Calculating the Environmental Impacts of Low-Impact Development Using Long-Term Hydrologic Impact Assessment: A Review of Model Applications
Abstract
:1. Introduction
2. Model Presentation
3. Materials and Methods
4. Results
4.1. Site Screening for Urbanization and Watershed Impact
4.2. Simulating Future Scenarios and Long-Term Impact
4.3. Modeling of LID in Site Planning and Design
4.4. Economic Considerations
4.5. Model Verification and Methods for Calibration
4.6. Broader Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LID | Low-impact development |
L-THIA | Long-Term Hydrologic Impact Assessment |
GI | green infrastructure |
L-THIA-LID | Long-Term Hydrologic Impact Analysis–Low-Impact Development |
CN | curve-number |
NPS | nonpoint-source |
TN | total nitrogen |
TP | total phosphorus |
BOD | biochemical oxygen demand |
COD | chemical oxygen demand |
LTM | Land Transformation Model |
LEAM | Land Use Evolution and Impact Assessment Model |
CLUE-S | Conversion of Land Use and its Effects |
GIS | Geographic Information System |
ANN | artificial neural networks |
USD | U.S. Dollars |
NSE | Nash–Sutcliffe efficiency |
SCS-CN | soil conservation service curve number |
CAN | asymptotic curve number |
CERAT | Coastal Eutrophication Risk Assessment Tool |
DEM | digital elevation model |
References
- Qin, H.-P.; Li, Z.-X.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Mondini, G. Sustainability assessment: From brundtland report to sustainable development goals. Valori Valutazioni 2019, 23, 129–137. [Google Scholar]
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobianco, V.; Oen, A.M.P.; McClain, M.E.; Lopez-Gunn, E. Nature-based solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. 2020, 20, 243–270. [Google Scholar] [CrossRef] [Green Version]
- Dietz, M.E. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Franchino, R.; Frettoloso, C. Urban Greening: From the Social Value to the Environmental Quality. In Proceedings of the 3rd ICAUD International Conference in Architecture and Urban Design, Tirana, Albania, 24–26 October 2019; Available online: http://dspace.epoka.edu.al/bitstream/handle/1/1981/ICAUD%20BOOK%20Final%205-403-412.pdf?sequence=1 (accessed on 26 December 2022).
- Lim, K.J.; Engel, B.; Kim, Y.; Bhaduri, B.; Harbor, J. Development of the Long-term Hydrologic Impact Assessment (L-THIA) WWW Systems. In American Society of Agricultural Engineers Paper; USDA-ARS National Soil Erosion Laboratory: West Lafayette, IN, USA, 1999. [Google Scholar]
- Engel, B. L-THIA NPS Long-Term Hydrologic Impact Assessment and Non Point Source Pollutant Model, version 2.1; Purdue University: West Lafayette, IN, USA; US Environmental Protection Agency: Washington, DC, USA, 2001. [Google Scholar]
- Hunter, J.G.; Engel, B.A.; Quansah, J.E. Web-Based Low Impact Development Decision Support Tool for Watershed Planning. In Low Impact Development 2010: Redefining Water in the City; American Society of Civil Engineers: Reston, VA, USA, 2010; pp. 484–495. [Google Scholar] [CrossRef]
- Zhu, R.; Newman, G.; Atoba, K. Simulating the Impact of Land Use Change on Contaminant Transferal during Flood Events in Houston, Texas. Landsc. J. 2021, 40, 79–99. [Google Scholar] [CrossRef]
- Zellner, M.; Massey, D.; Minor, E.; Gonzalez-Meler, M. Exploring the effects of green infrastructure placement on neighborhood-level flooding via spatially explicit simulations. Comput. Environ. Urban Syst. 2016, 59, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development––A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Fu, D.; Zevenbergen, C.; Rene, E.R. A comprehensive review on the long-term performance of stormwater biofiltration systems (SBS): Operational challenges and future directions. J. Environ. Manag. 2022, 302, 113956. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.; Guo, Z.; van Duin, B.; Zhang, W. A new LID spatial allocation optimization system at neighborhood scale: Integrated SWMM with PICEA-g using MATLAB as the platform. Sci. Total. Environ. 2022, 831, 154843. [Google Scholar] [CrossRef]
- Meng, F.; Yuan, Q.; Bellezoni, R.A.; de Oliveira, J.A.P.; Cristiano, S.; Shah, A.M.; Liu, G.; Yang, Z.; Seto, K.C. Quantification of the food-water-energy nexus in urban green and blue infrastructure: A synthesis of the literature. Resour. Conserv. Recycl. 2023, 188, 106658. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado-López-Cózar, E. Google Scholar, Web of Science, and Scopus: Which is best for me? Impact of Social Sciences Blog. 2019. Available online: https://blogs.lse.ac.uk/impactofsocialsciences/2019/12/03/google-scholar-web-of-science-and-scopus-which-is-best-for-me/ (accessed on 30 September 2022).
- Leitch, C.; Harbor, J. Impacts of land use change on freshwater runoff into the near-coastal zone, Holetown Watershed, Barbados: Comparisons of long-term to single-storm effects. J. Soil Water Conserv. 1999, 54, 584–592. [Google Scholar]
- Yanhua, Z.; Song, H.; Wenting, Z.; HongYan, L.; Qinghui, Z.; Thuminh, N.; Beibei, N.; Wanyi, L. Simulation of the spatial and temporal changes of complex non-point source loads in a lake watershed of central China. Water Sci. Technol. 2013, 67, 2050–2058. [Google Scholar] [CrossRef]
- Bhaduri, B.; Harbor, J.; Engel, B.A.; Grove, M. Assessing Watershed-Scale, Long-Term Hydrologic Impacts of Land-Use Change Using a GIS-NPS Model. Environ. Manag. 2000, 26, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ma, K.-M.; Guo, Q.-H.; Bai, X. Evaluating long-term hydrological impacts of regional urbanisation in Hanyang, China, using a GIS model and remote sensing. Int. J. Sustain. Dev. World Ecol. 2008, 15, 350–356. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C. Impacts of Urbanization on Surface Runoff of the Dardenne Creek Watershed, St. Charles County, Missouri. Phys. Geogr. 2009, 30, 556–573. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Zhou, J. Assessing the long-term impact of urbanization on run-off using a remote-sensing-supported hydrological model. Int. J. Remote Sens. 2015, 36, 5336–5352. [Google Scholar] [CrossRef]
- Engel, B.A.; Ahiablame, L.M.; Leroy, J.D. Modeling the impacts of urbanization on lake water level using L-THIA. Urban Clim. 2015, 14, 578–585. [Google Scholar] [CrossRef]
- Mirzaei, M.; Solgi, E.; Mahiny, A.S. Modeling of Non-Point Source Pollution by Long-Term Hydrologic Impact Assessment (L-THIA) (Case Study: Zayandehrood Watershed) in 2015. Arch. Hyg. Sci. 2017, 6, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Ma, K.-M.; Yang, L.; Zhang, X.-L. Simulating the impacts of land-use changes on non-point source pollution in Lugu Lake watershed. Int. J. Sustain. Dev. World Ecol. 2008, 15, 18–27. [Google Scholar] [CrossRef]
- Lim, K.; Engel, B.; Tang, Z.; Muthukrishnan, S.; Choi, J.; Kim, K. Effects of calibration on L-THIA GIS runoff and pollutant estimation. J. Environ. Manag. 2006, 78, 35–43. [Google Scholar] [CrossRef]
- Wilson, C.; Weng, Q. Assessing Surface Water Quality and Its Relation with Urban Land Cover Changes in the Lake Calumet Area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shen, T.; Liu, M.; Wan, Y.; Liu, J.; Li, J. Research on non-point source pollution spatial distribution of Qingdao based on L-THIA model. Math. Comput. Model. 2011, 54, 1151–1159. [Google Scholar] [CrossRef]
- Li, T.; Bai, F.; Han, P.; Zhang, Y. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao’an District, Shenzhen, China. Environ. Manag. 2016, 58, 873–888. [Google Scholar] [CrossRef] [PubMed]
- Aprigo, P.D.O.; Bradnao, J.L.B. Impact assessment of non-point source pollution with the L-THIA model. In Proceedings of the World Environmental and Water Resources Congress 2011, Palm Springs, CA, USA, 22–26 May 2011. [Google Scholar]
- Zhu, R.; Newman, G. The projected impacts of smart decline on urban runoff contamination levels. Comput. Urban Sci. 2021, 1, 2. [Google Scholar] [CrossRef]
- Du, J.; Hu, S. The Long-Term Hydrological Impact Assessment Of Land Use And Land Cover Changes Using L-Thia Model In The Qinhuai River Watershed of Jiangsu Province, China. In Proceedings of the ASPRS 2014 Annual Conference, Louisville, KY, USA, 23–28 March 2014. [Google Scholar]
- Eaton, T.T. Approach and case-study of green infrastructure screening analysis for urban stormwater control. J. Environ. Manag. 2018, 209, 495–504. [Google Scholar] [CrossRef]
- Newman, G.; Cai, Z.H.; Horney, J.; Lyu, W.Q. Reducing Threats From Contamination and Flood Damage: Restoring the Brandywine Creek Edge in Wilmington, Delaware, USA. Landsc. Archit. Front. 2022, 10, 71–81. [Google Scholar] [CrossRef]
- Tang, Z.; Engel, B.A.; Lim, K.J.; Pijanowski, B.C.; Harbor, J. Minimizing the impact of urbanization of long term runoff. J. Am. Water Resour. Assoc. 2005, 41, 1347–1359. [Google Scholar] [CrossRef]
- Wang, Y.; Choi, W.; Deal, B.M. Long-Term Impacts of Land-Use Change on Non-Point Source Pollutant Loads for the St. Louis Metropolitan Area, USA. Environ. Manag. 2005, 35, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, X.; Fu, W.; Li, Y.; Tang, N. Long-term effects of land use/land cover change on surface runoff in urban areas of Beijing, China. J. Appl. Remote Sens. 2014, 8, 84596. [Google Scholar] [CrossRef] [Green Version]
- Choi, W. Estimating land-use change impacts on direct runoff and non-point source pollutant loads in the Richland Creek basin (Illinois, USA) by applying the L-THIA model. J. Spat. Hydrol. 2007, 7, 47–65. [Google Scholar]
- Zare, M.; Samani, A.A.N.; Mohammady, M. The impact of land use change on runoff generation in an urbanizing watershed in the north of Iran. Environ. Earth Sci. 2016, 75, 1279. [Google Scholar] [CrossRef]
- Ju, X.; Li, W.; He, L.; Li, J.; Han, L.; Mao, J. Ecological redline policy may significantly alter urban expansion and affect surface runoff in the Beijing-Tianjin-Hebei megaregion of China. Environ. Res. Lett. 2020, 15, 1040b1. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Representation and evaluation of low impact development practices with L-THIA-LID: An example for site planning. Environ. Pollut. 2012, 1, 1. [Google Scholar] [CrossRef]
- Tang, Z.; Engel, B.; Pijanowski, B.; Lim, K. Forecasting land use change and its environmental impact at a watershed scale. J. Environ. Manag. 2005, 76, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. J. Environ. Manag. 2013, 119, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.R.; Ahiablame, L.M.; Engel, B.A. Modeling low impact development in two Chicago communities. Environ. Sci. Water Res. Technol. 2015, 1, 855–864. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Engel, B.A.; Chen, J.; Sun, H. Green infrastructure practices simulation of the impacts of land use on surface runoff: Case study in Ecorse River watershed, Michigan. J. Environ. Manag. 2019, 233, 603–611. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Engel, B.A.; Liu, Y.; Wang, S.; Sun, H. Assessing the Effectiveness and Cost Efficiency of Green Infrastructure Practices on Surface Runoff Reduction at an Urban Watershed in China. Water 2021, 13, 24. [Google Scholar] [CrossRef]
- Liu, Y.; Bralts, V.F.; Engel, B.A. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Sci. Total. Environ. 2015, 511, 298–308. [Google Scholar] [CrossRef]
- Wright, T.J.; Liu, Y.; Carroll, N.J.; Ahiablame, L.M.; Engel, B.A. Retrofitting LID practices into existing neighborhoods: Is it worth it? Environ. Manag. 2016, 57, 856–867. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Theller, L.O.; Pijanowski, B.C.; Engel, B.A. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana. Sci. Total. Environ. 2016, 553, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Gitau, M.W.; Engel, B.A.; Flanagan, D.C.; Harbor, J.M. Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Sci. Total Environ. 2019, 665, 69–79. [Google Scholar] [CrossRef]
- Choi, J.Y.; Engel, B.A.; Theller, L.; Harbor, J. Utilizing web-based GIS and SDSS for hydrological land use change impact assessment. Trans. ASAE 2005, 48, 815–822. [Google Scholar] [CrossRef]
- Liu, Y.; Chaubey, I.; Bowling, L.C.; Bralts, V.F.; Engel, B.A. Sensitivity and Uncertainty Analysis of the L-THIA-LID 2.1 Model. Water Resour. Manag. 2016, 30, 4927–4949. [Google Scholar] [CrossRef]
- Jang, C.; Kum, D.; Jung, Y.; Kim, K.; Shin, D.S.; Engel, B.A.; Shin, Y.; Lim, K.J. Development of a Web-Based L-THIA 2012 Direct Runoff and Pollutant Auto-Calibration Module Using a Genetic Algorithm. Water 2013, 5, 1952–1966. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.R.; Huang, X.M.; Zhou, P.; Wang, L.M.; Zhi, Y.E. Non-Point Source Pollution Characteristics of Agriculture-Derived Nitrogen in Groundwater in Suburban Area of Shanghai Based on Models. In Computer and Computing Technologies in Agriculture V, PT II; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Jeon, J.-H.; Lim, K.J.; Engel, B.A. Regional Calibration of SCS-CN L-THIA Model: Application for Ungauged Basins. Water 2014, 6, 1339–1359. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Jang, W.S.; Kim, J.; Choi, J.D.; Engel, B.A.; Yang, J.E.; Lim, K.J. Development of a Watershed-Scale Long-Term Hydrologic Impact Assessment Model with the Asymptotic Curve Number Regression Equation. Water 2016, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Jang, W.S.; Kim, J.; Jung, Y.; Engel, B.A.; Lim, K.J. Development of Field Pollutant Load Estimation Module and Linkage of QUAL2E with Watershed-Scale L-THIA ACN Model. Water 2016, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cibin, R.; Bralts, V.F.; Chaubey, I.; Bowling, L.C.; Engel, B.A. Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environ. Model. Softw. 2016, 80, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.; Solgi, E.; Salmanmahiny, A. Assessment of impacts of land use changes on surface water using L-THIA model (case study: Zayandehrud river basin). Environ. Monit. Assess. 2016, 188, 690. [Google Scholar] [CrossRef]
- Baginska, B.; Lu, Y.; Pritchard, T. Modelling Nutrient Loads to Better Manage Impacts of Urbanization in Tweed Catchment. In Proceedings of the MODSIM 2005: International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, Melbourne, NSW, Australia, 12–15 December 2005. [Google Scholar]
- Kim, Y.; Engel, B.A.; Lim, K.J.; Larson, V.; Duncan, B. Runoff Impacts of Land-Use Change in Indian River Lagoon Watershed. J. Hydrol. Eng. 2002, 7, 245–251. [Google Scholar] [CrossRef]
- Morano, P.; Tajani, F.; Anelli, D. Urban planning decisions: An evaluation support model for natural soil surface saving policies and the enhancement of properties in disuse. Prop. Manag. 2020, 38, 699–723. [Google Scholar] [CrossRef]
- Fiorini, L.; Zullo, F.; Marucci, A.; Di Dato, C.; Romano, B. Planning Tool Mosaic (PTM): A Platform for Italy, a Country without a Strategic Framework. Land 2021, 10, 279. [Google Scholar] [CrossRef]
- You, Y.; Jin, W.; Xiong, Q.; Xue, L.; Ai, T.; Li, B. Simulation and Validation of Non-point Source Nitrogen and Phosphorus Loads under Different Land Uses in Sihu Basin, Hubei Province, China. In Proceedings of the 18th Biennial ISEM Conference on Ecological Modelling for Global Change and Coupled Human and Natural System, Beijing, China, 20–23 September 2012. [Google Scholar]
- Perry, T.; Nawaz, N. An investigation into the extent and impacts of hard surfacing of domestic gardens in an area of Leeds, United Kingdom. Landsc. Urban Plan. 2008, 86, 1–13. [Google Scholar] [CrossRef]
- Conrad, C.; College of Charleston; Levine, N.S. The Use of an l-Thia-Based Modified Curve Number Runoff Model for Flood Hazard Mapping in Charleston, South Carolina. Ph.D. Thesis, College of Charleston, Charleston, SC, USA, 2019. [Google Scholar] [CrossRef]
- Yuan, L.; Sinshaw, T.; Forshay, K.J. Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models. Geosciences 2020, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Yonaba, R.; Biaou, A.C.; Koïta, M.; Tazen, F.; Mounirou, L.A.; Zouré, C.O.; Queloz, P.; Karambiri, H.; Yacouba, H. A dynamic land use/land cover input helps in picturing the Sahelian paradox: Assessing variability and attribution of changes in surface runoff in a Sahelian watershed. Sci. Total. Environ. 2021, 757, 143792. [Google Scholar] [CrossRef]
- Hügel, S.; Davies, A.R. Public participation, engagement, and climate change adaptation: A review of the research literature. Wires Clim. Chang. 2020, 11, e645. [Google Scholar] [CrossRef] [Green Version]
- Newman, G.; Shi, T.; Yao, Z.; Li, D.; Sansom, G.; Kirsch, K.; Casillas, G.; Horney, J. Citizen Science-Informed Community Master Planning: Land Use and Built Environment Changes to Increase Flood Resilience and Decrease Contaminant Exposure. Int. J. Environ. Res. Public Health 2020, 17, 486. [Google Scholar] [CrossRef] [Green Version]
- Sohn, W.; Brody, S.D.; Kim, J.-H.; Li, M.-H. How effective are drainage systems in mitigating flood losses? Cities 2020, 107, 102917. [Google Scholar] [CrossRef]
- Du, M.; Zhang, X. Urban greening: A new paradox of economic or social sustainability? Land Use Policy 2020, 92, 104487. [Google Scholar] [CrossRef]
- Newman, G.; Sansom, G.T.; Yu, S.; Kirsch, K.R.; Li, D.; Kim, Y.; Horney, J.A.; Kim, G.; Musharrat, S. A Framework for Evaluating the Effects of Green Infrastructure in Mitigating Pollutant Transferal and Flood Events in Sunnyside, Houston, TX. Sustainability 2022, 14, 4247. [Google Scholar] [CrossRef]
- Equitable Long-Term Recovery and Resilience Workgroup. Federal Plan for Equitable Long-Term Recovery and Resilience for Social, Behavioral, and Community Health. 2022. Available online: https://health.gov/our-work/national-health-initiatives/equitable-long-term-recovery-and-resilience (accessed on 4 January 2023).
- Curran, W.; Hamilton, T. Just green enough: Contesting environmental gentrification in Greenpoint, Brooklyn. Local Environ. 2012, 17, 1027–1042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Zhu, R.; Ruggiero, E.; Newman, G.; Horney, J.A. Calculating the Environmental Impacts of Low-Impact Development Using Long-Term Hydrologic Impact Assessment: A Review of Model Applications. Land 2023, 12, 612. https://doi.org/10.3390/land12030612
Cai Z, Zhu R, Ruggiero E, Newman G, Horney JA. Calculating the Environmental Impacts of Low-Impact Development Using Long-Term Hydrologic Impact Assessment: A Review of Model Applications. Land. 2023; 12(3):612. https://doi.org/10.3390/land12030612
Chicago/Turabian StyleCai, Zhenhang, Rui Zhu, Emma Ruggiero, Galen Newman, and Jennifer A. Horney. 2023. "Calculating the Environmental Impacts of Low-Impact Development Using Long-Term Hydrologic Impact Assessment: A Review of Model Applications" Land 12, no. 3: 612. https://doi.org/10.3390/land12030612
APA StyleCai, Z., Zhu, R., Ruggiero, E., Newman, G., & Horney, J. A. (2023). Calculating the Environmental Impacts of Low-Impact Development Using Long-Term Hydrologic Impact Assessment: A Review of Model Applications. Land, 12(3), 612. https://doi.org/10.3390/land12030612