An Approach to Evaluate the Fatigue Life of the Material of Liquefied Gases’ Vessels Based on the Time Dependence of Acoustic Emission Parameters: Part 1
<p>The dependence of durability on stress for various loading modes for St-3 steel (according to [<a href="#B31-metals-15-00148" class="html-bibr">31</a>]).</p> "> Figure 2
<p>Geometric dimensions of the low-cycle fatigue test specimen.</p> "> Figure 3
<p>Test equipment: (<b>a</b>) Instron 8802 250 kN servo-hydraulic machine and Zwick/Roell BW91250 thermal camera; (<b>b</b>) arrangement of waveguides on the specimen.</p> "> Figure 4
<p>Specimen location in a thermal chamber with a fixed Instron DIN 2620-604 dynamic deformation sensor (extensometer).</p> "> Figure 5
<p>Cycle scheme during fatigue loading.</p> "> Figure 6
<p>A-Line work screen for processing AE signals during Specimen VII tests. Red color—1 channel; green color—2 channel.</p> "> Figure 7
<p>Time dependences of the cumulative AE count (black points) and stress changes (red points) during single tensile tests after various degrees of operation at 213 K: (<b>a</b>) without operation (Specimen I); (<b>b</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>460</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VI); (<b>c</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>480</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VII); and (<b>d</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>500</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VIII).</p> "> Figure 8
<p>Time dependence of the logarithm of the cumulative AE count: (<b>a</b>) without pre-fatigue (Specimen I); (<b>b</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>460</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VI); (<b>c</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>480</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VII); and (<b>d</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>500</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VIII).</p> "> Figure 8 Cont.
<p>Time dependence of the logarithm of the cumulative AE count: (<b>a</b>) without pre-fatigue (Specimen I); (<b>b</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>460</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VI); (<b>c</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>480</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VII); and (<b>d</b>) <math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>500</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math> (Specimen VIII).</p> "> Figure 9
<p>AE features for determining the start and end times of the uniform fracture stage for specimen VII (<math display="inline"><semantics> <mrow> <mrow> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> </mrow> </mrow> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>500</mn> <mtext> </mtext> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">P</mi> <mi mathvariant="normal">a</mi> </mrow> </semantics></math>): (<b>a</b>) time dependence of the signal overlap coefficient; (<b>b</b>) time dependence of the amplitude variation coefficient.</p> "> Figure 10
<p>Photo of specimens that underwent static tensile and fatigue tests: specimens I, II, and specimens IV–XI.</p> "> Figure 11
<p>Results of fatigue life calculations based on low-temperature AE testing: (<b>a</b>) calculated and experimental fatigue life values; (<b>b</b>) fatigue curve of St-3 steel at low temperatures for similar specimens according to Strizhalo [<a href="#B51-metals-15-00148" class="html-bibr">51</a>].</p> "> Figure 12
<p>Results of acoustic emission tests for single static fracture of standard specimens after various levels of fatigue accumulation: (<b>a</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life and in the initial state during static tests and (<b>b</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (steel 20) [<a href="#B58-metals-15-00148" class="html-bibr">58</a>]; (<b>c</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life and in the initial state during static tests and (<b>d</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (low-carbon steel 20) [<a href="#B55-metals-15-00148" class="html-bibr">55</a>]; (<b>e</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life, in the initial state and a tensile specimen during static tests and (<b>f</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (steel 15Kh2GMF) [<a href="#B53-metals-15-00148" class="html-bibr">53</a>].</p> "> Figure 12 Cont.
<p>Results of acoustic emission tests for single static fracture of standard specimens after various levels of fatigue accumulation: (<b>a</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life and in the initial state during static tests and (<b>b</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (steel 20) [<a href="#B58-metals-15-00148" class="html-bibr">58</a>]; (<b>c</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life and in the initial state during static tests and (<b>d</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (low-carbon steel 20) [<a href="#B55-metals-15-00148" class="html-bibr">55</a>]; (<b>e</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life, in the initial state and a tensile specimen during static tests and (<b>f</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (steel 15Kh2GMF) [<a href="#B53-metals-15-00148" class="html-bibr">53</a>].</p> "> Figure 12 Cont.
<p>Results of acoustic emission tests for single static fracture of standard specimens after various levels of fatigue accumulation: (<b>a</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life and in the initial state during static tests and (<b>b</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (steel 20) [<a href="#B58-metals-15-00148" class="html-bibr">58</a>]; (<b>c</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life and in the initial state during static tests and (<b>d</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (low-carbon steel 20) [<a href="#B55-metals-15-00148" class="html-bibr">55</a>]; (<b>e</b>) time dependencies of the cumulative AE count for specimens after an accumulation of 0.3, 0.5, and 0.7 of the life, in the initial state and a tensile specimen during static tests and (<b>f</b>) time dependencies of the logarithm of the cumulative AE count and stress–strain curves (steel 15Kh2GMF) [<a href="#B53-metals-15-00148" class="html-bibr">53</a>].</p> "> Figure 13
<p>Fatigue curves for the experimental materials with marked points of the calculated fatigue life: (<b>a</b>) steel 20 with preliminary cycling at 390 MPa; (<b>b</b>) steel 20 with preliminary loading at 330 MPa; and (<b>c</b>) steel 15Kh2GMF with preliminary loading at 800 MPa.</p> "> Figure 13 Cont.
<p>Fatigue curves for the experimental materials with marked points of the calculated fatigue life: (<b>a</b>) steel 20 with preliminary cycling at 390 MPa; (<b>b</b>) steel 20 with preliminary loading at 330 MPa; and (<b>c</b>) steel 15Kh2GMF with preliminary loading at 800 MPa.</p> "> Figure 14
<p>Distribution of the structural parameter <math display="inline"><semantics> <mrow> <mi>γ</mi> </mrow> </semantics></math> during uniform fracture of specimens VI, VII, and VIII. (<b>a</b>) Weibull distribution; (<b>b</b>) log-normal distribution.</p> "> Figure 15
<p>Comparison of experimental and calculated values of cumulative AE count based on numerical simulation data.</p> "> Figure 16
<p>Results of modeling the stress state of the gas receiver under operating conditions: (<b>a</b>) stress distribution over the object’s surface and maximum stresses in the area near the flange (as a natural stress concentrator); (<b>b</b>) results of the residual fatigue life calculation based on the low-cycle fatigue criterion using the Manson–Coffin model, taking into account the accumulation of plastic deformation.</p> "> Figure 17
<p>Example diagram for determining the range of acting stresses in the concentrator—the source of AE signals: (<b>a</b>) logarithm of the cumulative AE count and the pressure increase graph during hydraulic testing of the vessel [<a href="#B70-metals-15-00148" class="html-bibr">70</a>]; (<b>b</b>) logarithm of the cumulative count and stress during the testing of laboratory specimens from the pressure vessel material (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>t</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>—time moment of the beginning of the uniform microcracking stage).</p> "> Figure 18
<p>Operational data for converting pressure drop cycles in a liquid ethylene storage tank 47D01 into a fatigue curve relationship – pressure drop oscillogram over the course of a year.</p> "> Figure 19
<p>Simulation of the operational pressure drop process using laboratory AE testing of standard specimens and Comsol Multiphysics 5.6 software: (<b>a</b>) a graph of pressure changes in the tank during the year, modeled using the software; (<b>b</b>) stress–strain state of a standard specimen for low-cycle fatigue.</p> "> Figure 20
<p>Matrix histograms of the distribution of loading blocks of a real vessel (<b>a</b>) by stress amplitude <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">^</mo> </mover> </mrow> </semantics></math> and mean cycle stress <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>σ</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> and (<b>b</b>) by relative contribution to damage accumulation.</p> "> Figure 21
<p>Flowchart of the method implementation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Method and Testing Procedure
2.2. Acoustic Emission Model
2.3. Fatigue Life Estimation Model
3. Results
- Kinetic: approximation of the time dependence of cumulative AE parameters for homogeneous fracture (determination of the linear section of the AE dependence in semi-logarithmic coordinates).
- Statistical: accounting for the stabilization of the values of amplitude, frequency, and pause distributions of AE during the time interval of homogeneous fracture.
- Elastoplastic deformation criterion: the accumulation of microdamage corresponding to homogeneous fracture occurs before the beginning of structural rearrangements during plastic deformation in the upper region of elastic and the beginning of elastoplastic deformation.
4. Discussion
Fatigue Life Evaluation Methodology
- 1.
- The method for calculating the residual fatigue life of cryogenic vessels is based on the assessment of concentration kinetic parameters and .
- 2.
- Vessels and pipelines for transporting and storing gasses should be inspected in their operating position. Acoustic emission diagnostics are implemented during static tests conducted according to the hydraulic/pneumatic testing program defined by the standards for AE inspection.
- 3.
- Placement of AE transducers on the object under inspection begins after the completion of preparatory work. Depending on the configuration of the object, material, the maximum distance between sensors, and the required accuracy of defect coordinate determination, the number and placement of transducers are determined.
- 4.
- The assessment of strength and structural parameters using the micromechanical AE model is as follows:
- 4.1.
- During loading, using a diagnostic system, acoustic emission signals are automatically recorded with a set of standard parameters, namely cumulative AE count, AE activity, signal amplitude, etc. Simultaneously, the magnitude of the applied loading is recorded;
- 4.2.
- During the post-processing of AE data, the time dependence of the logarithm of the cumulative AE count or other cumulative AE parameters (total energy, total amplitude, etc.) is plotted;
- 4.3.
- The time of the beginning of the uniform microcrack formation stage is recorded;
- 4.4.
- The time moments of the uniform fracture stage are registered according to kinetic (1), statistical (overlap coefficient, change in signal duration, etc.) (2), and the deformation stage feature (3);
- 4.5.
- For a more accurate assessment of the stress state of the stress concentrator source of AE for subsequent resource calculation, it is recommended to use a more complex technique based on the localization of AE signals. In this case, the flow of AE signals from the most dangerous zone of the object will be interpreted. This approach, using stress–strain state modeling with software, will allow for narrowing the range of theoretical stresses in the concentrator and thus the true stresses , which are used in Equation (34). This requires the use of a larger number of equipment channels and more complex software, but it provides more accurate assessments of the strength state for resource calculations;
- 4.6.
- The pressure in the vessel corresponding to the beginning of the uniform microcracking stage is recorded;
- 4.7.
- The stress–strain state of the vessel in a defect-free state is assessed at each time point of the tests, and the most stressed nodes are identified, as well as the scatter of stresses in the most stressed nodes (usually the junctions of flanges to shells and bends of vessel bottoms). This step can be performed in one of the possible software environments for stress–strain state assessment or by calculating the theoretical stresses in each node of the vessel (Figure 16).
Figure 16. Results of modeling the stress state of the gas receiver under operating conditions: (a) stress distribution over the object’s surface and maximum stresses in the area near the flange (as a natural stress concentrator); (b) results of the residual fatigue life calculation based on the low-cycle fatigue criterion using the Manson–Coffin model, taking into account the accumulation of plastic deformation.Figure 16. Results of modeling the stress state of the gas receiver under operating conditions: (a) stress distribution over the object’s surface and maximum stresses in the area near the flange (as a natural stress concentrator); (b) results of the residual fatigue life calculation based on the low-cycle fatigue criterion using the Manson–Coffin model, taking into account the accumulation of plastic deformation. - 5.
- Conducting tests on a series of flat laboratory specimens under conditions close to the test conditions (primarily observing the test temperature and loading rate). It is most desirable to use specimens obtained from the material of the vessel itself.
- 6.
- We find the average stress across the specimens, corresponding to the time moment of the beginning of the uniform microcracking stage in the specimens (Figure 17).Figure 17. Example diagram for determining the range of acting stresses in the concentrator—the source of AE signals: (a) logarithm of the cumulative AE count and the pressure increase graph during hydraulic testing of the vessel [70]; (b) logarithm of the cumulative count and stress during the testing of laboratory specimens from the pressure vessel material (—time moment of the beginning of the uniform microcracking stage).Figure 17. Example diagram for determining the range of acting stresses in the concentrator—the source of AE signals: (a) logarithm of the cumulative AE count and the pressure increase graph during hydraulic testing of the vessel [70]; (b) logarithm of the cumulative count and stress during the testing of laboratory specimens from the pressure vessel material (—time moment of the beginning of the uniform microcracking stage).
- 7.
- Using the obtained stresses in the specimens and the real cryogenic vessel according to the simulation data, the stress concentration factor is found, which shows how much the real stresses exceed the theoretical ones in a vessel with a stress concentrator [71].
- 8.
- A series of true stress values is calculated in the most dangerous zones of the vessel, taking into account stress concentration due to the presence of defects using the range of theoretical stresses obtained during stress–strain state modeling.
- 9.
- Using the time dependence of pressure in the vessel and the rate of true stress growth, parameters and are determined, reflecting the individual structural features of the vessel, as well as the coefficient directly.
- 10.
- Using the obtained value of the structural parameter of the real vessel and the value of in the most dangerous (stressed) location of the tank, using Equation (34), the fatigue curve for the real vessel is plotted. The resulting fatigue curve expression is written for the most dangerous zone of the object—the developing concentrator.
- 11.
- Based on the information about the pressure drop modes in the vessel, an oscillogram of the pressure change over a certain operating period is plotted (Figure 18).Figure 18. Operational data for converting pressure drop cycles in a liquid ethylene storage tank 47D01 into a fatigue curve relationship – pressure drop oscillogram over the course of a year.Figure 18. Operational data for converting pressure drop cycles in a liquid ethylene storage tank 47D01 into a fatigue curve relationship – pressure drop oscillogram over the course of a year.
- 12.
- The oscillogram data are loaded into the corresponding Comsol Multiphysics software interface in the form of a drop in blocks, multiples of a given stress step (see Figure 19). The approach involves the use of the Structural Mechanics and Fatigue physics interfaces. Additional verification of the experimental results should be provided by assessing the stress–strain state of standard specimens for low- and high-cycle fatigue during testing under conditions close to the operation of a real vessel.Figure 19. Simulation of the operational pressure drop process using laboratory AE testing of standard specimens and Comsol Multiphysics 5.6 software: (a) a graph of pressure changes in the tank during the year, modeled using the software; (b) stress–strain state of a standard specimen for low-cycle fatigue.Figure 19. Simulation of the operational pressure drop process using laboratory AE testing of standard specimens and Comsol Multiphysics 5.6 software: (a) a graph of pressure changes in the tank during the year, modeled using the software; (b) stress–strain state of a standard specimen for low-cycle fatigue.
- 13.
- Using the Cumulative Damage interface and the embedded «rainflow» cycle counting algorithm, a matrix histogram of the distribution of operational loading cycles by stress range amplitude and the mean stress value is obtained, as well as a histogram of the relative contribution of these cycle groups to the overall damage of the structure (see Figure 20).Figure 20. Matrix histograms of the distribution of loading blocks of a real vessel (a) by stress amplitude and mean cycle stress and (b) by relative contribution to damage accumulation.Figure 20. Matrix histograms of the distribution of loading blocks of a real vessel (a) by stress amplitude and mean cycle stress and (b) by relative contribution to damage accumulation.
- 14.
- Groups of cycles with a certain ratio of amplitude value and mean cycle stress are identified, and their specific share in the total number of cycles is calculated.
- 15.
- Using Equation (34), the number of pressure drop cycles until vessel fracture is calculated for the block of cycles with the largest damaging share in the resource.
- 16.
- We use the Palmgren–Miner linear damage summation hypothesis to calculate the contribution of individual cycle groups to fracture.
5. Conclusions
- The stage of elastoplastic deformation corresponds to the highest activity of acoustic emission and includes the stage of homogeneous microcrack formation, when areas with a similar structure become the place of microcrack formation;
- The kinetics of microcrack formation at the stage of elastoplastic deformation, studied using the AE method, is used to calculate fatigue life. The equation for calculating the number of cycles before fracture includes the structural parameter γ, which is a parameter of the individual structure of the material in the concentrator area. The values of can be obtained during single static tests;
- Numerical simulations confirm that the logarithmically normal and Weibull laws describe the distribution of the structural parameter well. The values obtained at the stage of homogeneous microcracking correspond to the “bell” of the distribution;
- To calculate the number of pressure drops in a tank for storage liquefied gasses during low-temperature operation, a method is proposed that includes the “rainflow” method for counting cycles, the time point at which the stage of homogeneous microcracking begins and the hypothesis of linear damage summation is confirmed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Transformation of the Bessel Function of the First Kind of Zero Order
References
- Podoprigora, D.G.; Byazrov, R.R.; Lagutina, M.A.; Arabov, D.V.; Galimov, V.V.; Ermolin, D.S. A novel integrated methodology for screening, assessment and ranking of promising oilfields for polymer floods. Adv. Geo-Energy Res. 2024, 12, 8–21. [Google Scholar] [CrossRef]
- Dvoynikov, M.V.; Minaev, Y.D.; Minibaev, V.V.; Kambulov, E.Y.; Lamosov, M.E. Technology for killing gas wells at managed pressure. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2024, 335, 7–18. [Google Scholar] [CrossRef]
- Myakotnykh, A.A.; Ivanova, P.V.; Ivanov, S.L. Criteria and technological requirements for creation of a bridge platform to extract peat raw materials for climate-neutral geotechnology. Gorn. Promyshlennost 2024, 4, 116–120. (In Russian) [Google Scholar] [CrossRef]
- Zemenkova, M.; Chizhevskaya, E.; Zemenkov, Y. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies. J. Min. Inst. 2022, 258, 933–944. [Google Scholar] [CrossRef]
- Didmanidze, O.; Afanasev, A.; Khakimov, R. Mathematical model of the liquefied methane phase transition in the cryogenic tank of a vehicle. J. Min. Inst. 2020, 243, 337–347. [Google Scholar] [CrossRef]
- Pshenin, V.; Zakirova, G. Improving the efficiency of oil vapor recovery units in the commodity transport operations at oil terminals. J. Min. Inst. 2024, 265, 121–128. [Google Scholar] [CrossRef]
- Dzhemilev, E.; Shammazov, I.; Sidorkin, D.; Mastobaev, B.; Gumerov, A. Developing technology and device for the main pipelines repair with cutting out their defective sections. Neft. Khozyaystvo 2022, 10, 78–82. [Google Scholar] [CrossRef]
- Gendler, S.G.; Stepantsova, A.Y.; Popov, M.M. Justification on the safe exploitation of closed coal warehouse by gas factor. J. Min. Inst. 2024, 1–11, EDN SIJDWE. Available online: https://pmi.spmi.ru/pmi/article/view/16519 (accessed on 4 January 2025).
- Bickell, M.B.; Ruiz, C. Pressure Vessel Design and Analysis, 1st ed.; Red Globe Press: London, UK, 1967. [Google Scholar]
- Singh, K.P.; Soler, A.I. Mechanical Design of Heat Exchangers and Pressure Vessel Components; Springer: Berlin/Heidelberg, Germany, 1984; ISBN 978-3-662-12443-7. [Google Scholar]
- Li, Y.; Wang, J.; Sun, Z. Application of low-cycle fatigue data to pressure vessel design fatigue curve. Int. J. Fatigue 1990, 12, 215–218. [Google Scholar] [CrossRef]
- Aistov, A.S.; Makovkin, G.A. Investigation of low cycle fatigue of pipes of main gas and oil pipelines. Sci. Probl. Water Transp. 2008, 149–159. [Google Scholar]
- Nikolaev, A.; Goluntsov, A.; Breff, A. Determination of the coefficient of hydraulic resistance when using anti-turbulence additives. Reliab. Theory Appl. 2024, 19, 107–124. [Google Scholar] [CrossRef]
- Sarkar, A.; Kumawat, B.K.; Chakravartty, J.K. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel. J. Nucl. Mater. 2015, 462, 273–279. [Google Scholar] [CrossRef]
- Effect of loading wave form on the results of low cycle fatigue and fatigue crack propagation tests. In Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials; Portella, P.D., Rie, K.-T., Eds.; Elsevier: Oxford, UK, 1988. [Google Scholar]
- Keith, E. Pressure Vessel and Stacks Field Repair Manual; Butterworth-Heinemann: Oxford, UK, 2008. [Google Scholar]
- Vladimirov, V.I.; Orlov, A.N. Thermal activation of microcrack nucleation in crystals. Strength Mater. 1971, 3, 154–156. [Google Scholar] [CrossRef]
- Ortiz, M. Microcrack coalescence and macroscopic crack growth in brittle solids. Int. J. Solids Struct. 1988, 24, 231–250. [Google Scholar] [CrossRef]
- Bolshakov, A.M.; Andreev, Y.M. Fracture analysis of metal structures functioned in the north conditions. AMaT 2015, 12, 27–31. [Google Scholar] [CrossRef]
- Palaev, A.G.; Krasnikov, A.A. Ultrasonic Treatment of Welded Joint from External, Internal and Two Sides on Reduction of Residual Welding Stresses. IJE 2024, 37, 2171–2180. [Google Scholar] [CrossRef]
- Investigation of the operability, reliability, and cold resistance of metal structures and their welded joints operating in the Far North and the Arctic. In Safety and Survivability of Technical Systems: Materials and Reports: In 3 Volumes; Bolshakov, A.M., Sleptsov, O.I., Eds.; Siberian Federal University: Krasnoyarsk, Russian, 2015. [Google Scholar]
- Hectors, K.; De Waele, W. Cumulative Damage and Life Prediction Models for High-Cycle Fatigue of Metals: A Review. Metals 2021, 11, 204. [Google Scholar] [CrossRef]
- Rege, K.; Pavlou, D.G. A one-parameter nonlinear fatigue damage accumulation model. Int. J. Fatigue 2017, 98, 234–246. [Google Scholar] [CrossRef]
- Regel’, V.R.; Slutsker, A.I.; Tomashevskii, E.E. The kinetic nature of the strength of solids. Uspekhi Fiz. Nauk 1972, 106, 193–228. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Brøndsted, P. Modeling of fatigue damage evolution on the basis of the kinetic concept of strength. Int. J. Fract. 2007, 144, 149–158. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Khonsari, M.M. Evaluation of fatigue in unidirectional and cross-ply laminated composites using a coupled entropy-kinetic concept. J. Compos. Mater. 2022, 56, 2443–2454. [Google Scholar] [CrossRef]
- Doh, J.; Lee, J. Bayesian estimation of the lethargy coefficient for probabilistic fatigue life model. J. Comput. Des. Eng. 2018, 5, 191–197. [Google Scholar] [CrossRef]
- Hur, S.H.; Doh, J.; Yoo, Y.; Kim, S.-W.; Lee, J. Stress-life prediction of 25 °C polypropylene materials based on calibration of Zhurkov fatigue life model. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 1784–1799. [Google Scholar] [CrossRef]
- Han, Z.; Luo, H.; Sun, C.; Li, J.; Papaelias, M.; Davis, C. Acoustic emission study of fatigue crack propagation in extruded AZ31 magnesium alloy. Mater. Sci. Eng. A 2014, 597, 270–278. [Google Scholar] [CrossRef]
- Doh, J.; Byun, J.; Lee, J. Bayesian approach for the lethargy coefficient estimation in the probabilistic creep-fatigue life model. Annu. Conf. PHM Soc. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Nikonov, Y.A. Fatigue strength of solids from the standpoint of the kinetic concept of destruction. In Leningrad Polytechnic Institute; M.I. Kalinin Institute: Leningrad, Russian, 1975. [Google Scholar]
- Song, J.H.; Noh, H.G.; Yu, H.S.; Kang, H.Y.; Yang, S.M. Estimation of fatigue life by lethargy coefficient using molecular dynamic simulation. Int. J. Automot. Technol. 2004, 5, 215–219. [Google Scholar]
- Moghanlou, M.R.; Khonsari, M.M. On the kinetic formulation of fracture fatigue entropy of metals. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 565–577. [Google Scholar] [CrossRef]
- Petrov, V.A. The Physical Foundations of Forecasting the Durability of Structural Materials; Petrov, V.A., Bashkarev, A.Y., Vettegren, V.I., Eds.; Polytechnic: St. Petersburg, Russian, 1993; p. 475. [Google Scholar]
- Fukagawa, M.; Kohno, T.; Murayama, T.; Kaihara, S. Safety Requirements for Cryogenic Storage Tank and COD Characteristics of the Welded Joint with Partially Embrittled Rrgion. Trans. Iron Steel Inst. Jpn. 1984, 24, 1072–1081. [Google Scholar] [CrossRef]
- Goritskii, V.M. A criterion of fracture of steels susceptible to propagation of brittle microcracks along crystal boundaries. Strength Mater. 1987, 19, 479–486. [Google Scholar] [CrossRef]
- Krasovskii, A.Y. Ductile-to-brittle transition temperature as a measure of the crack resistance of steels. Strength Mater. 1985, 17, 1439–1446. [Google Scholar] [CrossRef]
- Scibetta, M.; Ferreño, D.; Gorrochategui, I.; Lacalle, R.; van Walle, E.; Martín, J.; Gutiérrez-Solana, F. Characterisation of the fracture properties in the ductile to brittle transition region of the weld material of a reactor pressure vessel. J. Nucl. Mater. 2011, 411, 25–40. [Google Scholar] [CrossRef]
- Hartmaier, A.; Gumbsch, P. On the activation energy forthe brittle-ductile transition. Phys. Status Solidi B Basic Res. 1997, 202, R1–R2. [Google Scholar] [CrossRef]
- GOST 25.506; Design, Calculation and Strength Testing. Methods of Mechanical Testing of Metals. Determination of Fracture Toughness Characteristics Under the Static Loading. IKP Publishing House of Standards: Moscow, Russia, 1985.
- BS ISO 12135:2021; Metallic Materials. Unified Method of Test for the Determination of Quasistatic Fracture Toughness. ISO: Geneva, Switzerland, 2021.
- Trushko, V.L.; Rozanov, A.O.; Saitgaleev, M.M.; Petrov, D.N.; Ilinov, M.D.; Karmanskii, D.A.; Selikhov, A.A. Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths. J. Min. Inst. 2024, 269, 848–858, EDN EGOJFL. [Google Scholar]
- Takanori, O.; Pao, Y.-H. Microcrack initiation and acoustic emission during fracture toughness tests of A533B steel. Metall. Trans. A 1986, 17A, 843–852. [Google Scholar] [CrossRef]
- Barat, K.; Bar, H.N.; Mandal, D.; Roy, H.; Sivaprasad, S.; Tarafder, S. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel. Mater. Sci. Eng. A 2014, 597, 37–45. [Google Scholar] [CrossRef]
- Freed, A.D.; Leonov, A.I. The Bailey criterion: Statistical derivation and applications to interpretations of durability tests and chemical kinetics. Math. Phys. 2002, 53, 160–166. [Google Scholar] [CrossRef]
- Petrov, V.A. Durability of solids under low loadings, non-destructive stresses. Solid State Phys. 1984, 26, 2116–2119. [Google Scholar]
- Petrov, V.A. Dilaton model of thermofluctuational crack nucleation. Solid State Phys. 1983, 25, 3124–3127. [Google Scholar]
- Petrov, M.G.; Ravikovich, A.I. Accumulation of damage during plastic deformation and creep of aluminum alloys. Appl. Mech. Tech. Phys. 2006, 47, 172–182. [Google Scholar] [CrossRef]
- Brewster Geelen, B.D. Accurate solution for the modified Bessel faction of the first kind. Adv. Eng. Softw. 1995, 23, 105–109. [Google Scholar] [CrossRef]
- Zaitsev, M.G. Statistical modeling of clustering of stable microcracks in solids. Solid State Phys. 1985, 27, 3653–3661. [Google Scholar]
- Strizhalo, V.A. Cyclic Strength and Creep of Metals Under Low-Cycle Loading at Low and High Temperatures; Naukova Dumka: Kiev, Ukraine, 1978. [Google Scholar]
- Botvina, L.R.; Kushnarenko, V.M.; Tyutin, M.R. Fracture stages and residual strength of pipe steel after long-term operation. Phys. Mesomech. 2021, 24, 50–61. [Google Scholar] [CrossRef]
- Botvina, L.R.; Tyutin, M.R.; Levin, V.P.; Ioffe, A.V.; Perminova, Y.S.; Prosvirnin, D.V. Mechanical and Physical Properties, Fracture Mechanisms, and Residual Strength of 15Kh2GMF Steel for Oil Sucker Rods. Russ. Metall. 2021, 2021, 546–558. [Google Scholar] [CrossRef]
- Botvina, L.R.; Tyutin, M.R.; Bolotnikov, A.I.; Petersen, T.B. Effect of Preliminary Cycling on the Acoustic Emission Characteristics of Structural 15Kh2GMF Steel. Russ. Metall. 2021, 2021, 32–41. [Google Scholar] [CrossRef]
- Botvina, L.R.; Tyutin, M.R.; Petersen, T.B.; Levin, V.P.; Soldatenkov, A.P.; Prosvirnin, D.V. Residual Strength, Microhardness, and Acoustic Properties of Low-Carbon Steel after Cyclic Loadinging. J. Mach. Manuf. Reliab. 2018, 47, 516–524. [Google Scholar] [CrossRef]
- Botvina, L.R.; Tyutin, M.R.; Petersen, T.B.; Prosvirnin, D.V.; Morozov, A.E.; Kolokolov, E.I. Residual Strength of Cyclically Deformed Corrosion-Resistant Steel. Russ. Metall. 2020, 2020, 483–492. [Google Scholar] [CrossRef]
- Valiev, A.S.; Kuzeev, I.R. Assessment of the degree of damage to 09G2C steel specimens exposed to low-cycle fatigue by acoustic emission control method. Oil Gas Bus. 2022, 20, 142. [Google Scholar] [CrossRef]
- Botvina, L.R. Damage evolution on different scale levels. Izv. Phys. Solid Earth 2011, 47, 859–872. [Google Scholar] [CrossRef]
- Perveitalov, O.G.; Nosov, V.V.; Schipachev, A.M.; Alekhin, A.I. Thermally Activated Crack Growth and Fracture Toughness Evaluation of Pipeline Steels Using Acoustic Emission. Metals 2023, 13, 1272. [Google Scholar] [CrossRef]
- Loginov, B.M.; Proskurnin, A.N.; Vershinin, E.V. Patterns of dislocation movement through ensembles of dislocations of forests and point obstacles in conditions of simultaneous action of static and cyclic loadinging. Solid State Phys. 2002, 44, 1885–1888. [Google Scholar] [CrossRef]
- Petrov, A.I.; Razuvaeva, M.V. Evaluation of fracture activation parameters in aluminum and α-iron based on durability measurements at moderate and low temperatures. J. Tech. Phys. 2010, 80, 90–95. [Google Scholar]
- Petrov, M.G. Investigation of the longevity of materials on the basis of the kinetic concept of fracture. J. Appl. Mech. Tech. Phys. 2021, 62, 145–156. [Google Scholar] [CrossRef]
- Malygin, G.A. Analysis of the velocity sensitivity of the flow stresses of nanocrystalline metals with FCC and BCC gratings. Solid State Phys. 2007, 49. [Google Scholar]
- Campbell, J.D.; Ferguson, W.G. The temperature and strain-rate dependence of the shear strength of mild steel. Philos. Mag. 1970, 21, 63–82. [Google Scholar] [CrossRef]
- Weaver, J.L.; Beatty, C.L. The effect of temperature on compressive fatigue of polystyrene. Polym. Eng. Sci. 1978, 18, 1117–1126. [Google Scholar] [CrossRef]
- Firstov, S.O.; Rogul, T.G. Thermoactivation Analysis of the Flow-Stress–Temperature Dependence in the F.C.C. Solid Solutions. Metallofiz. Noveishie Tekhnol. 2017, 39, 33–48. [Google Scholar] [CrossRef]
- Morris, D.G. Strengthening mechanisms in nanocrystalline metals. In Nanostructured Metals and Alloys; Woodhead Publishing: Sawston, UK, 2011; pp. 299–328. [Google Scholar]
- Kireenko, O.F.; Leksovskii, A.M.; Regel, V.R. Role of heating in connection with the reduced life of cyclically stressed polymers. Polym. Mech. 1968, 4, 483–488. [Google Scholar] [CrossRef]
- Stepanov, V.A.; Nikonov, Y.A.; Timoshenko, I.I. Influence of cyclic loading conditions on the life of materials. Strength Mater. 1979, 11, 575–577. [Google Scholar] [CrossRef]
- Mukhopadhyay, C.K.; Haneef, T.K.; Rao, B.P.C.; Jayakumar, T. Condition monitoring of exchange towers of heavy water plant during hydrotesting by acoustic emission technique. Insight-Non-Destr. Test. Cond. Monit. 2011, 53, 29–33. [Google Scholar] [CrossRef]
- Pilkey, W.D.; Pilkey, D.F. Peterson’s Stress Concentration Factors, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2020; ISBN 9781119532514. [Google Scholar]
Property | , | Maximum Elongation in the Central Part, % | |||
---|---|---|---|---|---|
Value | 472 | 318 | 200.17 | 7.85 | 42 |
Specimen Number | Degree of Service Life | Maximum Stress, | Stress Amplitude, | Mean Stress, | Fracture Stress, | Loading Rate, | |
---|---|---|---|---|---|---|---|
Specimen I | Without pre-fatigue | - | - | - | 478 | 0.152 | 0.005873 |
Specimen VI | 0.3 | 486 | 229 | 237 | 493 | 0.5 | 0.020355 |
Specimen VII | 0.5 | 466 | 240 | 246 | 493 | 0.16 | 0.006613 |
Specimen VIII | 0.7 | 505.5 | 249 | 257 | 471 | 0.5 | 0.02069 |
Specimen Number | , | Calculated Number of Cycles to Fracture | Actual Fatigue Life | Preliminary Work Cycles | |||
Specimen I | 0.0386 | 146,477 | |||||
Specimen VI | 0.0407 | 145,143 | 121,936 | 72,412 | 65,881 | 19,765 | |
Specimen VII | 0.0413 | 150,904 | 23,954 | 19,582 | 9791 | ||
Specimen VIII | 0.0414 | 148,139 | 12,044 | 5081 | 3004 |
Material | Specimen Part of Fatigue Life | ||||||
---|---|---|---|---|---|---|---|
Steel 20 [52] | Without pre-fatigue | 0.00122 | 0.00464 | 11.29 | 108,456 | 390 | 245,639 |
0.3 | 0.00095 | 0.00543 | 13.21 | 110,004 | 368,865 | ||
0.5 | 0.00094 | 0.00439 | 10.69 | 108,793 | 302,112 | ||
0.7 | 0.00085 | 0.00399 | 9.71 | 108,544 | 303,987 | ||
Steel 20 [55] | Without pre-fatigue | 0.001063 | 0.00775 | 18.873 | 111,833 | 330 | 552,452 |
0.3 | 0.00292 | 0.02126 | 51.765 | 125,029 | 2,393,607 | ||
0.5 | 0.00084 | 0.00612 | 14.913 | 110,791 | 547,412 | ||
0.7 | 0.00198 | 0.01442 | 35.121 | 118,203 | 677,940 | ||
15Kh2GMF [53] | Without pre-fatigue | 0.00091 | 0.00136 | 3.304 | 107,182 | 800 | 23,230,799 |
0.7 | 0.00099 | 0.00153 | 3.726 | 107,431 | 23,784,674 | ||
Tensile specimen | 0.00115 | 0.001556 | 3.789 | 107,047 | 20,064,926 | ||
12Kh18N9TL [56] | Without pre-fatigue | 0.000382 | 0.002085 | 5.077 | 108,796 | 460 | 480,758 |
0.3 | 0.000308 | 0.001682 | 4.097 | 108,720 | 503,830 | ||
0.5 | 0.00028 | 0.001528 | 3.721 | 108,725 | 516,559 | ||
0.7 | 0.000356 | 0.001939 | 4.723 | 108,756 | 487,706 | ||
12Kh18N9TL (after operation) [56] | Without pre-fatigue | 0.00023 | 0.001061 | 2.583 | 108,487 | 460 | 483,764 |
0.3 | 0.000271 | 0.001249 | 3.041 | 108,574 | 499,030 | ||
0.5 | 0.000181 | 0.000832 | 2.026 | 108,894 | 562,524 | ||
0.7 | 0.000351 | 0.001617 | 3.938 | 108,546 | 473,814 |
Specimen Number | Weibull | Log-Normal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VI | 859 | 916 | 3 | 80 | 0 | 1.85 | 5.48 | 0.17 | 4.7 | 1.55 | 7.69 |
VII | 891 | 965 | 3 | 100 | 0 | 1.93 | 10.04 | 0.22 | 4.7 | 1.52 | 18.09 |
VIII | 757 | 799 | 3 | 95 | 0 | 2.06 | 4.26 | 0.135 | 4.7 | 1.58 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perveitalov, O.G.; Nosov, V.V. An Approach to Evaluate the Fatigue Life of the Material of Liquefied Gases’ Vessels Based on the Time Dependence of Acoustic Emission Parameters: Part 1. Metals 2025, 15, 148. https://doi.org/10.3390/met15020148
Perveitalov OG, Nosov VV. An Approach to Evaluate the Fatigue Life of the Material of Liquefied Gases’ Vessels Based on the Time Dependence of Acoustic Emission Parameters: Part 1. Metals. 2025; 15(2):148. https://doi.org/10.3390/met15020148
Chicago/Turabian StylePerveitalov, Oleg G., and Viktor V. Nosov. 2025. "An Approach to Evaluate the Fatigue Life of the Material of Liquefied Gases’ Vessels Based on the Time Dependence of Acoustic Emission Parameters: Part 1" Metals 15, no. 2: 148. https://doi.org/10.3390/met15020148
APA StylePerveitalov, O. G., & Nosov, V. V. (2025). An Approach to Evaluate the Fatigue Life of the Material of Liquefied Gases’ Vessels Based on the Time Dependence of Acoustic Emission Parameters: Part 1. Metals, 15(2), 148. https://doi.org/10.3390/met15020148