Stereographic Visualization of 5-Dimensional Regular Polytopes
<p>Traditional projections only show vertex and edge information. They lack crucial metric or topological data, so that one can hardly understand the real structure of regular polytopes (RPs). (<b>a</b>) Orthographic projection of a 5D hypercube <math display="inline"><semantics> <mrow> <mo>{</mo> <mn>4</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math>. (<b>b</b>) Orthographic projection of an 8D hypercube <math display="inline"><semantics> <mrow> <mo>{</mo> <mn>4</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>(<b>a</b>) Let <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>∈</mo> <msub> <mi>D</mi> <mrow> <mo>[</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>]</mo> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>∉</mo> <msub> <mi>D</mi> <mrow> <mo>[</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>]</mo> </mrow> </msub> </mrow> </semantics></math> be points on the different sides of plane <span class="html-italic">P</span>. Then, <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi mathvariant="sans-serif">Π</mi> <mover accent="true"> <mi>v</mi> <mo>→</mo> </mover> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> and <span class="html-italic">Q</span> will lie on the same side of <span class="html-italic">P</span>, and the distance between <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math> and <span class="html-italic">Q</span> is smaller than <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> and <span class="html-italic">Q</span>. (<b>b</b>) A 3D schematic illustration that shows how Theorem 2.2 transforms <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>∉</mo> <msub> <mi>D</mi> <mrow> <mo>[</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>]</mo> </mrow> </msub> </mrow> </semantics></math> into <math display="inline"><semantics> <msub> <mi>D</mi> <mrow> <mo>[</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>]</mo> </mrow> </msub> </semantics></math> symmetrically. In this case, <math display="inline"><semantics> <mrow> <mi>Q</mi> <mo>∈</mo> <msub> <mi>D</mi> <mrow> <mo>[</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>]</mo> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>∉</mo> <msub> <mi>D</mi> <mrow> <mo>[</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>]</mo> </mrow> </msub> </mrow> </semantics></math>. Point <math display="inline"><semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics></math> is first reflected about plane <math display="inline"><semantics> <mrow> <mi>O</mi> <mi>A</mi> <mi>B</mi> </mrow> </semantics></math> to point <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>∉</mo> <msub> <mi>D</mi> <mrow> <mo>[</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>]</mo> </mrow> </msub> </mrow> </semantics></math>. Then, point <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math> is reflected about plane <math display="inline"><semantics> <mrow> <mi>O</mi> <mi>B</mi> <mi>C</mi> </mrow> </semantics></math> to point <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>∈</mo> <msub> <mi>D</mi> <mrow> <mo>[</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>]</mo> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 3
<p>(<b>a</b>) Case of the stereographic projection in <math display="inline"><semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>3</mn> </msup> </semantics></math>. (<b>b</b>) Case of the stereographic projection in <math display="inline"><semantics> <msup> <mi mathvariant="double-struck">R</mi> <mn>2</mn> </msup> </semantics></math>.</p> "> Figure 4
<p>Using Projection (<a href="#FD7-symmetry-11-00391" class="html-disp-formula">7</a>), symmetrical patterns of 5D RPs on the unit sphere with <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Using Projection (<a href="#FD7-symmetry-11-00391" class="html-disp-formula">7</a>), symmetrical patterns of [3,3,3,3] on the unit sphere with <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Using Projection (<a href="#FD7-symmetry-11-00391" class="html-disp-formula">7</a>), symmetrical patterns of [3,3,3,4] on the unit sphere with <math display="inline"><semantics> <msub> <mi>r</mi> <mn>4</mn> </msub> </semantics></math> = 0.5.</p> "> Figure 7
<p>Using Projection (<a href="#FD7-symmetry-11-00391" class="html-disp-formula">7</a>), unit solid sphere projections of 5D RPs with radius <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Using Projection (<a href="#FD7-symmetry-11-00391" class="html-disp-formula">7</a>), unit solid sphere projections of 5D RPs with <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Using Projection (<a href="#FD8-symmetry-11-00391" class="html-disp-formula">8</a>), symmetrical patterns of 5D RPs on the unit disc with <math display="inline"><semantics> <msub> <mi>r</mi> <mn>3</mn> </msub> </semantics></math> = 0.5.</p> "> Figure 10
<p>Using Projection (<a href="#FD8-symmetry-11-00391" class="html-disp-formula">8</a>), symmetrical patterns of 5D RPs on the unit disc with <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Geometrical Features of 5D RPs
Algorithm 1 Fundamental region algorithm (FRA). |
Input: Point and fundamental root system Output: Point and reflection number n
|
3. Visualizations of 5D RPs from Generalized Stereographic Projection
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coxeter, H.S.M. Regular Polytopes; Dover: New York, NY, USA, 1973. [Google Scholar]
- Coxeter, H.S.M. Regular Complex Polytopes; Cambridge University Press: London, UK, 1991. [Google Scholar]
- McMullen, P.; Schulte, E. Abstract Regular Polytopes; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Grünbaum, B.; Shephard, G.C. Tilings and Patterns; CERN Document Server: New York, NY, Freeman, 1987. [Google Scholar]
- Conway, J.H.; Burgiel, H.; Goodman-Strauss, C. The Symmetries of Things; A K Peters Press: Natick, MA, USA, 2008. [Google Scholar]
- Kaplan, C.S. Computer Graphics and Geometric Ornamental Design. Ph.D. Thesis, University of Washington, Washington, DC, USA, 2002. [Google Scholar]
- Ouyang, P.C.; Wang, L.; Yu, T.; Huang, X. Aesthetic Patterns with Symmetries of the Regular Polyhedron. Symmetry 2017, 9, 21. [Google Scholar] [CrossRef]
- Ouyang, P.C.; Wang, X.C.; Zhao, Y.M. Beautiful Math, Part 6: Visualizing 4D Regular Polytopes Using the Kaleidoscope Principle. IEEE Comput. Graph. Appl. 2017, 37, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Horne, C.E. Geometric Symmetry in Patterns and Tilings; Woodhead Publishing: Sawston, UK, 2000. [Google Scholar]
- Stewart, I.; Golubitsky, M. Fearful Symmetry: Is God a Geometer? Dover Publications: Mineola, NY, USA, 2011. [Google Scholar]
- Armstrong, V.E. Groups and Symmetry; Springer: New York, NY, USA, 1987. [Google Scholar]
- Stevens, P.S. Handbook of Regular Patterns; MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Hahn, T. International Tables for Crystallography; Kluwer Academic Publishers: Boston, MA, USA, 1996. [Google Scholar]
- Suck, J.B.; Schreiber, M.; Haussler, P. Quasicrystals: An Introduction to Structure; Springer: Berlin, Germany, 2002. [Google Scholar]
- Park, H.G. A Workshop on N-regular Polygon Torus Using 4D Frame. In Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture; Tessellations Publishing: Enschede, The Netherlands, 2013; pp. 597–600. [Google Scholar]
- Séquin, C.H.; Lanier, J. Hyperseeing the Regular Hendecachoron. In Proceedings of the ISAMA Conferences, College Station, TX, USA, 18–21 May 2007; pp. 159–166. [Google Scholar]
- Reiter, C.A. Chaotic Attractors Exhibiting Quasicrystalline Structure. Comput. Graph. 2008, 3, 511–517. [Google Scholar] [CrossRef]
- Ramírez, A.A.; Aguila, R.P. Presenting Methods for Unraveling the First Two Regular 4D Polytopes (4D Simplex and the Hypercube). In Proceedings of the International Symposium on Cyber Worlds, Tokyo, Japan, 6–8 November 2002. [Google Scholar]
- Koca, M.; Koca, N.O.; Al-Ajmi, M. 4D-Polytopes and Their Dual Polytopes of the Coxeter Group W(A4) Represented by Quaternions. Int. J. Geom. Methods Mod. Phys. 2012, 9, 1250035. [Google Scholar] [CrossRef]
- Humphreys, J.E. Reflection Groups and Coxeter Groups; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Breda, A.M.; Ribeiro, P.S. Spherical F-Tilings by Two Non Congruent Classes of Isosceles Triangles-I. Math. Commun. 2012, 17, 127–149. [Google Scholar]
- Avelino, C.P.; Santos, A.F. Spherical F-tilings by Scalene Triangles and Isosceles Trapezoids, II. Acta Math. Sin. 2012, 28, 1013–1032. [Google Scholar] [CrossRef]
Name | Schläfli symbol | Facets | Cells | Faces | Edges | Vertices | Face Figure | Edge Figure | Vertex Figure | |
---|---|---|---|---|---|---|---|---|---|---|
5-simplex (Hexateron) | {3, 3, 3, 3} | 6 | 15 | 20 | 15 | 6 | ||||
5-cube (Penteract) | {4, 3, 3, 3} | 10 | 40 | 80 | 80 | 32 | ||||
5-orthoplex (Pentacross) | {3, 3, 3, 4} | 32 | 80 | 80 | 40 | 10 |
Name | Schlfli Symbol | Reflection Symmetry Group | Fundamental Root System | Order of | |
---|---|---|---|---|---|
5-simplex (Hexateron) | {3, 3, 3, 3} | [3, 3, 3, 3] | (1, -1, 0, 0,0), (0, 1, -1, 0, 0), (0, 0, 1, -1, 0), (0, 0, 0, 1,-1), (0, 0, 0, 0, 1) | 3840 | |
5-cube (Penteract) | {4, 3, 3, 3} | [3, 3, 3, 4] | (1, -1, 0, 0,0), (0, 1, -1, 0, 0), (0, 0, 1,-1, 0), (0, 0, 0, 1,-1), (0, 0, 0, 1, 1) | 1920 | |
5-orthoplex (Pentacross) | {3, 3, 3, 4} |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yu, T.; Chung, K.; Gdawiec, K.; Ouyang, P. Stereographic Visualization of 5-Dimensional Regular Polytopes. Symmetry 2019, 11, 391. https://doi.org/10.3390/sym11030391
Wang X, Yu T, Chung K, Gdawiec K, Ouyang P. Stereographic Visualization of 5-Dimensional Regular Polytopes. Symmetry. 2019; 11(3):391. https://doi.org/10.3390/sym11030391
Chicago/Turabian StyleWang, Xingchang, Tao Yu, Kwokwai Chung, Krzysztof Gdawiec, and Peichang Ouyang. 2019. "Stereographic Visualization of 5-Dimensional Regular Polytopes" Symmetry 11, no. 3: 391. https://doi.org/10.3390/sym11030391
APA StyleWang, X., Yu, T., Chung, K., Gdawiec, K., & Ouyang, P. (2019). Stereographic Visualization of 5-Dimensional Regular Polytopes. Symmetry, 11(3), 391. https://doi.org/10.3390/sym11030391