Vegetation and Precipitation Patterns Define Annual Dynamics of CO2 Efflux from Soil and Its Components
<p>General view of the vegetation and soils within the native mixed forest (<b>a</b>) and mowed grassland (<b>b</b>) ecosystems, along with chambers for soil respiration measurements during warm (<b>b</b>) and cold (<b>c</b>) periods. The process of installing soil chambers containing root-free soils (<b>d</b>).</p> "> Figure 2
<p>Dynamics of air (Ta) and soil (Ts) temperatures and height of snow cover (<b>a</b>), soil and forest litter moisture content (<b>b</b>) during the measurements of soil respiration (SR) and respiration of SOM−derived microorganisms (HR) in the forest (<b>c</b>) and the grassland (<b>d</b>). The dotted lines for HR show values reconstructed using the regression method for the first half of June 2022. Arrows indicate the decrease in SR and HR values during prolonged dry periods: August 2022, June 2023, and September 2023. Error bars are standard errors of the mean.</p> "> Figure 3
<p>Dynamics of air (Ta) temperatures, day sum precipitation (P), soil moisture content (Ww) during the measurements of soil respiration (SR) and respiration of SOM-derived microorganisms (HR) in the grassland (<b>a</b>,<b>c</b>) and the forest (<b>b</b>,<b>d</b>) during summer–autumn periods of 2022 (<b>a</b>,<b>b</b>) and 2023 (<b>c</b>,<b>d</b>).</p> "> Figure 4
<p>Soil respiration (SR) and soil moisture content (Ww) relationships during summer–autumn periods of 2022 (<b>a</b>,<b>b</b>) and 2023 (<b>c</b>,<b>d</b>) in the forest and the grassland. Data for the whole June–September period (<b>a</b>,<b>c</b>) and for periods with a high amount of dry days: 26 June–8 August 2022 (<b>b</b>) as well as June and 29 August–4 October 2023 (<b>d</b>).</p> "> Figure 5
<p>Dynamics of total monthly soil (SR), SOM-derived heterotrophs (HR), and root-derived (RR) respiration values (<b>a</b>–<b>c</b>) and their distribution over two years (<b>d</b>–<b>f</b>): the median (bar), lower (Q1) and upper (Q3) quartiles (“boxes”); X1 = Q1 − 1.5 IQR (interquartile range, IQR = Q3 − Q1) and X2 = Q3 − 1.5 IQR (“moustaches”); all data are shown as dots.</p> "> Figure 6
<p>Differences in the total monthly soil (SR), SOM-derived heterotrophs (HR), and root-derived (RR) respiration between the grassland and forest ecosystems (<b>a</b>); a positive value means more intensive fluxes in the grassland. Dynamics of the share of monthly HR in SR values in the ecosystems (<b>b</b>). The relationships between increments of HR or RR and SR (<b>c</b>) values presented in (<b>a</b>), as well as the increments of HR shares between the forest and the grassland (<b>d</b>).</p> "> Figure A1
<p>Offset of SOM-derived respiration of heterotrophs (HR) measured in young (installed in June–July 2023) soil chambers relative to mature (installed in May 2022) soil chambers, in terms of absolute (<b>a</b>) and relative (<b>b</b>) values. A cross mark indicates days with no significant differences (<span class="html-italic">t</span>-test with equal variances, n = 4–5, <span class="html-italic">p</span> < 0.05).</p> "> Figure A2
<p>Offset of soil moisture content (SMC) at the depth of 0–6 cm within soil chambers without roots relative to surrounding intact soil, in terms of absolute (<b>a</b>) and relative (<b>b</b>) values. A cross mark indicates days with no significant differences (<span class="html-italic">t</span>-test with equal variances, n = 5–10, <span class="html-italic">p</span> <0.05).</p> "> Figure A3
<p>Respiration of soil (SR) and its SOM-derived (HR) and root-derived components (RR) during 2022–2023 (<b>a</b>) and during 2023–2024 (<b>b</b>): the mean (cross), the median (bar), lower (Q1), and upper (Q3) quartiles (“boxes”); X1 = Q1 − 1.5 IQR (interquartile range, IQR = Q3 − Q1) and X2 = Q3 − 1.5 IQR (“moustaches”); all data are shown as dots. Different letters indicate pairs of average values, the differences of which are detected during the multiple comparison procedure (Tukey test, α = 5%) after two-way ANOVA (Flux component × Ecosystem).</p> "> Figure A4
<p>The regression functions of SOM-derived microorganisms respiration rate (HR) based on soil respiration rate (SR) was developed using data from 20 July 2022 to 29 September 2022, which was then used to reconstruct HR for the period from 1 July 2022 to 14 July 2022.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Climate
2.3. Soil Respiration Measurement
2.4. Partitioning of Total CO2 Efflux from Soil for Contribution of Heterotrophs and Root-Derived CO2
2.5. Soil Temperature and Moisture Measurement
2.6. Data Processing
3. Results
3.1. Weather Conditions During the Monitoring Period
3.2. The Dynamics of CO2 Efflux from Soil
3.3. Seasonal Fluxes of Total CO2
4. Discussion
4.1. Vegetation Type-Driven Effects on CO2 Fluxes
4.2. Structure of Soil CO2 Efflux
4.3. Soil Respiration and CO2 Sources Throughout Climate Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Flux | Ecosystem | Year | Min | Q1 | Median | Q3 | Max |
---|---|---|---|---|---|---|---|
SR | Forest | 2022–2023 | 13.9 | 38.7 | 51.8 | 72.4 | 229.4 |
2023–2024 | 11.4 | 36.0 | 53.3 | 91.0 | 125.9 | ||
Grassland | 2022–2023 | 13.1 | 27.7 | 65.5 | 105.7 | 239.9 | |
2023–2024 | 12.2 | 32.7 | 65.5 | 124.3 | 227.1 | ||
HR | Forest | 2022–2023 | 9.5 | 19.7 | 32.4 | 53.5 | 102.5 |
2023–2024 | 8.3 | 21.6 | 27.1 | 51.2 | 80.3 | ||
Grassland | 2022–2023 | 2.3 | 7.9 | 16.9 | 27.5 | 71.0 | |
2023–2024 | 2.9 | 9.7 | 15.7 | 30.6 | 56.3 |
References
- Kudeyarov, V.N.; Kurganova, I.N. Respiration of Russian Soils: Database Analysis, Long-Term Monitoring, and General Estimates. Eurasian Soil Sci. 2005, 38, 983–992. [Google Scholar]
- Anderson, J.P.E. Soil Respiration. In Agronomy Monographs; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 831–871. ISBN 978-0-89118-977-0. [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Jian, J.; Steele, M.K.; Thomas, R.Q.; Day, S.D.; Hodges, S.C. Constraining Estimates of Global Soil Respiration by Quantifying Sources of Variability. Glob. Chang. Biol. 2018, 24, 4143–4159. [Google Scholar] [CrossRef]
- Kudeyarov, V.N. Current State of the Carbon Budget and the Capacity of Russian Soils for Carbon Sequestration. Eurasian Soil Sci. 2015, 48, 923–933. [Google Scholar] [CrossRef]
- Kudeyarov, V.N. Soil Respiration and Carbon Sequestration: A Review. Eurasian Soil Sci. 2023, 56, 1191–1200. [Google Scholar] [CrossRef]
- Ito, A. A Historical Meta-Analysis of Global Terrestrial Net Primary Productivity: Are Estimates Converging? Glob. Chang. Biol. 2011, 17, 3161–3175. [Google Scholar] [CrossRef]
- Guenet, B.; Orliac, J.; Cécillon, L.; Torres, O.; Sereni, L.; Martin, P.A.; Barré, P.; Bopp, L. Spatial Biases Reduce the Ability of Earth System Models to Simulate Soil Heterotrophic Respiration Fluxes. Biogeosciences 2024, 21, 657–669. [Google Scholar] [CrossRef]
- Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M. Global Spatiotemporal Distribution of Soil Respiration Modeled Using a Global Database. Biogeosciences 2015, 12, 4121–4132. [Google Scholar] [CrossRef]
- Konings, A.G.; Bloom, A.A.; Liu, J.; Parazoo, N.C.; Schimel, D.S.; Bowman, K.W. Global Satellite-Driven Estimates of Heterotrophic Respiration. Biogeosciences 2019, 16, 2269–2284. [Google Scholar] [CrossRef]
- Potter, C.S.; Klooster, S.A. Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers on Regional to Global Scales. Glob. Biogeochem. Cycles 1998, 12, 621–635. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Epron, D.; Harden, J.; Harmon, M.E.; Hoffman, F.; Kumar, J.; David McGuire, A.; Vargas, R. Estimating Heterotrophic Respiration at Large Scales: Challenges, Approaches, and next Steps. Ecosphere 2016, 7, e01380. [Google Scholar] [CrossRef]
- Hashimoto, S.; Ito, A.; Nishina, K. Divergent Data-Driven Estimates of Global Soil Respiration. Commun. Earth Environ. 2023, 4, 460. [Google Scholar] [CrossRef]
- Huang, N.; Wang, L.; Song, X.-P.; Black, T.A.; Jassal, R.S.; Myneni, R.B.; Wu, C.; Wang, L.; Song, W.; Ji, D.; et al. Spatial and Temporal Variations in Global Soil Respiration and Their Relationships with Climate and Land Cover. Sci. Adv. 2020, 6, eabb8508. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Ciais, P.; Viovy, N.; Li, W.; Cresto-Aleina, F.; Yang, H.; Joetzjer, E.; Bond-Lamberty, B. A Data-Driven Global Soil Heterotrophic Respiration Dataset and the Drivers of Its Inter-Annual Variability. Glob. Biogeochem. Cycles 2021, 35, e2020GB006918. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekcioglu, A. Vegetation and Soil Respiration: Correlations and Controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Tang, X.; Du, J.; Shi, Y.; Lei, N.; Chen, G.; Cao, L.; Pei, X. Global Patterns of Soil Heterotrophic Respiration—A Meta-Analysis of Available Dataset. Catena 2020, 191, 104574. [Google Scholar] [CrossRef]
- Smith, D.L.; Johnson, L. Vegetation-Mediated Changes in Microclimate Reduce Soil Respiration as Woodlands Expand into Grasslands. Ecology 2004, 85, 3348–3361. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating Root and Soil Microbial Contributions to Soil Respiration: A Review of Methods and Observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 Efflux from Soil and Review of Partitioning Methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Jenkins, M.; Adams, M.A. Vegetation Type Determines Heterotrophic Respiration in Subalpine Australian Ecosystems. Glob. Chang. Biol. 2010, 16, 209–219. [Google Scholar] [CrossRef]
- Larionova, A.A.; Yevdokimov, I.V.; Kurganova, I.N.; Sapronov, D.V.; Lopes de Gerenyu, V.O.; Kuznetsova, L.G. Root Respiration and Its Contribution to the CO2 Emission from Soil. Eurasian Soil Sci. 2003, 36, 173–184. [Google Scholar]
- Hopkins, F.; Gonzalez-Meler, M.A.; Flower, C.E.; Lynch, D.J.; Czimczik, C.; Tang, J.; Subke, J.-A. Ecosystem-Level Controls on Root-Rhizosphere Respiration. New Phytol. 2013, 199, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Borken, W.; Savage, K.; Davidson, E.A.; Trumbore, S.E. Effects of Experimental Drought on Soil Respiration and Radiocarbon Efflux from a Temperate Forest Soil. Glob. Chang. Biol. 2006, 12, 177–193. [Google Scholar] [CrossRef]
- Karelin, D.V.; Zamolodchikov, D.G.; Kaganov, V.V.; Pochikalov, A.V.; Gitarskii, M.L. Microbial and Root Components of Respiration of Sod-Podzolic Soils in Boreal Forest. Contemp. Probl. Ecol. 2017, 10, 717–727. [Google Scholar] [CrossRef]
- Li, X.; Guo, D.; Zhang, C.; Niu, D.; Fu, H.; Wan, C. Contribution of Root Respiration to Total Soil Respiration in a Semi-Arid Grassland on the Loess Plateau, China. Sci. Total Environ. 2018, 627, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Priputina, I.V.; Frolov, P.V.; Shanin, V.N.; Bykhovets, S.S.; Kurganova, I.N.; Lopes de Gerenyu, V.O.; Sapronov, D.V.; Zubkova, E.V.; Myakshina, T.N.; Khoroshaev, D.A. Simulation Modeling of Forest Soil Respiration: Case Study of Entic Carbic Podzol under Coniferous–Broadleaved Forest in the South of Moscow Oblast. Eurasian Soil Sci. 2023, 56, 1291–1303. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; ISBN 978-92-5-108369-7. [Google Scholar]
- Anderson, J.P.E.; Domsch, K.H. A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- Pumpanen, J.; Kolari, P.; Ilvesniemi, H.; Minkkinen, K.; Vesala, T.; Niinistö, S.; Lohila, A.; Larmola, T.; Morero, M.; Pihlatie, M.; et al. Comparison of Different Chamber Techniques for Measuring Soil CO2 Efflux. Agric. For. Meteorol. 2004, 123, 159–176. [Google Scholar] [CrossRef]
- Veselov, V.M.; Pribyl’skaya, I.R.; Mirzeabasov, O.A. Specialized Arrays for Climate Research. Available online: http://aisori-m.meteo.ru/waisori/ (accessed on 8 December 2024).
- Yost, J.L.; Hartemink, A.E. Chapter Four—Soil Organic Carbon in Sandy Soils: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Warsaw, Poland, 2019; Volume 158, pp. 217–310. [Google Scholar]
- Metcalfe, D.B.; Fisher, R.A.; Wardle, D.A. Plant Communities as Drivers of Soil Respiration: Pathways, Mechanisms, and Significance for Global Change. Biogeosciences 2011, 8, 2047–2061. [Google Scholar] [CrossRef]
- Sanderman, J.; Baldock, J.A.; Amundson, R. Dissolved Organic Carbon Chemistry and Dynamics in Contrasting Forest and Grassland Soils. Biogeochemistry 2008, 89, 181–198. [Google Scholar] [CrossRef]
- Sanderman, J.; Amundson, R. A Comparative Study of Dissolved Organic Carbon Transport and Stabilization in California Forest and Grassland Soils. Biogeochemistry 2008, 89, 309–327. [Google Scholar] [CrossRef]
- De Frenne, P.; Zellweger, F.; Rodríguez-Sánchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M.; Vellend, M.; Verheyen, K.; Lenoir, J. Global Buffering of Temperatures under Forest Canopies. Nat. Ecol. Evol. 2019, 3, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Hoek van Dijke, A.J.; Orth, R.; Teuling, A.J.; Herold, M.; Schlerf, M.; Migliavacca, M.; Machwitz, M.; van Hateren, T.C.; Yu, X.; Mallick, K. Comparing Forest and Grassland Drought Responses Inferred from Eddy Covariance and Earth Observation. Agric. For. Meteorol. 2023, 341, 109635. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Christianson, D.S.; Malhotra, A.; Pennington, S.C.; Sihi, D.; AghaKouchak, A.; Anjileli, H.; Arain, M.A.; Armesto, J.J.; Ashraf, S.; et al. COSORE: A Community Database for Continuous Soil Respiration and Other Soil-Atmosphere Greenhouse Gas Flux Data. Glob. Chang. Biol. 2020, 26, 7268–7283. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, Q.; Wu, F.; Ni, X. Partitioning of Root, Litter and Microbial Respiration by Plant Input Manipulation in Forests. Environ. Res. Lett. 2023, 18, 024043. [Google Scholar] [CrossRef]
- Larionova, A.A.; Sapronov, D.V. Contribution of Roots and Microorganisms to CO2 Emission from Gray Forest and Soddy-Podzolic Soils. Eurasian Soil Sci. 2004, 37, S65–S69. [Google Scholar]
- Yevdokimov, I.V.; Larionova, A.A.; Schmitt, M.; Lopes De Gerenyu, V.O.; Bahn, M. Experimental Assessment of the Contribution of Plant Root Respiration to the Emission of Carbon Dioxide from the Soil. Eurasian Soil Sci. 2010, 43, 1373–1381. [Google Scholar] [CrossRef]
- Yevdokimov, I.V.; Larionova, A.A.; Schmitt, M.; Lopes de Gerenyu, V.O.; Bahn, M. Determination of Root and Microbial Contributions to the CO2 Emission from Soil by the Substrate-Induced Respiration Method. Eurasian Soil Sci. 2010, 43, 321–327. [Google Scholar] [CrossRef]
- Monson, R.K.; Lipson, D.L.; Burns, S.P.; Turnipseed, A.A.; Delany, A.C.; Williams, M.W.; Schmidt, S.K. Winter Forest Soil Respiration Controlled by Climate and Microbial Community Composition. Nature 2006, 439, 711–714. [Google Scholar] [CrossRef]
- Slette, I.J.; Post, A.K.; Awad, M.; Even, T.; Punzalan, A.; Williams, S.; Smith, M.D.; Knapp, A.K. How Ecologists Define Drought, and Why We Should Do Better. Glob. Chang. Biol. 2019, 25, 3193–3200. [Google Scholar] [CrossRef] [PubMed]
- IPCC Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021.
- Chernokulsky, A.; Kozlov, F.; Zolina, O.; Bulygina, O.; Mokhov, I.I.; Semenov, V.A. Observed Changes in Convective and Stratiform Precipitation in Northern Eurasia over the Last Five Decades. Environ. Res. Lett. 2019, 14, 045001. [Google Scholar] [CrossRef]
- Zolina, O.G.; Bulygina, O.N. Current Climatic Variability of Extreme Precipitation in Russia. Fundam. Appl. Climatol. 2016, 1, 84–103. [Google Scholar] [CrossRef]
- Dai, A.; Zhao, T.; Chen, J. Climate Change and Drought: A Precipitation and Evaporation Perspective. Curr. Clim. Chang. Rep. 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Khoroshaev, D.A.; Kurganova, I.N.; Lopes de Gerenyu, V.O. Heterotrophic Soil Respiration Response to the Summer Precipitation Regime and Different Depths of Snow Cover in a Temperate Continental Climate. Eurasian Soil Sci. 2023, 56, 1667–1682. [Google Scholar] [CrossRef]
- Carroll, C.J.W.; Slette, I.J.; Griffin-Nolan, R.J.; Baur, L.E.; Hoffman, A.M.; Denton, E.M.; Gray, J.E.; Post, A.K.; Johnston, M.K.; Yu, Q.; et al. Is a Drought a Drought in Grasslands? Productivity Responses to Different Types of Drought. Oecologia 2021, 197, 1017–1026. [Google Scholar] [CrossRef]
- Lopes de Gerenyu, V.O.; Kurganova, I.N.; Khoroshaev, D.A. The Effect of Contrasting Moistening Regimes on CO2 Emission from the Gray Forest Soil under a Grass Vegetation and Bare Fallow. Eurasian Soil Sci. 2018, 51, 1200–1213. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Savin, I.Y.; Shorohova, E.V. Carbon Balance in Forest Ecosystems of Southern Part of Moscow Region under a Rising Aridity of Climate. Contemp. Probl. Ecol. 2017, 10, 748–760. [Google Scholar] [CrossRef]
- Schmidt, S.K.; Lipson, D.A. Microbial Growth under the Snow: Implications for Nutrient and Allelochemical Availability in Temperate Soils. Plant Soil 2004, 259, 1–7. [Google Scholar] [CrossRef]
- Kannenberg, S.A.; Schwalm, C.R.; Anderegg, W.R.L. Ghosts of the Past: How Drought Legacy Effects Shape Forest Functioning and Carbon Cycling. Ecol. Lett. 2020, 23, 891–901. [Google Scholar] [CrossRef]
- Wolf, S.; Eugster, W.; Ammann, C.; Häni, M.; Zielis, S.; Hiller, R.; Stieger, J.; Imer, D.; Merbold, L.; Buchmann, N. Contrasting Response of Grassland versus Forest Carbon and Water Fluxes to Spring Drought in Switzerland. Environ. Res. Lett. 2013, 8, 035007. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenu, V.O.; Khoroshaev, D.A.; Myakshina, T.N.; Sapronov, D.V.; Zhmurin, V.A.; Kudeyarov, V.N. Analysis of the Long-Term Soil Respiration Dynamics in the Forest and Meadow Cenoses of the Prioksko-Terrasny Biosphere Reserve in the Perspective of Current Climate Trends. Eurasian Soil Sci. 2020, 53, 1421–1436. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Kudeyarov, V.N. CO2 Emission from Soils of Various Ecosystems of the Southern Taiga Zone: Data Analysis of Continuous 12-Year Monitoring. Dokl. Biol. Sci. 2011, 436, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Horwath, W.R.; Dorodnikov, M.; Blagodatskaya, E. Review and Synthesis of the Effects of Elevated Atmospheric CO2 on Soil Processes: No Changes in Pools, but Increased Fluxes and Accelerated Cycles. Soil Biol. Biochem. 2019, 128, 66–78. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Ballantyne, A.; Berryman, E.; Fluet-Chouinard, E.; Jian, J.; Morris, K.A.; Rey, A.; Vargas, R. Twenty Years of Progress, Challenges, and Opportunities in Measuring and Understanding Soil Respiration. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007637. [Google Scholar] [CrossRef]
Place | Depth | pH | Bulk Density | Corg | Ntot | C/N | Cmic |
---|---|---|---|---|---|---|---|
cm | g cm−3 | g kg−1 | g kg−1 | mg kg−1 | |||
Forest | 0–5 | 5.03 ± 0.12 a | 0.93 ± 0.05 a | 35.13 ± 3.42 a | 2.23 ± 0.15 a | 15.6 ± 0.6 a | 150 ± 35 ab |
5–10 | 4.15 ± 0.12 bc | 1.39 ± 0.06 b | 16.59 ± 0.94 c | 1.20 ± 0.10 b | 13.9 ± 0.8 a | 85 ± 11 bc | |
10–20 | 4.01 ± 0.11 c | 1.32 ± 0.05 b | 7.85 ± 0.84 de | 0.55 ± 0.05 cd | 14.2 ± 0.9 a | 42 ± 9 c | |
20–30 | 4.06 ± 0.15 c | 1.50 ± 0.08 b | 4.00 ± 0.58 e | 0.30 ± 0.04 d | 13.4 ± 0.2 a | 34 ± 4 c | |
Grassland | 0–5 | 4.51 ± 0.03 b | 0.93 ± 0.07 a | 25.34 ± 1.25 b | 2.34 ± 0.19 a | 10.9 ± 0.5 b | 211 ± 11 a |
5–10 | 3.97 ± 0.05 c | 1.39 ± 0.12 b | 11.64 ± 0.28 cd | 1.21 ± 0.04 b | 9.6 ± 0.3 b | 83 ± 2 bc | |
10–20 | 4.00 ± 0.04 c | 1.53 ± 0.04 b | 8.01 ± 0.57 de | 0.84 ± 0.06 bc | 9.5 ± 0.1 b | 43 ± 1 c | |
20–30 | 4.10 ± 0.05 bc | 1.56 ± 0.06 b | 4.00 ± 0.41 e | 0.44 ± 0.04 cd | 9.0 ± 0.2 b | 31 ± 2 c |
Period | January | February | March | April | May | June | July | August | September | October | November | December | Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Air temperature, °C | |||||||||||||
1991–2020 | −7.2 (3.2) | −6.6 (4.1) | −1.2 (3.0) | 6.7 (1.8) | 13.0 (2.2) | 16.5 (1.7) | 18.8 (1.9) | 17.1 (1.4) | 11.6 (1.5) | 5.8 (1.6) | −1.1 (3.0) | −5.2 (3.8) | 5.7 (0.8) |
2022 | −5.7 | −1.9 ↑ | −2.0 | 5.4 | 9.8 ↓ | 17.2 | 18.9 | 19.6 ↑ | 9.0 ↓ | 6.5 | −0.8 | −4.5 | 6.0 |
2023 | −5.4 | −4.7 | 0.7 | 8.6↑ | 11.2 | 15.2 | 17.5 | 18.4 | 13.2 ↑ | 4.9 | −0.6 | −4.7 | 6.2 |
2024 | −11.1 ↓ | −4.8 | 0.1 | 10.4↑ | −11.1 | nd | nd | nd | nd | nd | nd | nd | nd |
Precipitation amount, mm | |||||||||||||
1991–2020 | 44 (16) | 39 (14) | 36 (17) | 39 (19) | 56 (31) | 75 (36) | 82 (35) | 63 (43) | 57 (38) | 61 (30) | 44 (22) | 44 (20) | 640 (107) |
2022 | 82 ↑ | 19 ↓ | 13 ↓ | 98 ↑ | 75 | 34 ↓ | 54 | 22 | 87 | 73 | 37 | 125 ↑ | 718 |
2023 | 22 ↓ | 42 | 76 ↑ | 52 | 19 ↓ | 67 | 79 | 46 | 15 ↓ | 113 ↑ | 101 ↑ | 85 ↑ | 716 |
2024 | 55 | 43 | 7 ↓ | 51 | 36 | nd | nd | nd | nd | nd | nd | nd | nd |
Period 1 | SR | HR | RR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |||||||
F | G | F | G | F | G | F | G | F | G | F | G | |
Summer (January–August) | 214 (10) | 333 (13) | 194 (9) | 262 (7) | 163 (7) | 112 (5) | 120 (2) | 83 (9) | 51 (13) | 222 (14) | 74 (9) | 179 (11) |
Autumn (September–November) | 141 (7) | 127 (5) | 118 (6) | 122 (5) | 83 (3) | 33 (2) | 64 (2) | 33 (3) | 59 (7) | 94 (6) | 54 (7) | 90 (6) |
Winter (December–February) | 55 (5) | 37 (4) | 72 (5) | 63 (3) | 32 (3) | 10 (2) | 43 (3) | 23 (4) | 23 (6) | 27 (4) | 28 (6) | 40 (5) |
Spring (March–May) | 91 (5) | 170 (8) | 106 (5) | 174 (12) | 56 (3) | 29 (2) | 55 (3) | 33 (3) | 35 (6) | 142 (8) | 51 (6) | 141 (12) |
Cold season (November–April) | 101 (6) | 78 (5) | 123 (6) | 101 (3) | 59 (4) | 21 (2) | 74 (3) | 40 (5) | 43 (7) | 58 (5) | 49 (7) | 61 (6) |
Warm season (May–October) | 402 (16) | 587 (16) | 370 (11) | 525 (15) | 277 (8) | 164 (6) | 210 (4) | 134 (9) | 125 (15) | 424 (17) | 160 (12) | 391 (17) |
Year | 504 (15) | 667 (16) | 495 (13) | 626 (15) | 336 (9) | 185 (6) | 284 (5) | 174 (11) | 168 (16) | 483 (18) | 210 (14) | 453 (18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoroshaev, D.; Kurganova, I.; Lopes de Gerenyu, V.; Sapronov, D.; Kivalov, S.; Aloufi, A.S.; Kuzyakov, Y. Vegetation and Precipitation Patterns Define Annual Dynamics of CO2 Efflux from Soil and Its Components. Land 2024, 13, 2152. https://doi.org/10.3390/land13122152
Khoroshaev D, Kurganova I, Lopes de Gerenyu V, Sapronov D, Kivalov S, Aloufi AS, Kuzyakov Y. Vegetation and Precipitation Patterns Define Annual Dynamics of CO2 Efflux from Soil and Its Components. Land. 2024; 13(12):2152. https://doi.org/10.3390/land13122152
Chicago/Turabian StyleKhoroshaev, Dmitriy, Irina Kurganova, Valentin Lopes de Gerenyu, Dmitry Sapronov, Sergey Kivalov, Abeer S. Aloufi, and Yakov Kuzyakov. 2024. "Vegetation and Precipitation Patterns Define Annual Dynamics of CO2 Efflux from Soil and Its Components" Land 13, no. 12: 2152. https://doi.org/10.3390/land13122152
APA StyleKhoroshaev, D., Kurganova, I., Lopes de Gerenyu, V., Sapronov, D., Kivalov, S., Aloufi, A. S., & Kuzyakov, Y. (2024). Vegetation and Precipitation Patterns Define Annual Dynamics of CO2 Efflux from Soil and Its Components. Land, 13(12), 2152. https://doi.org/10.3390/land13122152