Numerical Simulations of Stress Intensity Factors and Fatigue Life in L-Shaped Sheet Profiles
<p>Exemplary models of the angled sheet with applied boundary conditions. (<b>a</b>) Schematic for α = 90° and r = 0 (L-profile) with a front view and (<b>b</b>) top view. (<b>c</b>) A corner region with geometric parameters and crack-front descriptors (<b>d</b>) Three-dimensional geometry with an isometric view for t = 4 mm; α = 40°; and r = 20.</p> "> Figure 2
<p>Exemplary meshed geometries for special case of α = 90°. (<b>a</b>) Variant V1_WPREPOST from r = 0 mm (front) with detailed view on artificial crack to r = 50 mm (back). (<b>b</b>) Variant V2_WTOTAL from r = 0 mm (front) to r = 50 mm (back).</p> "> Figure 3
<p>Meshed model and solution process. (<b>a</b>) Initial mesh for t = 4 mm; α = 40°; and r = 20 mm. (<b>b</b>) Schematic workflow. The model section shown is limited to the area of interest around the crack path subject to adaptive remeshing during solving.</p> "> Figure 4
<p>Crack-front evolution for two L-shaped geometries sampled from V1_WPREPOST with (<b>a</b>) r = 0 mm and (<b>b</b>) r = 10°mm. The letters A, B and C indicate prominent points, which are marked in Figure 6d for reference. Markers indicate crack-front corner nodes. Black lines between the markers indicate the calculated crack-front geometry of each separate load step.</p> "> Figure 5
<p>Maximum deviation occurring from straight crack-front geometry in parameter study (V1_WPrePost) indicated by normalized crack-front parameter for (<b>a</b>) t = 2 mm; (<b>b</b>) t = 4 mm; and (<b>c</b>) t = 8 mm.</p> "> Figure 6
<p>An exemplary SIF KI over the crack length, a, for the model variant V1_WPrePost. (<b>a</b>) The bending angle, (<b>b</b>) bending radius and (<b>c</b>) sheet thickness are comparatively contrasted. Dotted lines mark the crack length increment assigned to the corner region. (<b>d</b>–<b>f</b>) show exemplary curves for t = 4 mm and α = 90° and V1_WPrePost to V3_BBox, respectively. The letters A, B and C indicate prominent points, which are marked in <a href="#metals-14-01463-f004" class="html-fig">Figure 4</a>a for reference. Dashed lines indicate the SIF for straightened sheets of equivalent widths as a reference.</p> "> Figure 7
<p>Normalized stress intensity factors for the crack length, a, for the model variant V1_WPrePost. Variation in the (<b>a</b>) bending radius and (<b>b</b>) bending angle. The normalization was carried out against the stress intensity factors (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi mathvariant="bold-italic">K</mi> </mrow> <mrow> <mi mathvariant="bold-italic">I</mi> </mrow> <mrow> <mi mathvariant="bold-italic">S</mi> </mrow> </msubsup> </mrow> </semantics></math>) solution of a straight sheet of the same total width, W.</p> "> Figure 8
<p>Effect of bending radius on residual lifecycles for models (<b>a</b>) V1_WPrePost, (<b>b</b>) V2_WTotal and (<b>c</b>) V3_BBox with α = 90° and σ_0 = 25 MPa. White dots highlight accumulated cycles in corner region.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Crack Front
3.2. Sheet Geometry and Stress Intensity Factors
4. Discussion
4.1. Normalized Stress Intensity Factors and Sheet Sections
4.2. Estimated Fatigue Life
5. Conclusions
- Negligible effect of sheet thickness on SIF outside radius: this study revealed that variations in the sheet thickness had a minimal impact on the SIFs outside the bending radius region.
- Bending angle and radius were highly relevant: both the bending angle and bending radius significantly influenced the SIFs and crack growth behaviour.
- Remaining service life of L-type profile less than straight plate: the curved L-shaped plates exhibited a shorter fatigue life compared to the straight plates due to increased crack-front loads at small crack lengths starting from one of the legs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Findlay, S.; Harrison, N. Why aircraft fail. Mater. Today 2002, 5, 18–25. [Google Scholar] [CrossRef]
- Afonso, F.; Sohst, M.; Diogo, C.M.; Rodrigues, S.S.; Ferreira, A.; Ribeiro, I.; Marques, R.; Rego, F.F.; Sohouli, A.; Portugal-Pereira, J.; et al. Strategies towards a more sustainable aviation: A systematic review. Prog. Aerosp. Sci. 2023, 137, 100878. [Google Scholar] [CrossRef]
- Kaspar, J.; Vielhaber, M. Sustainable Lightweight Design—Relevance and Impact on the Product Development & Lifecycle Process. Procedia Manuf. 2017, 8, 409–416. [Google Scholar] [CrossRef]
- Ingarao, G.; Zaheer, O.; Fratini, L. Manufacturing processes as material and energy efficiency strategies enablers: The case of Single Point Incremental Forming to reshape end-of-life metal components. CIRP J. Manuf. Sci. Technol. 2021, 32, 145–153. [Google Scholar] [CrossRef]
- Lihui, L.; Kangning, L.; Cai, G.; Yang, X.; Guo, C.; Bu, G. A critical review on special forming processes and associated research for lightweight components based on sheet and tube materials. Manuf. Rev. 2014, 1, 9. [Google Scholar] [CrossRef]
- Madhusudhana, H.K.; Gaitonde, V.N.; Satish Jangali, G. A Review on Lightweight Metal Component Forming and its Application. J. Phys. Conf. Ser. 2021, 2070, 12246. [Google Scholar] [CrossRef]
- Richter, K.; Müller, R.; Kunke, A.; Kräusel, V.; Landgrebe, D. Manufacturing of Long Products Made of Innovative Lightweight Materials. Acta Metall. Sin. (Engl. Lett.) 2015, 28, 1496–1502. [Google Scholar] [CrossRef]
- Schijve, J. Fatigue damage in aircraft structures, not wanted, but tolerated? Int. J. Fatigue 2009, 31, 998–1011. [Google Scholar] [CrossRef]
- Bush, R.W.; Bucci, R.J.; Magnusen, P.E.; Kuhlman, G.W. Fatigue Crack Growth Rate Measurements in Aluminum Alloy Forgings: Effects of Residual Stress and Grain Flow. In Fracture Mechanics: Twenty-Third Symposium; Chona, R., Ed.; ASTM International: West Conshohocken, PA, USA, 1993; ISBN 0-8031-1867-8. [Google Scholar]
- Gordon, J.V.; Haden, C.V.; Nied, H.F.; Vinci, R.P.; Harlow, D.G. Fatigue crack growth anisotropy, texture and residual stress in austenitic steel made by wire and arc additive manufacturing. Mater. Sci. Eng. A 2018, 724, 431–438. [Google Scholar] [CrossRef]
- Jimenez-Martinez, M. Manufacturing effects on fatigue strength. Eng. Fail. Anal. 2020, 108, 104339. [Google Scholar] [CrossRef]
- Smudde, C.M.; San Marchi, C.C.; Hill, M.R.; Gibeling, J.C. The Influence of Residual Stress on Fatigue Crack Growth Rates in Stainless Steel Processed by Different Additive Manufacturing Methods. J. Mater. Eng. Perform. 2024, 33, 7703–7713. [Google Scholar] [CrossRef]
- de Florio, F. Airworthiness: An Introduction to Aircraft Certification and Operations, 3rd ed.; Elsevier Science: St. Louis, MO, USA, 2016; ISBN 9780081009406. [Google Scholar]
- Chabod, A.; Baron, N. Digital Twin For Fatigue Analysis. Fatigue Aircr. Struct. 2020, 2020, 47–56. [Google Scholar] [CrossRef]
- Cianetti, F.; Morettini, G.; Palmieri, M.; Zucca, G. Virtual qualification of aircraft parts: Test simulation or acceptable evidence? Procedia Struct. Integr. 2019, 24, 526–540. [Google Scholar] [CrossRef]
- Gomez-Escalonilla, J.; Garijo, D.; Valencia, O.; Rivero, I. Development of Efficient High-Fidelity Solutions for Virtual Fatigue Testing. In ICAF 2019—Structural Integrity in the Age of Additive Manufacturing; Niepokolczycki, A., Komorowski, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 187–200. ISBN 978-3-030-21502-6. [Google Scholar]
- Ostergaard, M.G.; Ibbotson, A.R.; Le Roux, O.; Prior, A.M. Virtual testing of aircraft structures. CEAS Aeronaut. J. 2011, 1, 83–103. [Google Scholar] [CrossRef]
- Ayhan, A.O.; Yaren, M.F. Effects of microstructural through-thickness non-uniformity and crack size on fatigue crack propagation and fracture of rolled Al-7075 alloy. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2071–2084. [Google Scholar] [CrossRef]
- Kalina, M.; Schöne, V.; Spak, B.; Paysan, F.; Breitbarth, E.; Kästner, M. Fatigue crack growth in anisotropic aluminium sheets—Phase-field modelling and experimental validation. Int. J. Fatigue 2023, 176, 107874. [Google Scholar] [CrossRef]
- Strohmann, T.; Breitbarth, E.; Besel, M.; Zaunschirm, S.; Witulski, T.; Requena, G. Damage Mechanisms and Anisotropy of an AA7010-T7452 Open-Die Forged Alloy: Fatigue Crack Propagation. Materials 2022, 15, 3771. [Google Scholar] [CrossRef] [PubMed]
- Schijve, J. The effect of pre-strain on fatigue crack growth and crack closure. Eng. Fract. Mech. 1976, 8, 575–581. [Google Scholar] [CrossRef]
- Fukui, Y.; Nunomura, S. Effect of Cold Work on Fatigue Crack Propagation Rate Regarding to the Accumulated Plastic Strain Rate. J. Soc. Mater. Sci. 1979, 28, 491–496. [Google Scholar] [CrossRef]
- Al-Rubaie, K.S.; Del Grande, M.A.; Travessa, D.N.; Cardoso, K.R. Effect of pre-strain on the fatigue life of 7050-T7451 aluminium alloy. Mater. Sci. Eng. A 2007, 464, 141–150. [Google Scholar] [CrossRef]
- Froustey, C.; Lataillade, J. Influence of large pre-straining of aluminium alloys on their residual fatigue resistance. Int. J. Fatigue 2008, 30, 908–916. [Google Scholar] [CrossRef]
- Alrubaie, K.; Barroso, E.; Godefroid, L. Fatigue crack growth analysis of pre-strained 7475–T7351 aluminum alloy. Int. J. Fatigue 2006, 28, 934–942. [Google Scholar] [CrossRef]
- Burlat, M.; Julien, D.; Lévesque, M.; Bui-Quoc, T.; Bernard, M. Effect of local cold working on the fatigue life of 7475-T7351 aluminium alloy hole specimens. Eng. Fract. Mech. 2008, 75, 2042–2061. [Google Scholar] [CrossRef]
- Dematos, P.; Mcevily, A.; Moreira, P.; Decastro, P. Analysis of the effect of cold-working of rivet holes on the fatigue life of an aluminum alloy. Int. J. Fatigue 2007, 29, 575–586. [Google Scholar] [CrossRef]
- Luan, S.; Zhang, C.; Zhang, X. Effect of residual stress redistribution on fatigue crack growth pertinent to crack closure and applied load. Mater. Des. 2023, 233, 112282. [Google Scholar] [CrossRef]
- Tekkaya, A.E.; Bouchard, P.-O.; Bruschi, S.; Tasan, C.C. Damage in metal forming. CIRP Ann. 2020, 69, 600–623. [Google Scholar] [CrossRef]
- Hirt, G.; Tekkaya, A.E.; Clausmeyer, T.; Lohmar, J. Potential and status of damage controlled forming processes. Prod. Eng. 2020, 14, 1–4. [Google Scholar] [CrossRef]
- Cameron, B.C.; Tasan, C.C. Towards physical insights on microstructural damage nucleation from data analytics. Comput. Mater. Sci. 2022, 202, 110627. [Google Scholar] [CrossRef]
- Besson, J. Continuum Models of Ductile Fracture: A Review. Int. J. Damage Mech. 2010, 19, 3–52. [Google Scholar] [CrossRef]
- Mokhtarishirazabad, M.; Lopez-Crespo, P.; Moreno, B.; Lopez-Moreno, A.; Zanganeh, M. Optical and analytical investigation of overloads in biaxial fatigue cracks. Int. J. Fatigue 2017, 100, 583–590. [Google Scholar] [CrossRef]
- Vormwald, M.; Hos, Y.; Freire, J.L.; Gonzáles, G.L.; Díaz, J.G. Crack tip displacement fields measured by digital image correlation for evaluating variable mode-mixity during fatigue crack growth. Int. J. Fatigue 2018, 115, 53–66. [Google Scholar] [CrossRef]
- Camacho-Reyes, A.; Vasco-Olmo, J.M.; James, M.N.; Diaz, F.A. Characterization of non-planar crack tip displacement fields using a differential geometry approach in combination with 3D digital image correlation. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 1521–1536. [Google Scholar] [CrossRef]
- Sipos, A.A.; Cao, S. About Measuring the Stress Intensity Factor of Cracks in Curved, Brittle Shells. Frat. Integrità Strutt. 2024, 18, 1–17. [Google Scholar] [CrossRef]
- Ricci, P.; Viola, E. Stress intensity factors for cracked T-sections and dynamic behaviour of T-beams. Eng. Fract. Mech. 2006, 73, 91–111. [Google Scholar] [CrossRef]
- Cortínez, V.H.; Dotti, F.E. Mode I stress intensity factor for cracked thin-walled open beams. Eng. Fract. Mech. 2013, 110, 249–257. [Google Scholar] [CrossRef]
- Dunn, M.L.; Suwito, W.; Hunter, B. Stress intensity factors for cracked I-beams. Eng. Fract. Mech. 1997, 57, 609–615. [Google Scholar] [CrossRef]
- Evans, R.; Clarke, A.; Gravina, R.; Heller, M.; Stewart, R. Improved stress intensity factors for selected configurations in cracked plates. Eng. Fract. Mech. 2014, 127, 296–312. [Google Scholar] [CrossRef]
- Müller, W.H.; Herrmann, G.; Gao, H. Elementary strength theory of cracked beams. Theor. Appl. Fract. Mech. 1993, 18, 163–177. [Google Scholar] [CrossRef]
- Sobotka, J.C.; McClung, R.C. Stress-intensity factors solutions for straight through cracks in C-sections. Eng. Fract. Mech. 2022, 271, 108593. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Huang, X.; Dai, Y. Crack arrest behavior of central-cracked stiffened plates under uniform tensions. Int. J. Mech. Sci. 2017, 133, 704–719. [Google Scholar] [CrossRef]
- Llopart, L.; Kurz, B.; Wellhausen, C.; Anglada, M.; Drechsler, K.; Wolf, K. Investigation of fatigue crack growth and crack turning on integral stiffened structures under mode I loading. Eng. Fract. Mech. 2006, 73, 2139–2152. [Google Scholar] [CrossRef]
- Labeas, G.; Diamantakos, I.; Kermanidis, T. Assessing the effect of residual stresses on the fatigue behavior of integrally stiffened structures. Theor. Appl. Fract. Mech. 2009, 51, 95–101. [Google Scholar] [CrossRef]
- Kaszynski, A. pyansys: Python Interface to MAPDL and Associated Binary and ASCII Files; Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
- Alshoaibi, A.M. Numerical Modeling of Crack Growth Under Mixed-Mode Loading. Appl. Sci. 2021, 11, 2975. [Google Scholar] [CrossRef]
- Chen, F.H.K.; Shield, R.T. Conservation laws in elasticity of the J-integral type. J. Appl. Math. Phys. (ZAMP) 1977, 28, 1–22. [Google Scholar] [CrossRef]
- Rice, J.R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968, 35, 379–386. [Google Scholar] [CrossRef]
- Stern, M.; Becker, E.B.; Dunham, R.S. A contour integral computation of mixed-mode stress intensity factors. Int. J. Fract. 1976, 12, 359–368. [Google Scholar] [CrossRef]
- Yau, J.F.; Wang, S.S.; Corten, H.T. A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity. J. Appl. Mech. 1980, 47, 335–341. [Google Scholar] [CrossRef]
- Erdogan, F.; Sih, G.C. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. J. Basic Eng. 1963, 85, 519–525. [Google Scholar] [CrossRef]
- Ferreira, N.; Antunes, P.V.; Ferreira, J.A.M.; Costa, J.D.M.; Capela, C. Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens. Appl. Sci. 2018, 8, 375. [Google Scholar] [CrossRef]
- Sinclair, G.; Pieri, R. On obtaining fatigue crack growth parameters from the literature. Int. J. Fatigue 1990, 12, 57–62. [Google Scholar] [CrossRef]
- Prasad, N.E.; Wanhill, R.J.H. (Eds.) Aerospace Materials and Material Technologies; Springer: Singapore, 2017; ISBN 978-981-10-2133-6. [Google Scholar]
- Zhou, B.; Liu, B.; Zhang, S. The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review. Metals 2021, 11, 718. [Google Scholar] [CrossRef]
- Boni, L.; Fanteria, D.; Lanciotti, A.; Lazzeri, L.; Palmiero, F.; Sollo, A. Crack propagation in flat panels stiffened by bonded pads. Int. J. Fatigue 2014, 68, 1–9. [Google Scholar] [CrossRef]
Parameter | Symbol | V1_WPrePost | V2_WTotal | V3_BBox |
---|---|---|---|---|
Sheet thickness | t | [2,4,8] mm | 4 mm | |
Bending angle | α | [5,10,20,40,60,90,120]° + straight sheet (α = 0 °) | 90° + straight sheet (α = 0 °) | |
Bending radius | r | [5,10,20,30,50] mm + L-profile (r = 0 mm) |
Material | Symbol | Value |
---|---|---|
Young‘s modulus | E | 71 GPa |
Poisson ratio | v | 0.33 |
Stress ratio | R | 0 |
Paris–Erdogan coefficient | C | |
Paris–Erdogan exponent | m | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dömling, F.; Paysan, F.; Breitbarth, E. Numerical Simulations of Stress Intensity Factors and Fatigue Life in L-Shaped Sheet Profiles. Metals 2024, 14, 1463. https://doi.org/10.3390/met14121463
Dömling F, Paysan F, Breitbarth E. Numerical Simulations of Stress Intensity Factors and Fatigue Life in L-Shaped Sheet Profiles. Metals. 2024; 14(12):1463. https://doi.org/10.3390/met14121463
Chicago/Turabian StyleDömling, Ferdinand, Florian Paysan, and Eric Breitbarth. 2024. "Numerical Simulations of Stress Intensity Factors and Fatigue Life in L-Shaped Sheet Profiles" Metals 14, no. 12: 1463. https://doi.org/10.3390/met14121463
APA StyleDömling, F., Paysan, F., & Breitbarth, E. (2024). Numerical Simulations of Stress Intensity Factors and Fatigue Life in L-Shaped Sheet Profiles. Metals, 14(12), 1463. https://doi.org/10.3390/met14121463