Effect of Heat Treatment on the Corrosion Behavior of Weld-Deposited Chromium Carbide-Based Hardfacing Alloys
<p>As-deposited Surface of Alloy H0 for (<b>a</b>) 3000× magnification and (<b>b</b>) 6000× magnification, showing the 1. primary carbide, 2. eutectic austenite, and 3. eutectic carbides.</p> "> Figure 2
<p>Surface of Alloy H650 for (<b>a</b>) 3000× magnification (<b>b</b>) 6000× magnification.</p> "> Figure 3
<p>As-deposited Surface of Alloy H950 for (<b>a</b>) 3000× magnification and (<b>b</b>) 6000× magnification.</p> "> Figure 4
<p>Hardness values for carbides and eutectic carbide/matrix mix.</p> "> Figure 5
<p>XRD for H0, H650, and H950 Cu radiation.</p> "> Figure 6
<p>Potentiodynamic curves for Samples H0, H650, and H950.</p> "> Figure 7
<p>Potentiostatic schematic points as illustrated for Sample H0.</p> "> Figure 8
<p>SEM imagery for Sample H0 at (<b>a</b>) −330 mV, (<b>b</b>) 800 mV, and (<b>c</b>) 1100 mV.</p> "> Figure 9
<p>SEM Imagery for Sample H650 at (<b>a</b>) −330 mV, (<b>b</b>) 800 mV, and (<b>c</b>) 1100 mV.</p> "> Figure 10
<p>SEM imagery for Sample H950 at (<b>a</b>) −330 mV, (<b>b</b>) 800 mV, and (<b>c</b>) 1100 mV.</p> "> Figure 11
<p>Nyquist plot for Samples H0, H650, and H950.</p> "> Figure 12
<p>Bode plot with respect to the phase angle.</p> "> Figure 13
<p>Bode plot with respect to the magnitude.</p> "> Figure 14
<p>Schematic of the expected EIS coating model.</p> ">
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. Surface Characterisation and Compositional Analysis
2.3. Electrochemical Testing
3. Results
3.1. Microstructural Characterisation and Hardness
3.2. EDS and XRD Results
3.3. Potentiodynamic and Potentiostatic Results
3.4. Electrochemical Impedance Spectroscopy Results
4. Discussion
4.1. Effect of Heat Treatment on Microstructure
4.2. Effect of Heat Treatment on Corrosion
5. Conclusions
- Heat treatment led to the transformation of austenite to ferrite;
- Heat treatment at both 650 °C and 950 °C led to carbide precipitation within the matrix, with 950 °C also leading to the formation of small flecks;
- Galvanic corrosion was found to occur with preferential corrosion of the matrix with respect to the carbides;
- Heat treatment led to improved corrosion resistance compared to the as-deposited sample, with heat treatment at 950 °C displaying the best performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AS 2576-1982; Welding Consumables for Build-Up and Wear Resistance—Classification System. The Standards Association of Australia: Sydney, Australia, 2023. Available online: https://infostore.saiglobal.com/ (accessed on 31 July 2024).
- Singh, R. Applied Welding Engineering: Processes, Codes, and Standards; Butterworth-Heinemann: Oxford, UK, 2020. [Google Scholar]
- Tabrett, C.P.; Sare, I.R.; Ghomashchi, M.R. Microstructure-property relationships in high chromium white iron alloys. Int. Mater. Rev. 1996, 41, 59–82. [Google Scholar] [CrossRef]
- Ngqase, M.; Pan, X. An overview on types of white cast irons and high chromium white cast irons. J. Phys. Conf. Ser. 2020, 1495, 012023. [Google Scholar] [CrossRef]
- Nelson, G. The influence of Microstructure on the Corrosion and Wear Mechanisms of High Chromium White Irons in Highly Caustic Solutions. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, January 2010. [Google Scholar]
- Jain, A.-S.; Chang, H.; Tang, X.; Hinckley, B.; Zhang, M.-X. Refinement of primary carbides in hypereutectic high-chromium cast irons: A review. J. Mater. Sci. 2021, 56, 999–1038. [Google Scholar] [CrossRef]
- Tan, C.; Krishnan, K.; Elumalai, N.K. Corrosion Behaviour of Heat-Treated Cold Spray Nickel Chromium/Chromium Carbides. Metals 2024, 14, 1153. [Google Scholar] [CrossRef]
- Karantzalis, A.; Lekatou, A.; Mavros, H. Mavros, Microstructural modifications of as-cast high-chromium white iron by heat treatment. J. Mater. Eng. Perform. 2009, 18, 174–181. [Google Scholar] [CrossRef]
- Tabrett, C.; Sare, I. Effect of high temperature and sub-ambient treatments on the matrix structure and abrasion resistance of a high-chromium white iron. Scr. Mater. 1998, 38, 1747–1753. [Google Scholar] [CrossRef]
- Wiengmoon, A.; Pearce, J.T.H.; Chairuangsri, T. Relationship between microstructure, hardness and corrosion resistance in 20 wt.% Cr, 27 wt.% Cr and 36 wt.% Cr high chromium cast irons. Mater. Chem. Phys. 2011, 125, 739–748. [Google Scholar] [CrossRef]
- Duppin, P.; Saverna, J.; Schissler, J. A structural study of chromium white cast iron. AFS Trans. 1982, 90, 711–718. [Google Scholar]
- Chen, Z.; Guo, Q.; Fu, H.; Zhi, X. Effect of heat treatment on microstructure and properties of modified hypereutectic high chromium cast iron. Mater. Test. 2022, 64, 33–54. [Google Scholar] [CrossRef]
- Khamroev, N.; Egamberdiev, I.; Ashurov, K.; Asatov, S.; Khamidov, B. Exploring the influence of the casting process, structural components and heat treatment on the mechanical properties of high-chromium cast irons: A review. In Proceedings of the International Conference on Modern Problems of Applied Science and Engineering: MPASE2024, Samarkand, Uzbekistan, 2–3 May 2024; AIP Publishing: New York, NY, USA, 2024. [Google Scholar]
- Liu, Q.; Hedström, P.; Zhang, H.; Wang, Q.; Jönsson, P.G.; Nakajima, K. Effect of heat treatment on microstructure and mechanical properties of Ti-alloyed hypereutectic high chromium cast iron. ISIJ Int. 2012, 52, 2288–2294. [Google Scholar] [CrossRef]
- Maratray, F.; Poulalion, A.; Fillit, R.; Bruyas, H. The role of vanadium in high chromium white irons. In Proceedings of the Colloque Internationale sur les Matériaux Résistants à L’usure, Saint-Etienne, QC, Canada, 23–25 November 1983. [Google Scholar]
- Guitar, M.A.; Nayak, U.P.; Schneider, L.C.; Schmauch, J.; Mücklich, F. Analysis of the carbide precipitation and microstructural evolution in HCCI as a function of the heating rate and destabilization temperature. Sci. Rep. 2023, 13, 9549. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, K.; Shimizu, K.; Purba, R.H.; Momma, Y. Effect of carbide refinement on high temperature erosive wear behavior of high chromium white cast iron with different titanium and carbon additions. Mater. Today Commun. 2024, 39, 109276. [Google Scholar] [CrossRef]
- LI, Z.; Zhao, Y.; Li, Y.; Chen, H.; Tang, Z.; Yang, Z.; Luo, Y.; Wu, C.; Liao, Y.; Wu, J. Effect of Quenched-Tempered Heat Treatment on the Wear Resistance Mechanism of Zta Ceramic Particles Reinforced Hcci-Based Architecture Composite. Available at SSRN 4264085. Available online: https://ssrn.com/abstract=4264085 (accessed on 31 July 2024).
- Sarac, M.F.; Dikici, B. Effect of heat treatment on wear and corrosion behavior of high chromium white cast iron. Mater. Test. 2019, 61, 659–666. [Google Scholar] [CrossRef]
- Poolthong, N.; Nomura, H.; Takita, M. Effect of heat treatment on microstructure and properties of semi-solid chromium cast iron. Mater. Trans. 2004, 45, 880–887. [Google Scholar] [CrossRef]
- Fontana, M.G. Corrosion Engineering, 3rd ed.; McGraw-Hill: New York, NY, USA, 1986. [Google Scholar]
- HyundaiWelding. Supershield CrC. 2024. Available online: https://www.hyundaiwelding.com/data/file/consumables/catalog/Supershield%20CrC_en_eng.pdf (accessed on 31 July 2024).
- ASTM. D1141-98; Standard Practice for the Preparation of Substitute Ocean Water. ASTM: West Conshohocken, PA, USA, 1998. Available online: https://www.astm.org/d1141-98r21.html (accessed on 31 July 2024).
- Svensson, L.-E.; Gretoft, B.; Ulander, B.; Bhadeshia, H.K.D.H. Fe-Cr-C hardfacing alloys for high-temperature applications. J. Mater. Sci. 1986, 21, 1015–1019. [Google Scholar] [CrossRef]
- Atamert, S.; Bhadeshia, H. Microstructure and stability of FeCrC hardfacing alloys. Mater. Sci. Eng. A 1990, 130, 101–111. [Google Scholar] [CrossRef]
- Karantzalis, A.; Lekatou, A.; Kapoglou, A.; Mavros, H.; Dracopoulos, V. Phase transformations and microstructural observations during subcritical heat treatments of a high-chromium cast iron. J. Mater. Eng. Perform. 2012, 21, 1030–1039. [Google Scholar] [CrossRef]
- Liu, W.; Pu, Y.; Liao, H.; Lin, Y.; He, W. Corrosion and wear behavior of PEO coatings on D16T aluminum alloy with different concentrations of graphene. Coatings 2020, 10, 249. [Google Scholar] [CrossRef]
- Woo, W.; Em, V.; Kim, E.-Y.; Han, S.; Han, Y.; Choi, S.-H. Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 2012, 60, 6972–6981. [Google Scholar] [CrossRef]
- Marimuthu, V.; Kannoorpatti, K. Corrosion Behaviour of High Chromium White Iron Hardfacing Alloys in Acidic and Neutral Solutions. J. Bio Tribo Corros. 2016, 2, 29. [Google Scholar] [CrossRef]
- Marimuthu, V.; Gore, P.; Raja, V.S.; Kannoorpatti, K. Analysis of Film Formation in High Chromium White Iron Hardfacing Alloys in Alkaline Solution Using EIS and SIMS. J. Bio Tribo Corros. 2018, 4, 41. [Google Scholar] [CrossRef]
- Salasi, M.; Stachowiak, G. Three-body tribocorrosion of high-chromium cast irons in neutral and alkaline environments. Wear 2011, 271, 1385–1396. [Google Scholar] [CrossRef]
- Marimuthu, V.; Dulac, I.; Kannoorpatti, K. Significance of Pourbaix Diagrams to Study the Corrosion Behaviour of Hardfacing Alloys Based on Chromium Carbides at 298 K (25 °C). J. Bio Tribo Corros. 2016, 2, 17. [Google Scholar] [CrossRef]
Cr (wt%) | C (wt%) | Mn (wt%) | Si (wt%) | Fe (wt%) |
---|---|---|---|---|
27 | 4.8 | 1.6 | 0.4 | Balanced |
Name | Heat Treatment Temperature |
---|---|
Sample H0 | (No heat treatment) |
Sample H650 | 650 °C |
Sample H950 | 950 °C |
Compound | Concentration (g/L) |
---|---|
NaCl | 24.53 |
MgCl2 | 5.20 |
Na2SO4 | 4.09 |
CaCl2 | 1.16 |
KCl | 0.695 |
NaHCO3 | 0.201 |
KBr | 0.101 |
H3BO3 | 0.027 |
SrCl2 | 0.025 |
NaF | 0.03 |
Alloy | Average Carbide Size (µm2) | Max Carbide Found (µm2) | Total No. of Carbides |
---|---|---|---|
H0 | 2.56 | 207 | 674 |
H650 | 1.49 | 167 | 1012 |
H950 | 1.06 | 160 | 1444 |
Area | Alloy | Hardness (HV0.05) | |||
---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Average | ||
Carbide | H0 | 1622 | 1415 | 1567 | 1536 |
H650 | 1258 | 1389 | 1400 | 1349 | |
H950 | 2226 | 1654 | 1944 | 1941 | |
Eutectic Carbide/Matrix | H0 | 1009 | 1058 | 1023 | 1030 |
H650 | 687 | 672 | 761 | 707 | |
H950 | 869 | 963 | 1016 | 949 |
Alloy | Carbon (wt%) | Oxygen (wt%) | Silicon (wt%) | Chromium (wt%) | Iron (wt%) |
---|---|---|---|---|---|
H0 | 7.6 | 1.1 | 0.9 | 14.3 | 76.1 |
H650 | 6.89 | 0.1 | 0.9 | 12.9 | 79.2 |
H950 | 5.31 | 0.1 | 0.6 | 14.2 | 79.8 |
Alloy | Carbon (wt%) | Oxygen (wt%) | Chromium (wt%) | Manganese (wt%) | Iron (wt%) |
---|---|---|---|---|---|
H0 | 9.2 | 1.2 | 45.4 | 2.4 | 41.8 |
H650 | 10.5 | 1.10 | 43.6 | 2.20 | 42.5 |
H950 | 8.19 | 1.40 | 43.0 | 1.90 | 45.6 |
Alloy | Carbon (wt%) | Oxygen (wt%) | Chromium (wt%) | Manganese (wt%) | Iron (wt%) |
---|---|---|---|---|---|
H0 | 9.92 | 0.9 | 34 | 2.1 | 53.1 |
H650 | 9.41 | 0.9 | 35.2 | 2.3 | 52.2 |
H950 | 11.5 | 1.3 | 37 | 2.6 | 47.6 |
Alloy | Ecorr (mV/cm2) | Icorr (µA/cm2) |
---|---|---|
Sample H0 | −545 | 11.5 |
Sample H650 | −528 | 3.32 |
Sample H950 | −492 | 3.24 |
Etched Point | Etched Voltage (mV) |
---|---|
Point A | −330 |
Point B | 800 |
Point C | 1100 |
Alloy | Pot. Point (mV) | Element (wt%) | ||||||
---|---|---|---|---|---|---|---|---|
Carbon | Oxygen | Silicon | Chromium | Iron | Chlorine | Sodium | ||
H0 | −330 | 2.3 | 0.9 | 1 | 12.3 | 82.7 | 0.8 | - |
800 | 4.2 | 18.5 | 1.3 | 16.8 | 49.5 | 5 | 4.6 | |
H650 | −330 | 3.7 | 0.4 | 0.5 | 12.3 | 82.8 | 0.3 | - |
800 | 3.7 | 12.6 | 1 | 17.9 | 53.1 | 7.7 | 4 | |
H950 | −330 | 4.8 | 0.4 | 0.6 | 11.5 | 87.1 | 0.4 | - |
800 | 4.4 | 15.9 | 2.3 | 18.3 | 49.5 | 7.5 | 2.108 |
Alloy | Pot. Point (mV) | Element (wt%) | ||||
---|---|---|---|---|---|---|
Carbon | Oxygen | Chromium | Iron | Sodium | ||
H0 | −330 | 5.3 | 0.1 | 48.1 | 45.8 | - |
800 | 4.8 | 2.4 | 47.6 | 44 | 1.2 | |
1100 | 4.5 | 1.3 | 45.3 | 45.6 | 3.3 | |
H650 | −330 | 4.6 | 0.8 | 45.4 | 48.5 | - |
800 | 4.3 | 4.7 | 45.8 | 44.2 | 1.0 | |
1100 | 3.7 | 1.2 | 48.1 | 44.5 | 2.5 | |
H950 | −330 | 6.1 | 0.9 | 46.9 | 46.1 | - |
800 | 4.1 | 3.2 | 45.1 | 46.7 | 0.9 | |
1100 | 4.2 | 1.0 | 48.0 | 45.8 | 1.0 |
Alloy | Rsoln (Ω.cm2) | Qc (Ω−1cm−2sn) | nc | Rpo (Ω.cm2) | Qcor (Ω−1cm−2sn) | ncor | Rcor (Ω.cm2) | Chi2 |
---|---|---|---|---|---|---|---|---|
H0 | 34.11 | 0.00358 | 0.7153 | 1381 | 0.00375 | 0.8741 | 374.6 | 8.10 × 10−5 |
H650 | 25.23 | 0.00021 | 0.7951 | 73.82 | 0.00024 | 0.7642 | 2608 | 0.00105 |
H950 | 25.1 | 5.30 × 10−5 | 0.9283 | 38.75 | 0.00061 | 0.6252 | 4711 | 0.00118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Krishnan, K.; Elumalai, N.K. Effect of Heat Treatment on the Corrosion Behavior of Weld-Deposited Chromium Carbide-Based Hardfacing Alloys. Metals 2024, 14, 1436. https://doi.org/10.3390/met14121436
Tan C, Krishnan K, Elumalai NK. Effect of Heat Treatment on the Corrosion Behavior of Weld-Deposited Chromium Carbide-Based Hardfacing Alloys. Metals. 2024; 14(12):1436. https://doi.org/10.3390/met14121436
Chicago/Turabian StyleTan, Cedric, Kannoorpatti Krishnan, and Naveen Kumar Elumalai. 2024. "Effect of Heat Treatment on the Corrosion Behavior of Weld-Deposited Chromium Carbide-Based Hardfacing Alloys" Metals 14, no. 12: 1436. https://doi.org/10.3390/met14121436
APA StyleTan, C., Krishnan, K., & Elumalai, N. K. (2024). Effect of Heat Treatment on the Corrosion Behavior of Weld-Deposited Chromium Carbide-Based Hardfacing Alloys. Metals, 14(12), 1436. https://doi.org/10.3390/met14121436