Cone-Beam Computed Tomography-Derived Augmented Fluoroscopy Improves the Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Biopsy for Peripheral Pulmonary Lesions
<p>Flowchart of the procedure in CBCT-AF and non-AF groups. AF, augmented fluoroscopy; CBCT-AF, cone-beam computed tomography-derived augmented fluoroscopy; EBUS, endobronchial ultrasound; ROSE, rapid on-site cytologic evaluation; TBB, transbronchial biopsy.</p> "> Figure 2
<p>A 75-year-old female patient received CBCT-AF combined with EBUS-TBB, and was finally diagnosed with lung adenocarcinoma. (<b>A</b>) standard CT image showing a small nodule (10.6 mm) at the left lower lobe; (<b>B</b>) the target lesion on CBCT image contoured in three standard axes for the AF image; (<b>C</b>,<b>D</b>) a concentric peribronchial lesion discovered by radial-EBUS via AF guidance; (<b>E</b>) TBB guided by AF image. AF, augmented fluoroscopy; CBCT-AF, cone-beam computed tomography-derived augmented fluoroscopy; CT, computed tomography; EBUS-TBB, endobronchial ultrasound-guided transbronchial biopsy; TBB, transbronchial biopsy.</p> "> Figure 2 Cont.
<p>A 75-year-old female patient received CBCT-AF combined with EBUS-TBB, and was finally diagnosed with lung adenocarcinoma. (<b>A</b>) standard CT image showing a small nodule (10.6 mm) at the left lower lobe; (<b>B</b>) the target lesion on CBCT image contoured in three standard axes for the AF image; (<b>C</b>,<b>D</b>) a concentric peribronchial lesion discovered by radial-EBUS via AF guidance; (<b>E</b>) TBB guided by AF image. AF, augmented fluoroscopy; CBCT-AF, cone-beam computed tomography-derived augmented fluoroscopy; CT, computed tomography; EBUS-TBB, endobronchial ultrasound-guided transbronchial biopsy; TBB, transbronchial biopsy.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Diagnosis
2.4. Statistical Analysis
3. Results
3.1. Patients and Target Lesions
3.2. Navigation Success Rate and Diagnostic Yield
3.3. Population Excluding Navigation Failure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar]
- White, C.S.; Weiner, E.A.; Patel, P.; Britt, E.J. Transbronchial needle aspiration: Guidance with CT fluoroscopy. Chest 2000, 118, 1630–1638. [Google Scholar] [CrossRef]
- Hürter, T.; Hanrath, P. Endobronchial sonography: Feasibility and preliminary results. Thorax 1992, 47, 565–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herth, F.J.F.; Ernst, A.; Becker, H.D. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions. Eur. Respir. J. 2002, 20, 972–974. [Google Scholar] [CrossRef] [Green Version]
- Yamada, N.; Yamazaki, K.; Kurimoto, N.; Asahina, H.; Kikuchi, E.; Shinagawa, N.; Oizumi, S.; Nishimura, M. Factors related to diagnostic yield of transbronchial biopsy using endobronchial ultrasonography with a guide sheath in small peripheral pulmonary lesions. Chest 2007, 132, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, R.; Anantham, D.; Ernst, A.; Feller-Kopman, D.; Herth, F. Multimodality bronchoscopic diagnosis of peripheral lung lesions: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2007, 176, 36–41. [Google Scholar] [CrossRef]
- Oki, M.; Saka, H.; Ando, M.; Asano, F.; Kurimoto, N.; Morita, K.; Kitagawa, C.; Kogure, Y.; Miyazawa, T. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial. Am. J. Respir. Crit. Care Med. 2015, 192, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.K.; Jan, I.S.; Yu, K.L.; Chang, L.Y.; Fan, H.J.; Wen, Y.F.; Ho, C.C. Rapid on-site cytologic evaluation by pulmonologist improved diagnostic accuracy of endobronchial ultrasound-guided transbronchial biopsy. J. Formos. Med. Assoc. 2020, 119, 1684–1692. [Google Scholar] [CrossRef]
- Boonsarngsuk, V.; Raweelert, P.; Juthakarn, S. Endobronchial ultrasound plus fluoroscopy versus fluoroscopy-guided bronchoscopy: A comparison of diagnostic yields in peripheral pulmonary lesions. Lung 2012, 190, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Asano, F.; Yamazaki, K.; Shinagawa, N.; Oizumi, S.; Moriya, H.; Munakata, M.; Nishimura, M.; Virtual Navigation in Japan Trial Group. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: A randomised trial. Thorax 2011, 66, 1072–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asano, F.; Shinagawa, N.; Ishida, T.; Tsuzuku, A.; Tachihara, M.; Kanazawa, K.; Yamada, N.; Oizumi, S.; Moriya, H. Virtual bronchoscopic navigation improves the diagnostic yield of radial-endobronchial ultrasound for peripheral pulmonary lesions with involved bronchi on CT. Intern. Med. 2015, 54, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Orth, R.C.; Wallace, M.J.; Kuo, M.D.; Technology Assessment Committee of the Society of Interventional Radiology. C-arm cone-beam CT: General principles and technical considerations for use in interventional radiology. J. Vasc. Interv. Radiol. 2008, 19, 814–820. [Google Scholar] [CrossRef]
- Rouzé, S.; de Latour, B.; Flécher, E.; Guihaire, J.; Castro, M.; Corre, R.; Haigron, P.; Verhoye, J.P. Small pulmonary nodule localization with cone beam computed tomography during video-assisted thoracic surgery: A feasibility study. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.P.; Richmon, J.D.; Sorger, J.M.; Azizian, M.; Taylor, R.H. Augmented reality and cone beam CT guidance for transoral robotic surgery. J. Robot. Surg. 2015, 9, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, J.J.; Natarajan, N.; Shaw, D.W.W.; Apkon, S.D.; Koo, K.S.H.; Shivaram, G.M.; Eric, J.; Monroe, E.J. Transforaminal intrathecal delivery of nusinersen using cone-beam computed tomography for children with spinal muscular atrophy and extensive surgical instrumentation: Early results of technical success and safety. Pediatr. Radiol. 2018, 48, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Kenngott, H.G.; Wagner, M.; Gondan, M.; Nickel, F.; Nolden, M.; Fetzer, A.; Weitz, J.; Fischer, L.; Speidel, S.; Meinzer, H.P.; et al. Real-time image guidance in laparoscopic liver surgery: First clinical experience with a guidance system based on intraoperative CT imaging. Surg. Endosc. 2014, 28, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Yu, K.L.; Lin, K.H.; Liu, Y.L.; Sun, S.E.; Meng, L.H.; Ko, H.J. Real-time augmented fluoroscopy-guided lung marking for thoracoscopic resection of small pulmonary nodules. Surg. Endosc. 2020, 34, 477–484. [Google Scholar] [CrossRef]
- Casal, R.F. Cone Beam CT-Guided Bronchoscopy: Here to Stay? J. Bronchol. Interv. Pulmonol. 2018, 25, 255–256. [Google Scholar] [CrossRef]
- Pritchett, M.A.; Schampaert, S. Tipping Point: Cone Beam CT with Augmented Fluoroscopy for the Biopsy and Treatment of Peripheral Nodules. J. Bronchol. Interv. Pulmonol. 2019, 26, e13–e15. [Google Scholar] [CrossRef]
- Da Cunha Santos, G.; Ko, H.M.; Saieg, M.A.; Geddie, W.R. “The petals and thorns” of ROSE (rapid on-site evaluation). Cancer Cytopathol. 2013, 121, 4–8. [Google Scholar] [CrossRef]
- Verhoeven, R.L.J.; Fütterer, J.J.; Hoefsloot, W.; van der Heijden, E.H.F.M. Cone-Beam CT Image Guidance with and without Electromagnetic Navigation Bronchoscopy for Biopsy of Peripheral Pulmonary Lesions. J. Bronchol. Interv. Pulmonol. 2021, 28, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Stringfield, J.T.; Markowitz, D.J.; Bentz, R.R.; Welch, M.H.; Weg, J.G. The effect of tumor size and location on diagnosis by fiberoptic bronchoscopy. Chest 1977, 72, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Yu, K.L.; Lin, K.H.; Liu, Y.L.; Sun, S.E.; Meng, L.H.; Ko, H.J. Localization of Small Pulmonary Nodules Using Augmented Fluoroscopic Bronchoscopy: Experience from 100 Consecutive Cases. World J. Surg. 2020, 44, 2418–2425. [Google Scholar] [CrossRef] [PubMed]
- Kheir, F.; Thakore, S.R.; Becerra, J.P.U.; Tahboub, M.; Kamat, R.; Abdelghani, R.; Fernandez-Bussy, S.; Kaphle, U.R.; Majid, A. Cone-Beam Computed Tomography-Guided Electromagnetic Navigation for Peripheral Lung Nodules. Respiration 2021, 100, 44–51. [Google Scholar] [CrossRef]
- Pritchett, M.A.; Schampaert, S.; de Groot, J.A.H.; Schirmer, C.C.; van der Bom, I. Cone-Beam CT with Augmented Fluoroscopy Combined with Electromagnetic Navigation Bronchoscopy for Biopsy of Pulmonary Nodules. J. Bronchol. Interv. Pulmonol. 2018, 25, 274–282. [Google Scholar] [CrossRef]
- Casal, R.F.; Sarkiss, M.; Jones, A.K.; Stewart, J.; Tam, A.; Grosu, H.B.; Ost, D.E.; Jimenez, C.A.; Eapen, G.A. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: A prospective pilot study. J. Thorac. Dis. 2018, 10, 6950–6959. [Google Scholar] [CrossRef]
- Cheng, G.Z.; Liu, L.; Nobari, M.; Miller, R.; Wahidi, M. Cone beam navigation bronchoscopy: The next frontier. J. Thorac. Dis. 2020, 12, 3272–3278. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.A.A.; Takizawa, H.; Kawakita, N.; Sawada, T.; Tsuboi, M.; Toba, H.; Takashima, M.; Matsumoto, D.; Yoshida, M.; Kawakami, Y.; et al. Transbronchial Biopsy Using an Ultrathin Bronchoscope Guided by Cone-Beam Computed Tomography and Virtual Bronchoscopic Navigation in the Diagnosis of Pulmonary Nodules. Respiration 2019, 98, 321–328. [Google Scholar] [CrossRef]
- Sobieszczyk, M.J.; Yuan, Z.; Li, W.; Krimsky, W. Biopsy of peripheral lung nodules utilizing cone beam computer tomography with and without trans bronchial access tool: A retrospective analysis. J. Thorac. Dis. 2018, 10, 5953–5959. [Google Scholar] [CrossRef]
- Bowling, M.R.; Brown, C.; Anciano, C.J. Feasibility and Safety of the Transbronchial Access Tool for Peripheral Pulmonary Nodule and Mass. Ann. Thorac. Surg. 2017, 104, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Pastis, N.; Furukawa, B.; Silvestri, G.A. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy. Chest 2015, 147, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.C.; Bai, Y.Y.; Lee, J.H.; Lin, C.C.; Lin, S.Y.; Lee, Y.F.; Ho, C.C.; Shih, J.Y.; Chang, Y.C.; Yu, C.J.; et al. Outcomes of research biopsies in clinical trials of EGFR mutation-positive non-small cell lung cancer patients pretreated with EGFR-tyrosine kinase inhibitors. J. Formos. Assoc. 2018, 117, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Izumo, T.; Matsumoto, Y.; Chavez, C.; Tsuchida, T. Re-biopsy by endobronchial ultrasound procedures for mutation analysis of non-small cell lung cancer after EGFR tyrosine kinase inhibitor treatment. BMC Pulm. Med. 2016, 16, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herth, F.J.F.; Annema, J.T.; Eberhardt, R.; Yasufuku, K.; Ernst, A.; Krasnik, M.; Rintoul, R.C. Endobronchial ultrasound with transbronchial needle aspiration for restaging the mediastinum in lung cancer. J. Clin. Oncol. 2008, 26, 3346–3450. [Google Scholar] [CrossRef] [Green Version]
- Kurimoto, N.; Miyazawa, T.; Okimasa, S.; Maeda, A.; Oiwa, H.; Miyazu, Y.; Murayama, M. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest 2004, 126, 959–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.T.; Ho, C.C.; Tsai, Y.J.; Yu, C.J.; Yang, P.C. Factors influencing visibility and diagnostic yield of transbronchial biopsy using endobronchial ultrasound in peripheral pulmonary lesions. Respirology 2009, 14, 859–864. [Google Scholar] [CrossRef]
- Haidong, H.; Yunye, N.; Wei, Z.; Zarogoulidis, P.; Hohenforst-Schmidt, W.; Man, Y.G.; Yuguang, Y.; Yuchao, D.; Chong, B. Multiple guided technologies based on radial probe endobronchial ultrasound for the diagnosis of solitary peripheral pulmonary lesions: A single-center study. J. Cancer 2017, 8, 3514–3521. [Google Scholar] [CrossRef] [Green Version]
- Otterburn, D.; Losken, A. Iatrogenic fluoroscopy injury to the skin. Ann. Plast. Surg. 2010, 65, 462–465. [Google Scholar] [CrossRef]
- Timins, J.K.; Lipoti, J.A. Radiation risks of high-dose fluoroscopy. N. J. Med. 2000, 97, 31–34. [Google Scholar]
- Kovoor, P.; Ricciardello, M.; Collins, L.; Uther, J.B.; Ross, D.L. Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. Circulation 1998, 98, 1534–1540. [Google Scholar] [CrossRef]
- Picano, E.; Piccaluga, E.; Padovani, R.; Antonio Traino, C.; Grazia Andreassi, M.; Guagliumi, G. Risks Related To Fluoroscopy Radiation Associated with Electrophysiology Procedures. J. Atr. Fibrillation 2014, 31, 7–1044. [Google Scholar]
- Kovnat, D.M.; Rath, G.S.; Anderson, W.M.; Siber, F.; Snider, G.L. Bronchial brushing through the flexible fiberoptic bronchoscope in the diagnosis of peripheral pulmonary lesions. Chest 1975, 67, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Mondon, M.; Sotgiu, G.; Bonifazi, M.; Dore, S.; Parazzini, E.M.; Carlucci, P.; Gasparini, S.; Centanni, S. Transbronchial needle aspiration in peripheral pulmonary lesions: A systematic review and meta-analysis. Eur. Respir. J. 2016, 48, 196–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Total (n = 236) | CBCT-AF (n = 115) | Non-AF (n = 121) | p-Value |
---|---|---|---|---|
Age (years old, range) | 66.1 (28–94) | 65.1 (28–91) | 67.0 (31–94) | 0.258 |
Male gender (%) | 118 (50) | 50 (43.5) | 68 (56.2) | 0.051 |
Final diagnosis (%) | ||||
Malignancy | 173 (73.3) | 92 (80) | 81 (66.9) | 0.017 * |
Lung adenocarcinoma | 145 (61.4) | 73 (63.5) | 72 (59.5) | |
Lung squamous cell carcinoma | 8 (3.4) | 4 (3.5) | 4 (3.3) | |
Small cell lung cancer | 3 (1.3) | 2 (1.7) | 1 (0.8) | |
Other NSCLC | 8 (3.4) | 5 (4.3) | 3 (2.5) | |
Metastasis | 9 (3.8) | 8 (7.0) | 1 (0.8) | |
Colorectal cancer | 2 (0.8) | 2 (1.7) | 0 (0) | |
Breast cancer | 2 (0.8) | 2 (1.7) | 0 (0) | |
Urothelial cancer | 2 (0.8) | 2 (1.7) | 0 (0) | |
Melanoma | 1 (0.4) | 1 (0.9) | 0 (0) | |
Multiple myeloma | 1 (0.4) | 1 (0.9) | 0 (0) | |
Hepatocellular carcinoma | 1 (0.4) | 0 (0) | 1 (0.8) | |
Non-malignancy | 63 (26.7) | 23 (20) | 40 (33.1) | |
Fungus | 11 (4.7) | 5 (4.3) | 6 (5.0) | |
Aspergillosis | 4 (1.7) | 2 (1.7) | 2 (1.7) | |
Cryptococcus | 3 (1.3) | 2 (1.7) | 1 (0.8) | |
Candida | 3 (1.3) | 0 (0) | 3 (2.5) | |
Pneumocystis jirovecii pneumonia | 1 (0.4) | 1 (0.9) | 0 (0) | |
Mycobacterium tuberculosis | 8 (3.4) | 2 (1.7) | 6 (5.0) | |
Non-tuberculous Mycobacteria | 2 (0.8) | 2 (1.7) | 0 (0) | |
Pneumonia | 15 (6.4) | 6 (5.2) | 9 (7.4) | |
Hamartoma | 1 (0.4) | 0 (0) | 1 (0.8) | |
Benign inflammation | 25 (10.6) | 8 (7.0) | 18 (14.9) |
Cytopathologic Finding of TBB | CBCT-AF (n = 115) | Non-AF (n = 121) | ||
---|---|---|---|---|
n | Details of Final Diagnosis | n | Details of Final Diagnosis | |
TBB diagnostic | 96 | 90 | ||
Malignant | 76 | 58 | ||
Lung adenocarcinoma | 60 | 51 | ||
Lung squamous cell carcinoma | 4 | 3 | ||
Small cell lung cancer | 2 | 0 | ||
Other NSCLC | 4 | 3 | ||
Metastasis | 6 | 1 | ||
Colorectal cancer | 2 | 0 | ||
Breast cancer | 1 | 0 | ||
Urothelial cancer | 2 | 0 | ||
Melanoma | 1 | 0 | ||
Hepatocellular carcinoma | 0 | 1 | ||
Non-malignancy | 20 | 32 | ||
Fungus | 4 | 3 | ||
Aspergillosis | 1 | 2 | ||
Cryptococcus | 2 | 1 | ||
Pneumocystis jirovecii pneumonia | 1 | 0 | ||
Mycobacterium tuberculosis | 2 | 2 | ||
Non-tuberculous Mycobacteria | 1 | 0 | ||
Granulomatous inflammation | 2 | Aspergillosis (n = 1) Non-tuberculous Mycobacteria (n = 1) | 1 | Mycobacterium tuberculosis (n = 1) |
Chronic inflammation | 11 | Pneumonia with tissue culture proved (n = 6) Benign inflammation with clinical follow-up (n = 5) | 26 | Candida with tissue culture proved (n = 3) Mycobacterium tuberculosis with tissue culture proved (n = 2) Pneumonia with tissue culture proved (n = 8) Benign inflammation with clinical follow-up (n = 13) |
TBB nondiagnostic | 19 | 31 | ||
No representative samples | 5 | Lung adenocarcinoma (n = 3) Other NSCLC (n = 1) Benign inflammation (n = 1) | 5 | Lung adenocarcinoma (n = 3) Benign inflammation (n = 2) |
Chronic inflammation | 5 | Lung adenocarcinoma (n = 5) | 9 | Lung adenocarcinoma (n = 8) Small cell lung cancer(n = 1) |
Atypical cell | 5 | Lung adenocarcinoma (n = 3) Breast cancer (n = 1) Multiple myeloma (n = 1) | 1 | Lung adenocarcinoma (n = 1) |
Navigation failure | 4 | Lung adenocarcinoma (n = 2) Benign inflammation (n = 2) | 16 | Lung adenocarcinoma (n = 9) Lung squamous cell carcinoma (n = 1) Hamatoma (n = 1) Mycobacterium tuberculosis (n = 1) Pneumonia (n = 1) Benign inflammation (n = 3) |
Characteristics | Total (n = 236) | CBCT-AF (n = 115) | Non-AF (n = 121) | p-Value |
---|---|---|---|---|
Indication (%) | 0.100 | |||
Initial diagnosis | 178 (75.4) | 82 (71.3) | 96 (79.3) | |
Re-biopsy | 58 (24.6) | 33 (28.7) | 25 (20.7) | |
Lesion size (mm, range) | 27.4 (6.0–64.2) | 24.0 (6.0–62.0) | 30.6 (6.2–64.2) | <0.001 * |
≤20 mm (%) | 88 (37.3) | 56 (48.7) | 32 (26.4) | |
Lesion appearance (%) | 0.030 * | |||
Solid | 193 (81.8) | 88 (76.5) | 105 (86.8) | |
Part solid/GGO | 43 (18.2) | 27 (23.5) | 16 (13.2) | |
Location (%) | ||||
Right Upper Lobe | 74 (31.4) | 48 (41.7) | 26 (21.5) | 0.001 * |
Left Upper Lobe (Left Upper Division + Lingual) | 43 (18.2) | 16 (13.9) | 27 (22.3) | 0.066 |
Right Middle Lobe | 25 (10.6) | 9 (7.8) | 16 (13.2) | 0.128 |
Right Lower Lobe | 48 (20.3) | 20 (17.4) | 28 (23.1) | 0.175 |
Left Lower Lobe | 46 (19.5) | 22 (19.1) | 24 (19.8) | 0.511 |
Presence of bronchus sign (%) | 203 (86.0) | 95 (82.6) | 108 (89.3) | 0.099 |
Location of probe (%) | 0.299 | |||
Within | 177 (75.0) | 84 (73.0) | 93 (76.9) | |
Adjacent to/invisible | 59 (25.0) | 31 (27.0) | 28 (23.1) | |
CXR visible (%) | ||||
≤10 mm | 2/20 (10) | 2/16 (12.5) | 0/4 (0) | 0.632 |
>10 mm, ≤20 mm | 36/68 (52.9) | 23/40 (57.5) | 13/28 (46.4) | 0.257 |
>20 mm | 132/148 (89.2) | 55/59 (93.2) | 77/89 (86.5) | 0.155 |
Guide sheath use (%) | 124 (52.5) | 45 (39.1) | 79 (65.3) | <0.001 * |
Duration time (min.) | 38.1 (12–109) | 41.9 (16–109) | 34.4 (12–78) | <0.001 * |
Intraprocedural CBCT use (%) | - | |||
≤10 mm | - | 6/16 (37.5) | - | |
>10 mm, ≤20 mm | - | 10/40 (25) | - | |
>20 mm | - | 3/59 (5.1) | - | |
Radiation (Gy∙cm2, range) | - | |||
Total dose | - | 25.48 (9.46–123.41) | - | |
Fluoroscopy dose | - | 2.70 (0.02–10.31) | - | |
Dyna CT dose | - | 22.78 (7.26–119.16) | - | |
Complication (%) | 23 (9.7) | 9 (7.8) | 14 (11.6) | 0.227 |
Bleeding | 8 (3.4) | 5 (4.3) | 3 (2.5) | 0.333 |
Pneumothorax | 3 (1.3) | 0 (0) | 3 (2.5) | 0.133 |
Fever | 12 (5.1) | 4 (3.5) | 8 (6.6) | 0.213 |
Lesion Size | Navigation Success Rate | p-Value | Diagnostic Yields | p Value | ||
---|---|---|---|---|---|---|
CBCT-AF (n = 115) | Non-AF (n = 121) | CBCT-AF (n = 115) | Non-AF (n = 121) | |||
Total (%) | 111/115 (96.5) | 105/121 (86.8) | 0.006 * | 96/115 (83.5) | 90/121 (74.4) | 0.060 |
≤10 mm | 14/16 (87.5) | 0/4 (0) | 0.003 * | 11/16 (68.8) | 0/4 (0) | 0.026 * |
>10, ≤20 mm | 38/40 (95) | 20/28 (71.4) | 0.009 * | 31/40 (77.5) | 13/28 (46.4) | 0.016 * |
>20 mm | 59/59 (100) | 85/89 (95.5) | 0.127 | 54/59 (91.5) | 77/89 (86.5) | 0.254 |
Sensitivity | Specificity | PPV | NPV | Accuracy | |
---|---|---|---|---|---|
CBCT-AF | |||||
Total | 82.7 | 100 | 100 | 20.8 | 83.5 |
≤10 mm | 66.7 | 100 | 100 | 16.8 | 68.8 |
>10, ≤20 mm | 75.7 | 100 | 100 | 25.0 | 77.5 |
>20 mm | 91.4 | 100 | 100 | 16.7 | 91.5 |
Non-AF | |||||
Total | 70.2 | 100 | 100 | 35.4 | 74.4 |
≤10 mm | 0 | - | - | - | 0 |
>10, ≤20 mm | 37.5 | 100 | 100 | 21.1 | 46.4 |
>20 mm | 84.2 | 100 | 100 | 52.0 | 86.5 |
Variable | Diagnostic Yield | p-Value | |||
---|---|---|---|---|---|
CBCT-AF (n = 111) | p-Value | Non-AF (n = 105) | p-Value | ||
Total (%) | 96/111 (86.5) | 90/105 (85.7) | 0.513 | ||
Lesion size (%) | |||||
≤10 mm | 11/14 (78.6) | 0/0 (0) | - | ||
>10, ≤20 mm | 31/38 (81.6) | 0.048* | 13/20 (65) | <0.001 * | 0.141 |
>20 mm | 54/59 (91.5) | 77/85 (90.6) | 0.547 | ||
Indication (%) | |||||
Initial diagnosis | 70/78 (89.7) | 0.110 | 72/82 (87.8) | 0.202 | 0.446 |
Re-biopsy | 26/33 (78.8) | 18/23 (78.3) | 0.607 | ||
Lesion appearance on CT (%) | |||||
Solid | 73/84 (86.9) | 0.521 | 83/96 (86.5) | 0.378 | 0.554 |
Part solid/GGO | 23/27 (85.2) | 7/9 (77.8) | 0.475 | ||
Position | |||||
Upper lobe | 53/61 (86.9) | 0.554 | 36/44 (81.8) | 0.245 | 0.328 |
Non-upper | 43/50 (86) | 54/61 (88.5) | 0.453 | ||
Bronchus sign in CT | |||||
Present | 83/95 (87.4) | 0.370 | 88/103 (85.4) | 0.734 | 0.426 |
Absent | 13/16 (81.3) | 2/2 (100) | 0.686 | ||
Position of probe | |||||
Within | 74/84 (88.1) | 0.282 | 80/93 (86.0) | 0.540 | 0.428 |
Adjacent to | 22/27 (81.5) | 10/12 (83.3) | 0.635 | ||
CXR visible | |||||
Visible | 70/79 (88.6) | 0.231 | 73/85 (85.9) | 0.579 | 0.388 |
invisible | 26/32 (81.3) | 17/20 (85) | 0.519 | ||
Guide sheath | |||||
Use | 38/45 (84.4) | 0.402 | 66/76 (86.8) | 0.400 | 0.455 |
Not use | 58/66 (87.9) | 24/29 (82.8) | 0.355 | ||
Final diagnosis (%) | |||||
Malignancy | 76/90 (84.4) | 0.173 | 58/71 (81.7) | 0.075 | 0.399 |
Benign process | 20/21 (95.2) | 32/34 (94.1) | 0.677 |
Diagnosis | n (%) |
---|---|
Success TBB diagnosis | 11 (78.6) |
Malignancy | 6 (42.9) |
Lung adenocarcinoma | 4 (28.6) |
Colon cancer | 1 (7.1) |
Urothelial carcinoma | 1 (7.1) |
Non-malignancy | 5 (35.7) |
Mycobacterium tuberculosis | 1 (7.1) |
Cryptococcus | 1 (7.1) |
Pneumonia | 2 (14.3) |
Benign inflammation | 1 (7.1) |
Failure TBB diagnosis | 3 (21.4) |
Lung adenocarcinoma | 2 (14.3) |
Benign inflammation | 1 (7.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-K.; Fan, H.-J.; Yao, Z.-H.; Lin, Y.-T.; Wen, Y.-F.; Wu, S.-G.; Ho, C.-C. Cone-Beam Computed Tomography-Derived Augmented Fluoroscopy Improves the Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Biopsy for Peripheral Pulmonary Lesions. Diagnostics 2022, 12, 41. https://doi.org/10.3390/diagnostics12010041
Lin C-K, Fan H-J, Yao Z-H, Lin Y-T, Wen Y-F, Wu S-G, Ho C-C. Cone-Beam Computed Tomography-Derived Augmented Fluoroscopy Improves the Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Biopsy for Peripheral Pulmonary Lesions. Diagnostics. 2022; 12(1):41. https://doi.org/10.3390/diagnostics12010041
Chicago/Turabian StyleLin, Ching-Kai, Hung-Jen Fan, Zong-Han Yao, Yen-Ting Lin, Yueh-Feng Wen, Shang-Gin Wu, and Chao-Chi Ho. 2022. "Cone-Beam Computed Tomography-Derived Augmented Fluoroscopy Improves the Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Biopsy for Peripheral Pulmonary Lesions" Diagnostics 12, no. 1: 41. https://doi.org/10.3390/diagnostics12010041
APA StyleLin, C. -K., Fan, H. -J., Yao, Z. -H., Lin, Y. -T., Wen, Y. -F., Wu, S. -G., & Ho, C. -C. (2022). Cone-Beam Computed Tomography-Derived Augmented Fluoroscopy Improves the Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Biopsy for Peripheral Pulmonary Lesions. Diagnostics, 12(1), 41. https://doi.org/10.3390/diagnostics12010041