Incremental Granular Model Improvement Using Particle Swarm Optimization
<p>Structure of linear regression.</p> "> Figure 2
<p>Difference between fuzzy C-means clustering and context-based fuzzy C-means clustering: (<b>a</b>) fuzzy C-means clustering; (<b>b</b>) context-based fuzzy C-means clustering.</p> "> Figure 3
<p>Structure of a triangular fuzzy number.</p> "> Figure 4
<p>Structure of granular model.</p> "> Figure 5
<p>Structure of particle swarm optimization.</p> "> Figure 6
<p>Structure of particle swarm optimization-based incremental granular model.</p> "> Figure 7
<p>Predictive IGM performance (context = 5, 6, 7, 8).</p> "> Figure 8
<p>Average IGM performance (context = 5, 6, 7, 8).</p> "> Figure 9
<p>Predictive performance of the PSO-IGMs (context = 5, 6, 7, 8)</p> "> Figure 10
<p>IGM optimization process for 5 contexts.</p> "> Figure 11
<p>IGM optimization process for 6 contexts.</p> "> Figure 12
<p>IGM optimization process for 7 contexts.</p> "> Figure 13
<p>IGM optimization process for 8 contexts.</p> "> Figure 14
<p>Optimized internal parameters of the PSO-IGMs (context = 5, 6, 7, 8).</p> "> Figure 15
<p>Predictive performance of all IGMs.</p> ">
Abstract
:1. Introduction
2. Proposed Methods
2.1. Incremental Granular Model (IGM)
2.1.1. Global Part: Linear Regression (LR)
2.1.2. Local Part: Granular Model (GM)
2.1.3. Context-Based Fuzzy C-Means (CFCM) Clustering
2.1.4. Granular Model (GM)
2.2. Particle Swarm Optimization-Based Incremental Granular Model (PSO-IGM)
2.2.1. Particle Swarm Optimization (PSO)
2.2.2. Particle Swarm Optimization-Based Incremental Granular Model (PSO-IGM)
3. Results
3.1. Boston Housing Dataset
3.2. Experimental Method
3.3. Result Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Sun, Y.; Fan, Y. An improved fuzzy neural network based on T.S. model. Expert Syst. Appl. 2008, 34, 2905–2920. [Google Scholar] [CrossRef]
- Dhekale, B.S.; Sahu, P.K.; Vishwajith, K.P.; Narsimahaiah, L. Structural time series analysis towards modeling and forecasting of groundwater fluctuations in murshidabad district of west Bengal. Ecosystem 2015, 5, 117–126. [Google Scholar]
- Zhang, B.; Wei, Z.; Ren, J.; Cheng, Y.; Zheng, Z. An empirical study on predicting blood pressure using classification and regression trees. IEEE Access 2018, 6, 21758–21768. [Google Scholar] [CrossRef]
- Krueger, D.C.; Montgomery, D.C.; Mastrangelo, C.M. Application of generalized linear models to predict semiconductor yield using defect metrology data. IEEE Trans. Semicond. Manuf. 2011, 24, 44–58. [Google Scholar] [CrossRef]
- Yahia, M.; Hamrouni, T.A.; Abdelfattah, R. Infinite number of looks prediction in SAR filtering by linear regression. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2205–2209. [Google Scholar] [CrossRef]
- Zhang, J.; Chung, C.Y.; Han, Y. Online damping ratio prediction using locally weighted linear regression. IEEE Trans. Power Syst. 2016, 31, 1954–1962. [Google Scholar] [CrossRef]
- Drouard, V.; Horaud, R.; Deleforge, A.; Ba, S.; Evangelidis, G. Robust head-pose estimation based on partially-latent mixture of linear regressions. IEEE Trans. Image Process. 2017, 26, 1428–1440. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.L.; Cazarez, R.L.U.; Floriano, A.G. Support vector regression for predicting the productivity of higher education graduate students from individually developed software projects. IET Softw. 2017, 11, 265–270. [Google Scholar] [CrossRef]
- Amirkhani, S.; Nasirivatan, S.; Kasaeian, A.B.; Hajinezhad, A. ANN and ANFIS models to predict the performance of solar chimney power plants. Renew. Energy 2015, 83, 597–607. [Google Scholar] [CrossRef]
- Naderloo, L.; Alimardani, R.; Omid, M.; Sarmadian, F.; Alimardani, F. Application of ANFIS predict crop yield based on different energy inputs. Measurement 2012, 45, 1406–1413. [Google Scholar] [CrossRef]
- Umrao, R.K.; Sharma, L.L.; Singh, R.; Singh, T.N. Determination of strength and modulus of elasticity of heterogenous sedimentary rocks: An ANFIS predictive technique. Measurement 2018, 126, 194–201. [Google Scholar] [CrossRef]
- Zare, M.; Koch, M. Groundwater level fluctuations simulation and prediction by ANFIS-and hybrid wavelet-ANFIS/fuzzy C-means (FCM) clustering models: Applications to the miandarband plain. J. Hydro-Environ. Res. 2018, 18, 63–76. [Google Scholar] [CrossRef]
- Adiguzel, E.; Ozer, E.; Akgundogdu, A.; Yilmaz, A.E. Prediction of dust particle size effect on efficiency of photovoltaic modules with ANFIS: An experimental study in Aegean region, Turkey. Sol. Energy 2019, 177, 690–702. [Google Scholar] [CrossRef]
- Ordonez, C.; Lasheras, F.S.; Pardinas, J.R.; Juez, F.J.D.C. A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines. J. Comput. Appl. Math. 2019, 346, 184–191. [Google Scholar] [CrossRef]
- Torbat, S.; Khashei, M.; Bijari, M. A hybrid probabilistic fuzzy ARIMA model for consumption forecasting in commodity markets. Econ. Anal. Policy 2018, 58, 22–31. [Google Scholar] [CrossRef]
- Ohyver, M.; Pudjihastuti, H. Arima model for forecasting the price of medium quality rice to anticipate price fluctuations. Procedia Comput. Sci. 2018, 135, 707–711. [Google Scholar] [CrossRef]
- Barak, S.; Sadegh, S.S. Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm. Int. J. Electr. Power Energy Syst. 2016, 82, 92–104. [Google Scholar] [CrossRef]
- Ramos, P.; Santos, N.; Rebelo, R. Performance of state space and ARIMA models for consumer retail sales forecasting. Robot. Comput.-Integr. Manuf. 2015, 34, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Suhermi, N.; Suhartono; Prastyo, D.D.; Ali, B. Roll motion prediction using a hybrid deep learning and ARIMA model. Procedia Comput. Sci. 2018, 144, 251–258. [Google Scholar] [CrossRef]
- Musaylh, M.S.A.; Deo, R.C.; Adamowski, J.F.; Li, Y. Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Adv. Eng. Inform. 2018, 35, 1–16. [Google Scholar] [CrossRef]
- Pedrycz, W.; Vasiakos, A.V. Linguistic models and linguistic modeling. IEEE Trans. Syst. Manand Cybern. Part B 1999, 29, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Pedrycz, W.; Kwak, K.C. Linguistic models as a framework of user-centric system modeling. IEEE Trans. Syst. Manand Cybern. Part A Syst. Hum. 2006, 36, 727–745. [Google Scholar] [CrossRef]
- Pedrycz, W. Conditional fuzzy C-means. Pattern Recognit. Lett. 1996, 17, 625–632. [Google Scholar] [CrossRef]
- Zhu, X.; Pedrycz, W.; Li, Z. A design of granular Takagi-Sugeno fuzzy model through the synergy of fuzzy subspace clustering and optimal allocation of information granularity. IEEE Trans. Fuzzy Syst. 2018, 26, 2499–2509. [Google Scholar] [CrossRef]
- Hmouz, R.A.; Pedrycz, W.; Balamash, A. Description and prediction of time series: A general framework of granular computing. Expert Syst. Appl. 2015, 42, 4830–4839. [Google Scholar] [CrossRef]
- Froelich, W.; Pedrycz, W. Fuzzy cognitive maps in the modeling of granular time series. Knowl.-Based Syst. 2017, 115, 110–122. [Google Scholar] [CrossRef]
- Cimino, M.G.C.A.; Lazzerini, B.; Marcelloni, F.; Pedrycz, W. Genetic interval neural networks for granular data regression. Inf. Sci. 2014, 257, 313–330. [Google Scholar] [CrossRef]
- Zhao, J.; Han, Z.; Pedrycz, W.; Wang, W. Granular model of long-term prediction for energy system in steel industry. IEEE Trans. Cybern. 2016, 46, 388–400. [Google Scholar] [CrossRef]
- Pedrycz, W.; Kwak, K.C. The development of incremental models. IEEE Trans. Fuzzy Syst. 2007, 15, 507–518. [Google Scholar] [CrossRef]
- Oztekin, A.; Ebbini, L.A.; Sevkli, Z.; Delen, D. A decision analysis approach to predicting quality of life for lung transplant recipients: A hybrid genetic algorithms-based methodology. Eur. J. Oper. Res. 2018, 266, 639–651. [Google Scholar] [CrossRef]
- Garcia, P.L.; Onieva, E.; Osaba, E.; Masegosa, A.D.; Perallos, A. A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Transp. Syst. 2016, 17, 557–569. [Google Scholar] [CrossRef]
- Neetu; Sharma, R.; Basu, S.; Sarkar, A.; Pal, P.K. Data-adaptive prediction of sea-surface temperature in the Arabian sea. IEEE Geosci. Remote Sens. Lett. 2011, 8, 9–13. [Google Scholar] [CrossRef]
- Sadi, M.; Shahrabadi, A. Evolving robust intelligent model based on group method of data handling technique optimized by genetic algorithm to asphaltene precipitation. J. Pet. Sci. Eng. 2018, 171, 1211–1222. [Google Scholar] [CrossRef]
- Esfe, M.H.; Bahiraei, M.; Mahian, O. Experimental study for developing an accurate model to predict viscosity of CuO-ethylene glycol nanofluid using genetic algorithm based neural network. Power Technol. 2018, 338, 383–390. [Google Scholar] [CrossRef]
- Di Francescomarino, C.; Dumas, M.; Federici, M.; Ghidini, C.; Maggi, F.M.; Rizzi, W.; Simonetto, L. Genetic algorithms for hyperparameter optimization in predictive business process monitoring. Inf. Syst. 2018, 74, 67–83. [Google Scholar] [CrossRef]
- Rotta, G.A.; Vega, J.; Murari, A.; Canto, S.D. Global optimization driven by genetic algorithm for disruption predictors based on APODIS architecture. Fusion Eng. Des. 2016, 112, 1014–1018. [Google Scholar] [CrossRef]
- Byeon, Y.H.; Kwak, K.C. A design of genetically oriented rules-based incremental granular models and its application. Symmetry 2017, 9, 324. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks (ICNN ’95), Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Huang, C.M.; Huang, C.J.; Wang, M.L. A particle swarm optimization to identifying the ARMAX model for short-term load forecasting. IEEE Trans. Power Syst. 2005, 20, 1126–1133. [Google Scholar] [CrossRef]
- Chan, K.Y.; Dillon, T.S.; Chang, E. An intelligent particle swarm optimization for short-term traffic flow forecasting using on road sensor systems. IEEE Trans. Ind. Electron. 2013, 60, 4714–4725. [Google Scholar] [CrossRef]
- Bashir, Z.A.; Hawary, E.E. Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans. Power Syst. 2009, 24, 20–27. [Google Scholar] [CrossRef]
- Anamika; Peesapati, R.; Kumar, N. Electricity price forecasting and classification through wavelet-dynamic weighted PSO-FFNN approach. IEEE Syst. J. 2018, 12, 3075–3084. [Google Scholar] [CrossRef]
- Rocha, H.R.O.; Silvestre, L.J.; Celeste, W.C.; Coura, D.J.C.; Rigo, L.O., Jr. Forecast of distributed electrical generation system capacity based on seasonal micro generators using ELM and PSO. IEEE Lat. Am. Trans. 2018, 16, 1136–1141. [Google Scholar] [CrossRef]
- Ma, Z.; Dong, Y.; Liu, H.; Shao, X.; Wang, C. Forecast of non-equal interval track irregularity based on improved grey model and PSO-SVM. IEEE Access 2018, 6, 34812–34818. [Google Scholar] [CrossRef]
- Catalao, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F. Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting. IEEE Trans. Power Syst. 2011, 26, 137–144. [Google Scholar] [CrossRef]
- Liao, Y.X.; She, J.H.; Wu, M. Integrated hybrid-PSO and fuzzy-NN decoupling control for temperature of reheating furnace. IEEE Trans. Ind. Electron. 2009, 56, 2704–2714. [Google Scholar] [CrossRef]
- Alik, B.; Teguar, M.; Mekhaldi, A. Minimization of grounding system cost using PSO, GAO, and HPSGAO techniques. IEEE Trans. Power Deliv. 2015, 30, 2561–2569. [Google Scholar] [CrossRef]
- Yifei, T.; Meng, Z.; Jingwei, L.; Dongbo, L.; Yulin, W. Research on intelligent welding robot patch optimization based on GA and PSO algorithms. IEEE Access 2018, 6, 65397–65404. [Google Scholar] [CrossRef]
- Shivakumar, R.; Lakshmipathi, R. Implementation of an innovative Bio inspired GA and PSO algorithm for controller design considering steam GT Dynamics. Int. J. Comput. Sci. Issues IJCSI 2010, 7, 18–28. [Google Scholar]
No. of Clusters/Fuzzification Coefficient (m = 1.5) | Training RMSE | Testing RMSE |
---|---|---|
2 | 4.26 | 4.34 |
3 | 3.83 | 4.46 |
4 | 3.68 | 4.84 |
5 | 3.57 | 4.36 |
6 | 3.47 | 4.43 |
7 | 3.44 | 4.12 |
8 | 3.24 | 4.46 |
9 | 3.36 | 4.40 |
10 | 3.30 | 4.33 |
11 | 3.25 | 4.49 |
12 | 3.20 | 4.56 |
13 | 3.36 | 4.65 |
14 | 3.35 | 4.80 |
15 | 3.54 | 4.75 |
16 | 3.69 | 4.51 |
17 | 3.59 | 4.62 |
18 | 3.96 | 4.55 |
19 | 3.94 | 4.50 |
20 | 4.00 | 4.56 |
No. of Clusters/Fuzzification Coefficient (m = 1.5) | Training RMSE | Testing RMSE |
---|---|---|
2 | 4.27 | 4.32 |
3 | 4.35 | 5.34 |
4 | 3.71 | 4.31 |
5 | 3.54 | 4.18 |
6 | 3.61 | 4.15 |
7 | 3.49 | 3.95 |
8 | 3.25 | 4.29 |
9 | 3.56 | 4.29 |
10 | 3.52 | 4.14 |
11 | 3.23 | 4.07 |
12 | 3.69 | 4.23 |
13 | 3.76 | 4.20 |
14 | 3.34 | 4.18 |
15 | 3.68 | 4.22 |
16 | 3.84 | 4.26 |
17 | 3.71 | 4.27 |
18 | 4.12 | 4.39 |
19 | 4.34 | 4.48 |
20 | 4.61 | 4.77 |
No. of Clusters/Fuzzification Coefficient (m = 1.5) | Training RMSE | Testing RMSE |
---|---|---|
2 | 4.28 | 4.27 |
3 | 4.21 | 4.96 |
4 | 3.62 | 4.05 |
5 | 3.55 | 4.10 |
6 | 3.70 | 3.96 |
7 | 3.60 | 3.94 |
8 | 3.39 | 3.76 |
9 | 3.11 | 3.74 |
10 | 3.27 | 3.75 |
11 | 3.45 | 3.88 |
12 | 3.11 | 3.91 |
13 | 3.28 | 3.98 |
14 | 3.54 | 3.98 |
15 | 3.76 | 4.19 |
16 | 3.77 | 4.13 |
17 | 4.00 | 4.15 |
18 | 4.22 | 4.20 |
19 | 4.47 | 4.18 |
20 | 4.49 | 4.13 |
No. of Clusters/Fuzzification Coefficient (m = 1.5) | Training RMSE | Testing RMSE |
---|---|---|
2 | 4.28 | 4.26 |
3 | 4.04 | 4.24 |
4 | 3.60 | 4.07 |
5 | 3.63 | 4.08 |
6 | 3.21 | 3.91 |
7 | 3.56 | 3.83 |
8 | 3.96 | 3.83 |
9 | 3.19 | 3.77 |
10 | 3.16 | 3.92 |
11 | 3.29 | 3.83 |
12 | 3.70 | 3.77 |
13 | 3.37 | 3.84 |
14 | 3.36 | 3.72 |
15 | 3.67 | 3.81 |
16 | 3.89 | 4.11 |
17 | 4.11 | 4.08 |
18 | 4.39 | 4.11 |
19 | 4.55 | 4.11 |
20 | 4.74 | 4.05 |
Algorithm | No. of Contexts | No. of Clusters/Fuzzification Coefficient | Training RMSE | Testing RMSE |
---|---|---|---|---|
PSO-IGM | 5 | 5 5 4 3 2/2.3703 | 3.60 | 3.94 |
6 | 4 7 8 4 6 3/1.5740 | 3.17 | 3.56 | |
7 | 6 3 3 6 5 3 7/1.9901 | 3.42 | 3.73 | |
8 | 7 5 3 7 3 4 5 2/1.8734 | 3.24 | 3.55 |
Algorithm | No. of Contexts | No. of Clusters/Fuzzification Coefficient | Training RMSE | Testing RMSE |
---|---|---|---|---|
IGM | 5 | 7/1.5 | 3.44 | 4.12 |
PSO-IGM | 5 5 4 3 2/2.3703 | 3.60 | 3.94 | |
IGM | 6 | 7/1.5 | 3.49 | 3.95 |
PSO-IGM | 4 7 8 4 6 3/1.5740 | 3.17 | 3.56 | |
IGM | 7 | 9/1.5 | 3.11 | 3.74 |
PSO-IGM | 6 3 3 6 5 3 7/1.9901 | 3.42 | 3.73 | |
IGM | 8 | 14/1.5 | 3.36 | 3.72 |
PSO-IGM | 7 5 3 7 3 4 5 2/1.8734 | 3.24 | 3.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeom, C.-U.; Kwak, K.-C. Incremental Granular Model Improvement Using Particle Swarm Optimization. Symmetry 2019, 11, 390. https://doi.org/10.3390/sym11030390
Yeom C-U, Kwak K-C. Incremental Granular Model Improvement Using Particle Swarm Optimization. Symmetry. 2019; 11(3):390. https://doi.org/10.3390/sym11030390
Chicago/Turabian StyleYeom, Chan-Uk, and Keun-Chang Kwak. 2019. "Incremental Granular Model Improvement Using Particle Swarm Optimization" Symmetry 11, no. 3: 390. https://doi.org/10.3390/sym11030390
APA StyleYeom, C.-U., & Kwak, K.-C. (2019). Incremental Granular Model Improvement Using Particle Swarm Optimization. Symmetry, 11(3), 390. https://doi.org/10.3390/sym11030390