A.; Boyd, M.; Brandtstätter, S.; Jacobson, M.J.; Oster, J.L. Main controls on the stable carbon isotope composition of speleothems. Geochim. Cosmochim. Acta 2020, 279, 67–87. [Google Scholar] [CrossRef]
- Frisia, S.; Borsato, A. Chapter 6: Karst. In Developments in Sedimentology: Carbonates in Continental Settings; Alonso-Zarza, A.M., Tanner, L.H., Eds.; Elsevier: Sydney, Australia, 2010; Volume 61, pp. 269–318. [Google Scholar]
- Mühlinghaus, C.; Scholz, D.; Mangini, A. Modelling stalagmite growth and δ13C as a function of drip interval and temperature. Geochim. Cosmochim. Acta 2007, 71, 2780–2790. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Borsato, A.; Tooth, A.F.; Frisia, S.; Hawkesworth, C.J.; Huang, Y.M.; McDermott, F.; Spiro, B. Controls on trace element (Sr–Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 2000, 166, 255–269. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.-Y. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, Southwest China based on 12 years’ monitoring. J. Hydrol. 2019, 572, 40–50. [Google Scholar] [CrossRef]
- André, M.F.; Etienne, S.; Mercier, D.; Vautier, F.; Voldoire , O. Assessment of sandstone deterioration at Ta Keo temple (Angkor): First results and future prospects. Environ. Geol. 2008, 56, 677–688. [Google Scholar] [CrossRef]
- Konecky, B.L.; Russell, J.M.; Rodysill, J.R.; Vuille, M.; Bijaksana, S.; Huang, Y. Intensification of southwestern Indonesian rainfall over the past millennium. Geophys. Res. Lett. 2013, 40, 386–391. [Google Scholar] [CrossRef]
- Yan, H.; Sun, L.; Oppo, D.W.; Wang, Y.; Liu, Z.; Xie, Z.; Liu, X.; Cheng, W. South China Sea hydrological changes and Pacific Walker Circulation varia-tions over the last millennium. Nat. Commun. 2011, 2, 293. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zhou, W.; Jia, X.; Zhang, Y.; Dong, R. The synergistic impact of SPOD and ENSO on ITCZ: Observation study. Clim. Dyn. 2023, 60, 1297–1311. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, J.; Zhao, W.; Cheng, H. Hydroclimate and Paleoenvironmental Variability from the Tonle Sap Lake Basin during the Angkor Period. Minerals 2024, 14, 581. https://doi.org/10.3390/min14060581
Zhao X, Wang J, Zhao W, Cheng H. Hydroclimate and Paleoenvironmental Variability from the Tonle Sap Lake Basin during the Angkor Period. Minerals. 2024; 14(6):581. https://doi.org/10.3390/min14060581
Chicago/Turabian StyleZhao, Xinnan, Jian Wang, Wei Zhao, and Hai Cheng. 2024. "Hydroclimate and Paleoenvironmental Variability from the Tonle Sap Lake Basin during the Angkor Period" Minerals 14, no. 6: 581. https://doi.org/10.3390/min14060581
APA StyleZhao, X., Wang, J., Zhao, W., & Cheng, H. (2024). Hydroclimate and Paleoenvironmental Variability from the Tonle Sap Lake Basin during the Angkor Period. Minerals, 14(6), 581. https://doi.org/10.3390/min14060581