A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas
<p>Schematic overview of the screening process applied to the articles examined for this study.</p> "> Figure 2
<p>Trend of the number of articles published.</p> "> Figure 3
<p>Geographic distribution of the number of articles published.</p> "> Figure 4
<p>Percentage of land use from the articles published.</p> "> Figure 5
<p>Percentage of targeted variables in the articles reviewed.</p> "> Figure 6
<p>Percentage of environmental covariates in the articles reviewed.</p> "> Figure 7
<p>Percentage of important variables in the articles reviewed.</p> "> Figure 8
<p>DSM models used in the reviewed articles.</p> "> Figure 9
<p>Evaluation techniques used in the reviewed articles.</p> ">
Abstract
:1. Introduction
2. Soils in Lowland Areas
- i.
- Soil Hydrology: Lowland areas tend to have unique drainage patterns because of their relatively flat topography and proximity to water bodies, such as rivers, lakes, or coastal regions. Consequently, soils in lowland areas often exhibit distinct hydrological properties such as low internal drainage and a higher potential for waterlogging [16]. Understanding these characteristics is crucial for mapping purposes, as they help identify areas prone to flooding, soil moisture variations, and the overall drainage capacity of the soil.
- ii.
- Organic Matter Accumulation: Lowland areas often experience high rates of organic matter accumulation, which often improve the soils’ structure, mitigating the low drainage and limited oxygen availability. Waterlogging and limited oxygen may instead be given by the presence of fine textural soils and/or by the presence of depressional landforms typical of lowlands, and/or by the presence of shallow water tables [17]. As a result, these soils have unique properties and fertility profiles. The proper mapping of the organic matter content in lowland areas is vital for understanding nutrient cycling, carbon sequestration potential, and sustainable land management practices.
- iii.
- Sediment Deposition: Lowland areas often serve as deposition sites for sediments carried by wind and water bodies, such as rivers, during flooding events [17]. These sediment deposits can lead to variations in the soil composition, specific properties, and nutrients across the landscape [18]. Mapping these variations helps to characterize soil formation processes, identify suitable land use practices, and manage erosion risks in lowland areas.
- iv.
- Peat Soils: Peat soils may be prevalent in certain lowland areas [19]. These soils were formed through the accumulation of partially decomposed organic matter. Peat soils have specific properties such as high water-holding capacity, low bulk density, and acidic pH. Mapping peat soil distribution in lowland areas is crucial for understanding carbon storage, wetland conservation, and sustainable land-use planning.
- v.
- Soil Salinity and Alkalinity: Some lowland areas, especially those in coastal regions or near saltwater bodies, may contain soils with elevated salinity or alkalinity levels [20]. These conditions can affect the growth and productivity of the vegetation and agricultural crops. Mapping the extent of soil salinity and alkalinity in lowland areas provides valuable information for site-specific soil management, irrigation practices, and land suitability assessment.
3. Materials and Methods
4. Results and Discussion
4.1. Emergence of Interest and Growing Importance
4.2. Dominant Land Use Categories
4.3. Targeted Soil Variables in Lowland Areas
4.4. Environmental Covariates for DSM in Lowland Areas
4.5. DSM Approaches in Lowland Areas
4.6. Evaluation of DSM Approaches
5. General Discussion and Outlook
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Behrens, T.; Scholten, T. Digital soil mapping in Germany—A review. J. Plant Nutr. Soil Sci. 2006, 169, 434–443. [Google Scholar] [CrossRef]
- Mulder, V.; de Bruin, S.; Schaepman, M.; Mayr, T. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Biological Science Center. Digital Soil Mapping: New Tools for Modern Land Management Decisions. Available online: https://www.usgs.gov/centers/southwest-biological-science-center/science/digital-soil-mapping-new-tools-modern-land (accessed on 10 July 2003).
- Wadoux, A.M.-C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- IUSS. 7th Global Digital Soil Mapping Workshop 2016. Available online: https://projects.au.dk/digitalsoilmapping// (accessed on 1st August 2023).
- McBratney, A.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Grunwald, S.; Thompson, J.A.; Minasny, B.; Boettinger, J.L. Digital soil mapping in a changing world. In Digital Soil Assessments and Beyond—Proceedings of the Fifth Global Workshop on Digital Soil Mapping, Sydney, Australia, 10–13 April 2012; CRC Press: Boca Raton, FL, USA, 2012; pp. 301–305. [Google Scholar] [CrossRef]
- Pendleton, R.L.; Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology. Geogr. Rev. 1945, 35, 336. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; Zhu, A.X.; Scholten, T. The ConMap approach for terrain-based digital soil mapping. Eur. J. Soil Sci. 2010, 61, 133–143. [Google Scholar] [CrossRef]
- Jafari, A.; Finke, P.A.; Wauw, J.V.; Ayoubi, S.; Khademi, H. Spatial prediction of USDA- great soil groups in the arid Zarand region, Iran: Comparing logistic regression approaches to predict diagnostic horizons and soil types. Eur. J. Soil Sci. 2012, 63, 284–298. [Google Scholar] [CrossRef]
- Brungard, C.W.; Boettinger, J.L.; Duniway, M.C.; Wills, S.A.; Edwards, T.C. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 2015, 239–240, 68–83. [Google Scholar] [CrossRef]
- James, K.L.; Randall, N.P.; Haddaway, N.R. A methodology for systematic mapping in environmental sciences. Environ. Evid. 2016, 5, 7. [Google Scholar] [CrossRef]
- Natural Resources Management and Environment Department. Lecture Notes on the Major Soils of the World: Mineral Soils Conditioned by a Steppic Climate. FAO Corporate Document Repository. Available online: https://www.fao.org/3/Y1899E/y1899e07.htm (accessed on 11 July 2023).
- Lima, A.; Hoogmoed, W.; Pauletto, E.; Pinto, L. Management systems in irrigated rice affect physical and chemical soil properties. Soil Tillage Res. 2009, 103, 92–97. [Google Scholar] [CrossRef]
- Parfitt, J.M.B.; Concenço, G.; Scivittaro, W.B.; Andres, A.; da Silva, J.T.; Pinto, M.A.B. Soil and Water Management for Sprinkler Irrigated Rice in Southern Brazil. In Advances in International Rice Research; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Carating, R.B.; Galanta, R.G.; Bacatio, C.D. The Soils of the Lowlands; Springer: Dordrecht, The Netherlands, 2014; pp. 51–106. [Google Scholar] [CrossRef]
- Jaworska, H.; Klimek, J. Report on the impact of anthropogenic factors on the properties and functions of soils from a selected area of Central European Lowland province. J. Soils Sediments 2023, 23, 2994–3005. [Google Scholar] [CrossRef]
- Ikkala, L.; Ronkanen, A.-K.; Utriainen, O.; Kløve, B.; Marttila, H. Peatland subsidence enhances cultivated lowland flood risk. Soil Tillage Res. 2021, 212, 105078. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Taghizadeh-Mehrjardi, R.; Shahabi, A.; Heung, B.; Amirian-Chakan, A.; Davari, M.; Scholten, T. Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests. Geoderma 2021, 385, 114858. [Google Scholar] [CrossRef]
- Steel, P.F.H.; Hendijani, R. An Application of Modern Literature Review Methodology: Finding Needles in Ever-Growing Haystacks; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2023. [Google Scholar]
- Yahiaoui, I.; Douaoui, A.; Zhang, Q.; Ziane, A. Soil salinity prediction in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis. J. Arid. Land 2015, 7, 794–805. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS). Remote Sens. 2014, 6, 10813–10834. [Google Scholar] [CrossRef]
- Qin, C.-Z.; Zhu, A.-X.; Qiu, W.-L.; Lu, Y.-J.; Li, B.-L.; Pei, T. Mapping soil organic matter in small low-relief catchments using fuzzy slope position information. Geoderma 2012, 171–172, 64–74. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J. Digital Mapping of Soil Properties Using Multivariate Statistical Analysis and ASTER Data in an Arid Region. Remote Sens. 2015, 7, 1181–1205. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Zhang, M.; Yang, H.; Jin, Y.; Han, Y.; Tang, H.; Zhang, X.; Zhang, X. Mapping Soil Organic Matter and Analyzing the Prediction Accuracy of Typical Cropland Soil Types on the Northern Songnen Plain. Remote Sens. 2021, 13, 5162. [Google Scholar] [CrossRef]
- Buscaroli, A.; Zannoni, D.; Dinelli, E. Spatial distribution of elements in near surface sediments as a consequence of sediment origin and anthropogenic activities in a coastal area in northern Italy. CATENA 2021, 196, 104842. [Google Scholar] [CrossRef]
- Tang, S.; Du, C.; Nie, T. Inversion Estimation of Soil Organic Matter in Songnen Plain Based on Multispectral Analysis. Land 2022, 11, 608. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Z.; Mao, D.; Jia, M.; Chang, S.; Li, X. Spatiotemporal variations of soil salinization in China’s West Songnen Plain. Land Degrad. Dev. 2023, 34, 2366–2378. [Google Scholar] [CrossRef]
- Ma, H.; Wang, C.; Liu, J.; Wang, X.; Zhang, F.; Yuan, Z.; Yao, C.; Pan, X. A Framework for Retrieving Soil Organic Matter by Coupling Multi-Temporal Remote Sensing Images and Variable Selection in the Sanjiang Plain, China. Remote Sens. 2023, 15, 3191. [Google Scholar] [CrossRef]
- Lagacherie, P.; Bailly, J.S.; Monestiez, P.; Gomez, C. Using scattered hyperspectral imagery data to map the soil properties of a region. Eur. J. Soil Sci. 2012, 63, 110–119. [Google Scholar] [CrossRef]
- Bilgili, A.V. Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques. Environ. Monit. Assess. 2013, 185, 777–795. [Google Scholar] [CrossRef]
- Zhao, M.-S.; Rossiter, D.G.; Li, D.-C.; Zhao, Y.-G.; Liu, F.; Zhang, G.-L. Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index. Ecol. Indic. 2014, 39, 120–133. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Wang, S.; Bian, Z.; Zhou, W.; Wang, C. Effects of farmland landscape pattern on spatial distribution of soil organic carbon in Lower Liaohe Plain of northeastern China. Ecol. Indic. 2022, 145, 109652. [Google Scholar] [CrossRef]
- Shabou, M.; Mougenot, B.; Chabaane, Z.L.; Walter, C.; Boulet, G.; Aissa, B.N.; Zribi, M. Soil clay content mapping using a time series of landsat TM data in semi-arid lands. Remote Sens. 2015, 7, 6059–6078. [Google Scholar] [CrossRef]
- Walker, E.; Monestiez, P.; Gomez, C.; Lagacherie, P. Combining measured sites, soilscapes map and soil sensing for mapping soil properties of a region. Geoderma 2017, 300, 64–73. [Google Scholar] [CrossRef]
- Barthold, F.K.; Stallard, R.F.; Elsenbeer, H. Soil nutrient–landscape relationships in a lowland tropical rainforest in Panama. For. Ecol. Manag. 2008, 255, 1135–1148. [Google Scholar] [CrossRef]
- Mosleh, Z.; Salehi, M.H.; Jafari, A.; Borujeni, I.E.; Mehnatkesh, A. The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ. Monit. Assess. 2016, 188, 195. [Google Scholar] [CrossRef]
- Mosleh, Z.; Salehi, M.H.; Jafari, A.; Borujeni, I.E.; Mehnatkesh, A. Identifying sources of soil classes variations with digital soil mapping approaches in the Shahrekord plain, Iran. Environ. Earth Sci. 2017, 76, 748. [Google Scholar] [CrossRef]
- Pahlavan-Rad, M.R.; Dahmardeh, K.; Brungard, C. Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran. Geoderma Reg. 2018, 15, e00195. [Google Scholar] [CrossRef]
- Pahlavan-Rad, M.R.; Akbarimoghaddam, A. Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). CATENA 2018, 160, 275–281. [Google Scholar] [CrossRef]
- Mirakzehi, K.; Pahlavan-Rad, M.R.; Shahriari, A.; Bameri, A. Digital soil mapping of deltaic soils: A case of study from Hirmand (Helmand) river delta. Geoderma 2018, 313, 233–240. [Google Scholar] [CrossRef]
- Jamshidi, M.; Delavar, M.A.; Taghizadehe-Mehrjardi, R.; Brungard, C. Disaggregation of conventional soil map by generating multi realizations of soil class distribution (case study: Saadat Shahr plain, Iran). Environ. Monit. Assess. 2019, 191, 769, Correction to Environ. Monit. Assess. 2021, 193, 769. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.Y.; Zhu, A.X.; Qi, F.; Liu, J.Z.; Yang, L.; Liu, F.; Li, F.L. Construction of land surface dynamic feedbacks for digital soil mapping with fusion of multisource remote sensing data. Eur. J. Soil Sci. 2019, 70, 174–184. [Google Scholar] [CrossRef]
- Donoghue, S.; Furley, P.A.; Stuart, N.; Haggis, R.; Trevaskis, A.; Lopez, G. The nature and spatial variability of lowland savanna soils: Improving the resolution of soil properties to support land management policy. Soil Use Manag. 2019, 35, 547–560. [Google Scholar] [CrossRef]
- Esfandiarpour-Boroujeni, I.; Shamsabadi, M.S.; Shirani, H.; Mosleh, Z.; Bodaghabadi, M.B.; Salehi, M. Comparison of error and uncertainty of decision tree and learning vector quantization models for predicting soil classes in areas with low altitude variations. CATENA 2020, 191, 104581. [Google Scholar] [CrossRef]
- Fathizad, H.; Ardakani, M.A.H.; Heung, B.; Sodaiezadeh, H.; Rahmani, A.; Fathabadi, A.; Scholten, T.; Taghizadeh-Mehrjardi, R. Spatio-temporal dynamic of soil quality in the central Iranian desert modeled with machine learning and digital soil assessment techniques. Ecol. Indic. 2020, 118, 106736. [Google Scholar] [CrossRef]
- Esfandiarpour-Boroujeni, I.; Shahini-Shamsabadi, M.; Shirani, H.; Mosleh, Z.; Bagheri-Bodaghabadi, M.; Salehi, M. Assessment of different digital soil mapping methods for prediction of soil classes in the Shahrekord plain, Central Iran. CATENA 2020, 193, 104648. [Google Scholar] [CrossRef]
- Goldman, M.A.; Needelman, B.A.; Rabenhorst, M.C.; Lang, M.W.; McCarty, G.W.; King, P. Digital soil mapping in a low-relief landscape to support wetland restoration decisions. Geoderma 2020, 373, 114420. [Google Scholar] [CrossRef]
- Zare, E.; Li, N.; Khongnawang, T.; Farzamian, M.; Triantafilis, J. Identifying Potential Leakage Zones in an Irrigation Supply Channel by Mapping Soil Properties Using Electromagnetic Induction, Inversion Modelling and a Support Vector Machine. Soil Syst. 2020, 4, 25. [Google Scholar] [CrossRef]
- Parsaie, F.; Firouzi, A.F.; Mousavi, S.R.; Rahmani, A.; Sedri, M.H.; Homaee, M. Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Environ. Monit. Assess. 2021, 193, 162. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qi, Y.; Guo, W.; Zhang, J.; Chang, Q. Retrieval and Mapping of Soil Organic Carbon Using Sentinel-2A Spectral Images from Bare Cropland in Autumn. Remote Sens. 2021, 13, 1072. [Google Scholar] [CrossRef]
- Abedi, F.; Amirian-Chakan, A.; Faraji, M.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Razmjoue, D.; Scholten, T. Salt dome related soil salinity in southern Iran: Prediction and mapping with averaging machine learning models. Land Degrad. Dev. 2021, 32, 1540–1554. [Google Scholar] [CrossRef]
- Habibi, V.; Ahmadi, H.; Jafari, M.; Moeini, A. Quantitative assessment of soil salinity using remote sensing data based on the artificial neural network, case study: Sharif Abad Plain, Central Iran. Model. Earth Syst. Environ. 2021, 7, 1373–1383. [Google Scholar] [CrossRef]
- Rainford, S.-K.; Martín-López, J.M.; Da Silva, M. Approximating Soil Organic Carbon Stock in the Eastern Plains of Colombia. Front. Environ. Sci. 2021, 9, 685819. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, M.; Yang, H.; Jin, Y.; Zhang, X.; Liu, H. Mapping Regional Soil Organic Matter Based on Sentinel-2A and MODIS Imagery Using Machine Learning Algorithms and Google Earth Engine. Remote Sens. 2021, 13, 2934. [Google Scholar] [CrossRef]
- Sothe, C.; Gonsamo, A.; Arabian, J.; Snider, J. Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations. Geoderma 2022, 405, 115402. [Google Scholar] [CrossRef]
- Fathizad, H.; Taghizadeh-Mehrjardi, R.; Ardakani, M.A.H.; Zeraatpisheh, M.; Heung, B.; Scholten, T. Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions. Agronomy 2022, 12, 628. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, J.; Chen, S.; Wang, N.; Shi, Z.; Huang, Y.; Zhuo, Z. Digital Mapping of Soil Organic Carbon with Machine Learning in Dryland of Northeast and North Plain China. Remote Sens. 2022, 14, 2504. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, X.; Meng, X.; Zhu, H.; Ni, C.; Chen, M.; Liu, H. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine. CATENA 2022, 209, 105842. [Google Scholar] [CrossRef]
- Zeng, P.; Song, X.; Yang, H.; Wei, N.; Du, L. Digital Soil Mapping of Soil Organic Matter with Deep Learning Algorithms. ISPRS Int. J. Geo-Inf. 2022, 11, 299. [Google Scholar] [CrossRef]
- Sorenson, P.T.; Kiss, J.; Serdetchnaia, A.; Iqbal, J.; Bedard-Haughn, A.K. Predictive soil mapping in the Boreal Plains of Northern Alberta by using multi-temporal remote sensing data and terrain derivatives. Can. J. Soil Sci. 2022, 102, 852–866. [Google Scholar] [CrossRef]
- Xu, Y.; Li, B.; Bai, J.; Zhang, G.; Wang, X.; Smith, S.E.; Du, S. Effects of multi-temporal environmental variables on SOC spatial prediction models in coastal wetlands of a Chinese delta. Land Degrad. Dev. 2022, 33, 3557–3567. [Google Scholar] [CrossRef]
- Haq, Y.U.; Shahbaz, M.; Asif, H.S.; Al-Laith, A.; Alsabban, W.; Aziz, M.H. Identification of soil type in Pakistan using remote sensing and machine learning. PeerJ Comput. Sci. 2022, 8, e1109. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Liu, H.; Song, K.; Wang, L.; Meng, X. Prediction of soil organic matter using VNIR spectral parameters extracted from shape characteristics. Soil Tillage Res. 2022, 216, 105241. [Google Scholar] [CrossRef]
- Ge, H.; Han, Y.; Xu, Y.; Zhuang, L.; Wang, F.; Gu, Q.; Li, X. Estimating soil salinity using multiple spectral indexes and machine learning algorithm in Songnen Plain, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7041–7050. [Google Scholar] [CrossRef]
- Lotfollahi, L.; Delavar, M.A.; Biswas, A.; Jamshidi, M.; Taghizadeh-Mehrjardi, R. Modeling the spatial variation of calcium carbonate equivalent to depth using machine learning techniques. Environ. Monit. Assess. 2023, 195, 607. [Google Scholar] [CrossRef]
- Liu, X.; Bian, Z.; Sun, Z.; Wang, C.; Sun, Z.; Wang, S.; Wang, G. Integrating Landscape Pattern Metrics to Map Spatial Distribution of Farmland Soil Organic Carbon on Lower Liaohe Plain of Northeast China. Land 2023, 12, 1344. [Google Scholar] [CrossRef]
- Adeniyi, O.D.; Brenning, A.; Bernini, A.; Brenna, S.; Maerker, M. Digital Mapping of Soil Properties Using Ensemble Machine Learning Approaches in an Agricultural Lowland Area of Lombardy, Italy. Land 2023, 12, 494. [Google Scholar] [CrossRef]
- Dasgupta, S.; Debnath, S.; Das, A.; Biswas, A.; Weindorf, D.C.; Li, B.; Shukla, A.K.; Das, S.; Saha, S.; Chakraborty, S. Developing regional soil micronutrient management strategies through ensemble learning based digital soil mapping. Geoderma 2023, 433, 116457. [Google Scholar] [CrossRef]
- Mousavi, A.; Karimi, A.; Maleki, S.; Safari, T.; Taghizadeh-Mehrjardi, R. Digital mapping of selected soil properties using machine learning and geostatistical techniques in Mashhad plain, northeastern Iran. Environ. Earth Sci. 2023, 82, 234. [Google Scholar] [CrossRef]
- Kumar, N.; Velmurugan, A.; Hamm, N.A.S.; Dadhwal, V.K. Geospatial Mapping of Soil Organic Carbon Using Regression Kriging and Remote Sensing. J. Indian Soc. Remote Sens. 2018, 46, 705–716. [Google Scholar] [CrossRef]
- Maino, A.; Alberi, M.; Anceschi, E.; Chiarelli, E.; Cicala, L.; Colonna, T.; De Cesare, M.; Guastaldi, E.; Lopane, N.; Mantovani, F.; et al. Airborne Radiometric Surveys and Machine Learning Algorithms for Revealing Soil Texture. Remote Sens. 2022, 14, 3814. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Adhikari, K. Digital mapping of topsoil organic carbon content in an alluvial plain area of the Terai region of Nepal. CATENA 2021, 202, 105299. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
- Guo, L.; Sun, X.; Fu, P.; Shi, T.; Dang, L.; Chen, Y.; Linderman, M.; Zhang, G.; Zhang, Y.; Jiang, Q.; et al. Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas. Geoderma 2021, 398, 115118. [Google Scholar] [CrossRef]
- Kaya, F.; Keshavarzi, A.; Francaviglia, R.; Kaplan, G.; Başayiğit, L.; Dedeoğlu, M. Assessing Machine Learning-Based Prediction under Different Agricultural Practices for Digital Mapping of Soil Organic Carbon and Available Phosphorus. Agriculture 2022, 12, 1062. [Google Scholar] [CrossRef]
- Kaya, F.; Schillaci, C.; Keshavarzi, A.; Başayiğit, L. Predictive Mapping of Electrical Conductivity and Assessment of Soil Salinity in a Western Türkiye Alluvial Plain. Land 2022, 11, 2148. [Google Scholar] [CrossRef]
- Rahmani, S.R.; Ackerson, J.P.; Schulze, D.; Adhikari, K.; Libohova, Z. Digital Mapping of Soil Organic Matter and Cation Exchange Capacity in a Low Relief Landscape Using LiDAR Data. Agronomy 2022, 12, 1338. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Yang, Z.; Zhu, Y.; Han, Y. Mapping Soil Organic Carbon in Low-Relief Farmlands Based on Stratified Heterogeneous Relationship. Remote Sens. 2022, 14, 3575. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, J.; Li, B.; Qin, C.; Ji, W.; Xu, Y.; Huang, Y. High-Resolution Mapping of Soil Organic Matter at the Field Scale Using UAV Hyperspectral Images with a Small Calibration Dataset. Remote Sens. 2023, 15, 1433. [Google Scholar] [CrossRef]
- Chagas, C.d.S.; Junior, W.d.C.; Bhering, S.B.; Filho, B.C. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. CATENA 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Samarkhanov, K.; Abuduwaili, J.; Samat, A.; Ge, Y.; Liu, W.; Ma, L.; Smanov, Z.; Adamin, G.; Yershibul, A.; Sadykov, Z. Dimensionality-Transformed Remote Sensing Data Application to Map Soil Salinization at Lowlands of the Syr Darya River. Sustainability 2022, 14, 16696. [Google Scholar] [CrossRef]
- Shahrayini, E.; Noroozi, A.A. Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic Factors: A Case Study in Iran. Environ. Model. Assess. 2022, 27, 901–913. [Google Scholar] [CrossRef]
- Huang, J.; Nhan, T.; Wong, V.N.L.; Johnston, S.G.; Lark, R.M.; Triantafilis, J. Digital soil mapping of a coastal acid sulfate soil landscape. Soil Res. 2014, 52, 327–339. [Google Scholar] [CrossRef]
- Huang, J.; Wong, V.N.L.; Triantafilis, J. Mapping soil salinity and pH across an estuarine and alluvial plain using electromagnetic and digital elevation model data. Soil Use Manag. 2014, 30, 394–402. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Thiam, S.; Villamor, G.B.; Faye, L.C.; Sène, J.H.B.; Diwediga, B.; Kyei-Baffour, N. Monitoring land use and soil salinity changes in coastal landscape: A case study from Senegal. Environ. Monit. Assess. 2021, 193, 259. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.-X.; Liu, F.; Li, B.; Pei, T.; Qin, C.; Liu, G.; Wang, Y.; Chen, Y.; Ma, X.; Qi, F.; et al. Differentiation of Soil Conditions over Low Relief Areas Using Feedback Dynamic Patterns. Soil Sci. Soc. Am. J. 2010, 74, 861–869. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbonl. Adv. Agron. 2013, 118, 1–47. [Google Scholar] [CrossRef]
- Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Peterson, G.A. Soil Attribute Prediction Using Terrain Analysis. Soil Sci. Soc. Am. J. 1993, 57, 443–452. [Google Scholar] [CrossRef]
- Santra, P.; Kumar, M.; Panwar, N.R.; Das, B.S. Digital Soil Mapping and Best Management of Soil Resources: A Brief Discussion with Few Case Studies. In Adaptive Soil Management: From Theory to Practices; Springer: Singapore, 2017; pp. 3–38. [Google Scholar] [CrossRef]
- Zhang, G.-L.; Liu, F.; Song, X.-D. Recent progress and future prospect of digital soil mapping: A review. J. Integr. Agric. 2017, 16, 2871–2885. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.; Stein, A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Keskin, H.; Grunwald, S. Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma 2018, 326, 22–41. [Google Scholar] [CrossRef]
- Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Brus, D.; Kempen, B.; Heuvelink, G. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 2011, 62, 394–407. [Google Scholar] [CrossRef]
- Hook, P.B.; Burke, I.C. Biogeochemistry in a Shortgrass Landscape: Control by Topography, Soil Texture, and Microclimate. Ecology 2000, 81, 2686–2703. [Google Scholar] [CrossRef]
- Biswas, A.; Chau, H.W.; Bedard-Haughn, A.K.; Si, B.C. Factors controlling soil water storage in the hummocky landscape of the Prairie Pothole Region of North America. Can. J. Soil Sci. 2012, 92, 649–663. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Wu, T.; Li, Z.; Liu, Q.; Wang, X.; Wang, Y.; Zheng, J.; He, S.; Zhao, P.; et al. Sources of fine-sediment reservoir deposits from contrasting lithological zones in a medium-sized catchment over the past 60 years. J. Hydrol. 2021, 603, 127159. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Q. Groundwater influences on soil moisture and surface evaporation. J. Hydrol. 2004, 297, 285–300. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, X.; Li, Y.; Chen, X.; Li, C.; Fang, H.; Li, W.; Guo, W. Impact of deeper groundwater depth on vegetation and soil in semi-arid region of eastern China. Front. Plant Sci. 2023, 14, 1186406. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Lu, T.; Shi, H.; Zhao, Y. Influences of soil properties and hydrological processes on soil carbon dynamics in the cropland of North China Plain. Agric. Ecosyst. Environ. 2020, 295, 106886. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, J.; Fu, H.; Zhou, C.; Zuo, T. Evaluation of the Vertical Accuracy of Open Global DEMs over Steep Terrain Regions Using ICESat Data: A Case Study over Hunan Province, China. Sensors 2020, 20, 4865. [Google Scholar] [CrossRef] [PubMed]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Vernimmen, R.; Hooijer, A.; Yuherdha, A.T.; Visser, M.; Pronk, M.; Eilander, D.; Akmalia, R.; Fitranatanegara, N.; Mulyadi, D.; Andreas, H.; et al. Creating a Lowland and Peatland Landscape Digital Terrain Model (DTM) from Interpolated Partial Coverage LiDAR Data for Central Kalimantan and East Sumatra, Indonesia. Remote Sens. 2019, 11, 1152. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.B. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
S/N | Reference | Target Soil Variables | Land Use | Environmental Covariate Combinations [Source] | DSM Models (Best Model in Comparison Studies Bolden) | Assessment Metric Combination | Validation Approach |
---|---|---|---|---|---|---|---|
Traditional statistical approach | |||||||
1. | Yahiaoui et al. [22] | Soil salinity | Cropland | S [RS, EC], O [RS], R | Step MLR | ||
2. | Nawar et al. [23] | Soil salinity | Cropland | S [SS, RS] | PLSR, MARS | R2 and RMSE | Independent validation |
3. | Cheng-Zhi et al. [24] | SOM | Cropland | R | FSPW, MLR | CCC, MAE, and RMSE | Independent Validation |
4. | [25] | Soil salinity variable (EC), clay content and SOM | Cropland | S [MRS] | PLSR, MARS | R2, RMSE, and RPD | Data splitting |
5. | Vaudour et al. [26] | SOC, pH, CEC, Iron, Clay, Sand, Silt, CaCO3 | Cropland | S [RS], O [RS] | PLSR | R2, RMSE, and RPD | K-fold CV |
6. | Zhang et al. [27] | SOM | Cropland | S [RS], O [RS] | Step MLR | R2, RMSE, and MAE | Data splitting |
7. | Buscaroli et al. [28] | Trace elements | Croplands, Urban and industrial areas | S [WDXRF] | PCA, CA | ||
8. | Tang et al. [29] | SOM | Croplands | S, O [MRS] | Step-MLR, PLSR | R2 and RMSE | Data splitting |
9. | Yu et al. [30] | Soil salinity | Croplands, grasslands, woodland | S [RS], O [RS, LU], R | PLSR | R2, Bias, RMSE | K-fold CV |
10. | Ma et al. [31] | SOM | Croplands, Paddy field, forest | O [RS] | PLSR | R2 and RMSE | LOOCV |
Geospatial and multivariate geostatistics approach | |||||||
11. | Lagacherie et al. [32] | Clay | Vineyard | S [HRS] | Co-kriging, block co-kriging | RMSE | K-fold CV |
12. | Bilgili [33] | Soil salinity variables | Croplands | R | OK, RK, KED, DK | RMSE, RI, Kappa | Data splitting |
13. | Zhao et al. [34] | SOM | Paddy field | O [RS] | OK, RK | RMSE, MAE, ME | LOOCV |
14. | Liu et al. [35] | SOC | Cropland | C, O, R | OK, SLR | MAE, RMSE, R2 | Data splitting |
15 | Shabou et al. [36] | Soil texture class, Clay | Cropland, fruit trees | S [LS], O [MTD] | Cokriging | RMSE, R2 | Independent validation |
16 | Walker et al. [37] | Clay, CaCO2, EC, Iron, Sand, Silt, pH | Vineyard | S [LS], O [HS] | OK, CoKriging with CED | R2 | LOOCV |
Statistical machine learning approach | |||||||
17 | Barthold et al. [38] | Soil nutrient: K and Mg | Forest | O, R, P | CART | - | K-fold CV |
18. | Mosleh et al. [39] | Sand, silt, clay, EC, CFs, SOC, pH and CaCO3 | Cropland | S [LS], C, O [RS], R, P, A | ANN, BRT, MLR, GLM | RMSE, ME, R2 | Data splitting |
19. | Mosleh et al. [40] | Soil taxonomy classes | Cropland | S [LS], C, O [RS], R, P, A | RF, MLR, ANN, BRT | Kappa, OA, Adjusted Kappa, Brier score | Data splitting |
20. | Pahlavan-Rad et al. [41] | SOC | Cropland | S, O [RS, LU], R | RF | RMSE, and MAE | K-fold CV |
21. | Pahlavan-Rad and Akbarimoghaddam [42] | Sand, silt, clay, pH | Cropland | O [RS], R | RF | RMSE, MAE, and ME | Data splitting, Independent validation |
22. | Mirakzehi et al. [43] | Soil taxonomy classes | Cropland | S [RS], R, O [RS] | RF | Kappa, OA | Data splitting, K-fold CV |
23. | Jamshidi et al. [44] | Soil taxonomy classes | Cropland, forest, grassland | O [LU, RS], R, P | DSMART | OA, CI | Independent validation |
24. | Zeng et al. [45] | Sand, Clay | R [LSDF, RS] | RF | RMSE, MAE | LOOCV | |
25. | Donoghue et al. [46] | pH, Clay, SOM, other soil nutrients | CA | ||||
26. | Esfandiarpour-Boroujeni, Shamsabadi et al. [47] | Soil taxonomy class, soil WRB class | Cropland | S [LS, RS], R, P, A | DT, LVQ (ANN) | PPE | Data splitting |
27. | Fathizad et al. [48] | SOC, EC, HM, AS | S [RS], O [RS, LU], R, P | RF | MAE, RMSE, and R2 | Data splitting | |
28. | Esfandiarpour-Boroujeni, Shahini-Shamsabadi et al. [49] | Soil taxonomy class, soil WRB class | Cropland | S [LS, RS], R, P, A | ANN, DT, RF, SVM | OA, CI | Data splitting |
29. | Goldman et al. [50] | Soil texture class | Cropland, forest, Urban area | S [LS], R | RF | Kappa, OA, CI | Independent validation |
30. | Zare et al. [51] | ES, clay, sand, CEC | Cropland | S | SVM | CCC | LOOCV |
31. | Parsaie et al. [52] | Sand, Silt, Clay, CaCO3, SOC | Cropland, rangeland | O [RS], R | Cubist, RF, DT | RMSE, MSE, R2 | Data splitting |
32. | Wang et al. [53] | SOC | Cropland | S [RS] | RF, ANN, SVM, PLSR | RMSE, RPD | Data splitting |
33. | Abedi et al. [54] | Soil salinity variables (EC, SAR) | Cropland, Orchards | S [RS], R | DT, kNN, SVM, Cubist, RF, XGBoost | RMSE, MAE, R2 | K-fold CV |
34. | Nabiollahi et al. [20] | pH, Soil salinity variables (EC, SAR) | Croplands | S [RS], O [LU, RS], R, P, A | RF | CCC, MAE, RMSE | K-fold CV |
35. | Habibi et al. [55] | Soil salinity variables (EC) | S [RS], O [RS], R | ANN | MSE, R2 | Data splitting | |
36. | Rainford et al. [56] | SOC | Cropland, rangeland, forest, Urban area | C, O [LU], R, P, A | RF | RMSE, ME | Data splitting |
37. | Zhang et al. [57] | SOM | Cropland | S [RS], O [RS], R | RF, ANN, SVM | ME, RMSE, R2 | Data splitting |
38. | Sothe et al. [58] | SOC | Forest | S, C, R, O [RS, SAR] | RF | RMSE, MAE, R2 | Data splitting |
39. | Fathizad et al. [59] | SOC | Cropland | O [RS] | RF, SVM, ANN | RMSE, MAE, R2 | K-fold CV |
40. | Zhang et al. [60] | SOC | Cropland | S [RS], C, O [RS], R, P | Cubist, XGBoost, RF | RMSE, R2 | Independent validation |
41. | Luo et al. [61] | SOM | Cropland | O [RS, MTD] | RF | RMSE, R2 | Data splitting |
42. | Zeng et al. [62] | SOM | Cropland | C, O [RS], R | RF, DL [LSM-ResNet] | CCC, MAE, ME, RMSE, R2 | Data splitting |
43. | Sorenson et al. [63] | Soil type class | Forest | S [RS, SAR], O [RS], R | RF | Kappa | Independent validation |
44. | Xu et al. [64] | SOC | Cropland | S [RS], O [RS, MTD] | RF, Cubist, GBM | Bias, RMSE, R2 | Data splitting |
45. | Haq et al. [65] | Soil texture class | Cropland | O [RS] | RF, SVM, LMT | OA, F1 score | K-fold CV |
46. | Wang et al. [66] | SOM | Paddy field | S [VNIR], O [VNIR, LU] | RF | RMSE, R2 | Data splitting |
47. | Ge et al. [67] | Soil salinity variables | Cropland | S [RS], O [RS] | Cubist, RF, SVM, XGBoost | RMSE, R2, MAE | Data splitting |
48. | Lotfollahi et al. [68] | CaCO3 | Cropland, rangeland | O [RS], R | RF, DT | RMSE, R2 | Data splitting |
49. | Liu et al. [69] | SOC | Cropland | C, R | RF, SVM | Bias, RMSE, R2 | K-fold CV |
50. | Adeniyi et al. [70] | Sand, Silt, Clay, pH, SOC, topsoil depth | Cropland, paddy field | O [LU], R | Cubist, GBM, GLM, RF, SVM, EL | CCC, RMSE | nestedCV |
51. | Dasgupta et al. [71] | Soil micronutrients | Cropland | S [RS], C, O [RS], R | EL, SVM, Cubist, RF, QRF, rpart, Rpart2, XGBoost, extraTrees, XCG, glmStepAIC, C LASSO, MARS | CCC, RMSE, MAPE | Data splitting |
Hybrid model approach | |||||||
52. | Mousavi et al. [72] | CaCO3, Silt, Clay, pH, SOC, Sand | Cropland | R, O [RS] | RF-RK | Bias, CCC, RMSE, R2 | Data splitting |
53. | Kumar et al. [73] | SOC | Forest | O [RS], R | RK (MLR-OK) | RMSE, ME | Data splitting |
Multi-approach methods | |||||||
54. | Maino et al. [74] | Soil texture (Sand, Silt and Clay) | Cropland | S, P [Radiometric Data] | Step-MLR, NLML | R2 | Data splitting |
55. | Lamichhane et al. [75] | SOC | Cropland | S [LS], C, O [LU, RS], R, P, A, N | RK, RF | CCC, ME, RMSE, R2 | Data splitting |
56. | Zhang et al. [76] | SOC | Cropland, forest | O [RS] | Step-MLR, PLSR, ANN, OK, SVM | RMSE, R2 | Data splitting |
57. | Guo et al. [77] | SOC, SBD | Cropland | O [HRS, RS] | ELM, PLSR | RPIQ, RMSE, R2 | Data splitting |
58. | Kaya et al. [78] | SOC, Soil nutrient (P) | Cropland, Orchards | S, C, O [RS], R, P | Cubist, RF, RF-RK, Cubist-RK | NRMSE, RMSE, MAPE, CCC | Data splitting |
59 | Kaya et al. [79] | Soil salinity variable [EC] | Cropland | O [RS, LU], R, P | RF, SVM, RF-RK, SVM-RK | NRMSE, RMSE, CCC | Data splitting |
60. | Rahmani et al. [80] | SOM, CEC | Cropland | R | UK, Cubist, RF | ME, CCC, RMSE, R2 | Data splitting |
61. | Wu et al. [81] | SOC | Cropland, Paddy field, grassland, woodland | S, C, O [LU, RS], R | Cubist, OK, RF, Step-MLR | MAE, CCC, RMSE, R2 | Data splitting |
62. | Yan et al. [82] | SOM | Cropland | S [HRS] | OK, RF | RPD, RMSE, R2 | Independent validation |
63. | Chagas et al. [83] | Sand, silt, Clay | O [RS] | MLR, RF | RMSE, R2 | Data splitting | |
64. | Samarkhanov et al. [84] | Soil salinity variable [EC] | Cropland | S [RS], O [RS] | KNN, MLR, PLSR | RMSE, R2 | Data splitting |
65. | Shahrayini & Noroozi, [85] | Soil salinity variable [EC, SAR] | Cropland, rangeland | R, O [RS] | Step-MLR, RF | RMSE, R2 | Data splitting |
66. | Huang et al. [86] | EC, pH | Cropland, rangeland | R [PS] | Fuzzy k-means | RMSE, ME | |
67. | Huang et al. [87] | EC, pH | Cropland, rangeland | R, N | MLR, REML, OK | MSE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeniyi, O.D.; Bature, H.; Mearker, M. A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas. Land 2024, 13, 379. https://doi.org/10.3390/land13030379
Adeniyi OD, Bature H, Mearker M. A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas. Land. 2024; 13(3):379. https://doi.org/10.3390/land13030379
Chicago/Turabian StyleAdeniyi, Odunayo David, Hauwa Bature, and Michael Mearker. 2024. "A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas" Land 13, no. 3: 379. https://doi.org/10.3390/land13030379
APA StyleAdeniyi, O. D., Bature, H., & Mearker, M. (2024). A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas. Land, 13(3), 379. https://doi.org/10.3390/land13030379